-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy path3_sampleManifold.lua
357 lines (319 loc) · 25.2 KB
/
3_sampleManifold.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!~/torch/install/bin/th
require 'torch'
require 'image'
require 'paths'
local commonFuncs = require '0_commonFuncs'
local sampleManifold = {}
function sampleManifold.sample(manifoldExp, sampleCategory, canvasHW, nSamples, data, model, outputDirPath, mean, var, nLatents, imgSize, numVPs, epoch, batchSize, targetBatchSize, testPhase, tanh, dropoutNet, VpToKeep, silhouetteInput, zEmbeddings, singleVPNet, conditional, expType, benchmark)
local conditionalModel = conditional and 1 or 0
if not expType or expType == 'randomSampling' then
print ('==> Drawing ' .. (conditional and ' conditional random ' or 'random') .. ' samples. Configs: ' .. 'Num of Sample Sets: ' .. nSamples .. ', Canvas Size: ' .. canvasHW .. ' x ' .. canvasHW .. (zEmbeddings and ', Empirical Mean' or (', Mean: ' .. mean)) .. (zEmbeddings and ', Empirical Var' or (', Diag. Var: ' .. var)))
expDirName = conditional and 'conditionalSamples' or 'randomSamples'
if not zEmbeddings then
paths.mkdir(string.format('%s/%s-Mean_%.2f-Var_%.2f/', outputDirPath, expDirName, mean, var))
else
paths.mkdir(string.format('%s/%s-empirical/', outputDirPath, expDirName))
end
local canvasSize = (not expType and conditional and canvasHW - 1) or canvasHW
local meanVec = torch.Tensor(1, nLatents):fill(mean)
local diagLogVarianceVec = torch.Tensor(1, nLatents):fill(var):log() -- Take the log of the diagonal elements of a covariance matrix
local canvas = torch.Tensor(numVPs, canvasSize * imgSize, canvasSize * imgSize)
local silhouetteCanvas = torch.Tensor(numVPs, canvasSize * imgSize, canvasSize * imgSize)
for c=1, conditional and (data and #data.category) or 1 do
local allowSampleForCategory = false
if conditional and type(sampleCategory) == 'table' then
for l=1, #sampleCategory do
if sampleCategory[l] == data.category[c] then
allowSampleForCategory = true
end
end
else
allowSampleForCategory = true
end
if allowSampleForCategory or sampleCategory == '' or not expType then
if conditional then
if not zEmbeddings then
savePathRandom = string.format('%s/%s-Mean_%.2f-Var_%.2f/%s/', outputDirPath, expDirName, mean, var, data.category[c])
else
savePathRandom = string.format('%s/%s-empirical/%s/', outputDirPath, expDirName, data.category[c])
end
else
if not zEmbeddings then
savePathRandom = string.format('%s/%s-Mean_%.2f-Var_%.2f/', outputDirPath, expDirName, mean, var)
else
savePathRandom = string.format('%s/%s-empirical/', outputDirPath, expDirName)
end
end
for j=1, nSamples do
local counter = 1
local zVectors
if not zEmbeddings then
zVectors = commonFuncs.sampleDiagonalMVN(meanVec, diagLogVarianceVec, canvasSize ^ 2)
else
local tempZEmbeddings = {}
if conditional then
-- Use the empirical distribution for each category samples in the training set
local tempIndex = zEmbeddings[3]:eq(c):nonzero()
tempIndex = tempIndex:view(tempIndex:size(1))
tempZEmbeddings[1] = zEmbeddings[1]:index(1, tempIndex)
tempZEmbeddings[2] = zEmbeddings[2]:index(1, tempIndex)
-- tempZEmbeddings[1] = zEmbeddings[1]
-- tempZEmbeddings[2] = zEmbeddings[2]
tempZEmbeddings[2] = tempZEmbeddings[2]:exp():add(tempZEmbeddings[2].new():resizeAs(tempZEmbeddings[2]):rand(tempZEmbeddings[2]:size()):div(10)):log() -- Increase the variance for about 0.05 (~0.22 std)
else
tempZEmbeddings[1] = zEmbeddings[1]:clone()
tempZEmbeddings[2] = zEmbeddings[2]:clone():exp():add(zEmbeddings[2].new():resizeAs(zEmbeddings[2]):rand(zEmbeddings[2]:size()):div(10)):log() -- Increase the variance for about 0.05 (~0.22 std)
end
zVectors = commonFuncs.sampleDiagonalMVN({tempZEmbeddings[1]:mean(1):float(), tempZEmbeddings[1]:var(1):log():float()}, {tempZEmbeddings[2]:clone():exp():mean(1):log():float(), tempZEmbeddings[2]:clone():exp():var(1):log():float()}, canvasSize ^ 2)
end
for i=1, canvasSize ^ 2 do
local z
z = zVectors[{{i}}]
z = torch.cat(z, z, 1)
z = z:cuda()
local reconstruction, targetClassLabels
if conditional then
targetClassLabels = torch.zeros(2, #data.category)
for l=1, 2 do
targetClassLabels[l][c] = 1
end
targetClassLabels = targetClassLabels:type(model:type())
reconstruction = model:get(conditionalModel+4):forward({z, targetClassLabels})
else
reconstruction = model:get(4):forward(z)
end
local silhouettes = reconstruction[2]:clone()
reconstruction[2] = nil
reconstruction = reconstruction[1]
collectgarbage()
if tanh then reconstruction = commonFuncs.normalizeBackToZeroToOne(reconstruction) end
for k=1, numVPs do
canvas[{{k}, {(counter-1) * imgSize + 1, counter * imgSize}, {(i - 1) % canvasSize * imgSize + 1, ((i - 1) % canvasSize + 1) * imgSize}}]:copy(reconstruction[{1, k}]:type(torch.getdefaulttensortype()))
silhouetteCanvas[{{k}, {(counter-1) * imgSize + 1, counter * imgSize}, {(i - 1) % canvasSize * imgSize + 1, ((i - 1) % canvasSize + 1) * imgSize}}]:copy(silhouettes[{1, k}]:type(torch.getdefaulttensortype()))
end
if i % canvasSize == 0 then counter = counter + 1 end
z = nil
reconstruction = nil
silhouettes = nil
collectgarbage()
end
paths.mkdir(string.format('%s/sample%d/', savePathRandom, j))
paths.mkdir(string.format('%s/sample%d/mask', savePathRandom, j))
for k=1, numVPs do
image.save(string.format(savePathRandom .. 'sample%d/VP-%d.png', j, k-1), canvas[{k}])
image.save(string.format(savePathRandom .. 'sample%d/mask/VP-%d.png', j, k-1), silhouetteCanvas[{k}])
end
end
end
end -- END for k=1, conditional and #data.category or 1
canvas = nil
silhouetteCanvas = nil
model:clearState()
collectgarbage()
end
if not expType or expType and expType == 'interpolation' then
expDirName = expType and 'interpolation' .. (commonFuncs.numOfDirs(outputDirPath)+1 >= 1 and commonFuncs.numOfDirs(outputDirPath)+1 or 1) or 'interpolation' -- In case a directory has been created already, this will help putting the new results into a new directory
paths.mkdir(string.format('%s/%s/', outputDirPath, expDirName))
local savePathDataInterpolate = string.format('%s/%s', outputDirPath, expDirName)
print ("==> Doing interpolation. Configs - Number of Samples: " .. nSamples - 2 .. ", Canvas Size: " .. canvasHW - 1 .. " X " .. canvasHW - 1)
nSamples = nSamples - 1 --Just to save computation time
canvasHW = canvasHW - 1 --Just to save computation time
local classID = 0
for class=1, #data.category do
local continueFlag = false
if #sampleCategory > 0 then
for sampleNo=1, #sampleCategory do
if data.category[class] == sampleCategory[sampleNo] then
continueFlag = true
end
end
else
continueFlag = true
end
if continueFlag then
local numOfVPsToDrop = torch.zeros(1) -- A placeholder to hold the number of view points to be dropped for the current category
local dropIndices = torch.zeros(numVPs) -- A placeholder to hold the indices of the tensor to be zeroed-out -- Used for dropoutNet
local pickedVPs = torch.Tensor(2) -- A placeholder to hold the view point to be kept -- Used for singleVPNet
if not expType or VpToKeep >= numVPs then
pickedVPs[1] = torch.random(1, numVPs)
pickedVPs[2] = pickedVPs[1]
else
pickedVPs[1] = VpToKeep
pickedVPs[2] = VpToKeep
end
local matchingElements = data.labels:eq(torch.Tensor(data.dataset:size(1)):fill(class)) -- Find the samples within one of the classes
if matchingElements:sum() > 1 then
local tempData = data.dataset:index(1, torch.range(1, data.dataset:size(1))[matchingElements]:long()):clone() -- Extract the samples belonging to the class of interest
local batchIndices = torch.randperm(tempData:size(1)):long():split(math.max(math.ceil(batchSize/2), targetBatchSize))
-- Correct the last index set size
if #batchIndices > 1 then
local tempbatchIndices = {}
for ll=1, tempData:size(1) - math.max(math.ceil(batchSize/2), targetBatchSize) * (#batchIndices - 1) do
tempbatchIndices[ll] = batchIndices[#batchIndices][ll]
end
batchIndices[#batchIndices] = torch.LongTensor(tempbatchIndices)
end
local nTotalSamples = 0
local batchesVisited = 0
local i = 1
while nTotalSamples < nSamples and batchesVisited < #batchIndices do -- Do this for all samples
batchesVisited = batchesVisited + 1
local passFlag = true
if batchIndices[i]:size(1) + nTotalSamples > nSamples then
batchIndices[i] = batchIndices[i][{{1, nSamples - nTotalSamples}}]
end
if batchIndices[i]:size(1) == 1 then
batchIndices[i] = batchIndices[i]:repeatTensor(2)
end
if passFlag then
local depthMaps, droppedInputs
depthMaps = tempData:index(1, batchIndices[i]):clone():type(model:type())
-- Generate the mask for the current samples
local silhouettes = depthMaps:clone()
if tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local predClassVec
droppedInputs = commonFuncs.dropInputVPs({depthMaps, silhouettes}, true, dropoutNet, numOfVPsToDrop, dropIndices, singleVPNet, pickedVPs)
if conditional then
mean, log_var, predictedClassScores = unpack(model:get(2):forward(silhouetteInput and droppedInputs[2] or droppedInputs[1]))
predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, predictedClassScores:size(2))
model:get(conditionalModel+4):forward({model:get(3):forward({mean, log_var}), predClassVec})
else
model:forward(silhouetteInput and droppedInputs[2] or droppedInputs[1])
end
local dataBeingUsed = depthMaps:clone()
local reconstructions = model:get(conditionalModel+4).output
local originalSilhouettesReconstructions = reconstructions[2]:clone():type(torch.getdefaulttensortype())
reconstructions[2] = nil
local originalReconstructions = reconstructions[1]:clone():type(torch.getdefaulttensortype())
collectgarbage()
if tanh then originalReconstructions = commonFuncs.normalizeBackToZeroToOne(originalReconstructions) dataBeingUsed = commonFuncs.normalizeBackToZeroToOne(dataBeingUsed) end
-- Create hot vectors for class-conditional interpolations
local targetClassHotVec
if conditional then
targetClassHotVec = torch.CudaTensor(2, #data.category):zero()
targetClassHotVec[{{}, {class}}] = 1
end
local zVecPrevExample
local canvas = torch.Tensor(numVPs, canvasHW * imgSize, canvasHW * imgSize)
local silhouetteCanvas = torch.Tensor(numVPs, canvasHW * imgSize, canvasHW * imgSize)
for l=1, nSamples > 2 and batchIndices[i]:size(1) or 2 do
nTotalSamples = nTotalSamples + 1
meanVec = model:get(2).output[1][{{l}}]:clone():type(torch.getdefaulttensortype())
diagLogVarianceVec = model:get(2).output[2][{{l}}]:clone():type(torch.getdefaulttensortype())
if var > 0 then
diagLogVarianceVec:exp():mul(var):log()
end
-- Sample z vectors
local zVectors
zVectors = torch.zeros(canvasHW ^ 2, nLatents)
zVectors[2]:copy(model:get(3).output[l]:type(torch.getdefaulttensortype()))
zVectors[{{3, canvasHW ^ 2}}]:copy(commonFuncs.sampleDiagonalMVN(meanVec, diagLogVarianceVec, canvasHW ^ 2 - 2)) -- The minus 2 is there since for each depth map we have 1 original depth map and 1 reconstructed version of the same depth map. Therefore, we require 2 less sampled Z vectors
-- Prepare the vectors for doing interpolation
local interpolationCanvas = torch.Tensor(numVPs, canvasHW * imgSize, canvasHW * imgSize)
local interpolationsilhouetteCanvas
interpolationsilhouetteCanvas = torch.Tensor(numVPs, canvasHW * imgSize, canvasHW * imgSize)
local interpolationZVectors = torch.zeros(canvasHW ^ 2, nLatents)
if l >= 2 then
if manifoldExp ~= 'data' then
interpolationZVectors[{2}]:copy(zVecPrevExample)
interpolationZVectors[{{3, canvasHW ^ 2 - 2}}]:copy(commonFuncs.interpolateZVectors(zVecPrevExample, zVectors[{{2}}], canvasHW ^ 2 - 4)) -- The minus 4 is there since for each depth map we have one original depth map, one reconstructed version of the same depth map before interpolation (both located on top left), one interpolation target reconstructed depth map along with its original depth map (located at the bottom right). Therefore, we require 4 less interpolated versions of Z vectors
interpolationZVectors[{canvasHW ^ 2 - 1}]:copy(zVectors[{2}])
end
-- Fill up the canvas(es) by passing the z vectors through the decoder
-- and drawing the result on the canvas for each view point
local counter = 1
for j=2, canvasHW ^ 2 do
local samplesReconstructions, interpolationReconstructions, samplesSilhouettesReconstructions, interpolationSilhouettesReconstructions
local zSamples = zVectors[{{j}}]:repeatTensor(2, 1)
local zInterpolations = interpolationZVectors[{{j}}]:repeatTensor(2, 1)
zSamples = zSamples:cuda() zInterpolations = zInterpolations:cuda()
if manifoldExp ~= 'interpolate' then
samplesReconstructions = model:get(conditionalModel+4):forward(zSamples)
samplesSilhouettesReconstructions = samplesReconstructions[2]:clone():type(torch.getdefaulttensortype())
samplesReconstructions[2] = nil
samplesReconstructions = samplesReconstructions[1]:clone():type(torch.getdefaulttensortype())
collectgarbage()
end
if tanh then samplesReconstructions = commonFuncs.normalizeBackToZeroToOne(samplesReconstructions) end
-- Fill the canvas(es)
for k=1, numVPs do
if manifoldExp ~= 'interpolate' then
canvas[{{k}, {1, dataBeingUsed:size(3)}, {1, dataBeingUsed:size(3)}}] = dataBeingUsed[{{l}, {k}}]:type(torch.getdefaulttensortype())
canvas[{{k}, {(counter-1) * imgSize + 1, counter * imgSize}, {(j - 1) % canvasHW * imgSize + 1, ((j - 1) % canvasHW + 1) * imgSize}}]:copy(samplesReconstructions[{1, k}]:type(torch.getdefaulttensortype()))
silhouetteCanvas[{{k}, {1, silhouettes:size(3)}, {1, silhouettes:size(3)}}]:copy(silhouettes[{{l}, {k}}])
silhouetteCanvas[{{k}, {(counter-1) * imgSize + 1, counter * imgSize}, {(j - 1) % canvasHW * imgSize + 1, ((j - 1) % canvasHW + 1) * imgSize}}]:copy(samplesSilhouettesReconstructions[{1, k}]:type(torch.getdefaulttensortype()))
end
if manifoldExp ~= 'data' then
interpolationReconstructions = model:get(conditionalModel+4):forward(conditionalModel == 0 and zInterpolations or {zInterpolations, targetClassHotVec})
interpolationSilhouettesReconstructions = interpolationReconstructions[2]:clone():type(torch.getdefaulttensortype())
interpolationReconstructions[2] = nil
interpolationReconstructions = interpolationReconstructions[1]:clone():type(torch.getdefaulttensortype())
-- Fill the interpolation canvas
interpolationsilhouetteCanvas[{{k}, {1, silhouettes:size(3)}, {1, silhouettes:size(3)}}]:copy(silhouettes[{{l - 1}, {k}}])
interpolationsilhouetteCanvas[{{k}, {(counter-1) * imgSize + 1, counter * imgSize}, {(j - 1) % canvasHW * imgSize + 1, ((j - 1) % canvasHW + 1) * imgSize}}]:copy(interpolationSilhouettesReconstructions[{1, k}])
if tanh then interpolationReconstructions = commonFuncs.normalizeBackToZeroToOne(interpolationReconstructions) end
interpolationCanvas[{{k}, {1, dataBeingUsed:size(3)}, {1, dataBeingUsed:size(3)}}] = dataBeingUsed[{{l - 1}, {k}}]:type(torch.getdefaulttensortype())
interpolationCanvas[{{k}, {(counter-1) * imgSize + 1, counter * imgSize}, {(j - 1) % canvasHW * imgSize + 1, ((j - 1) % canvasHW + 1) * imgSize}}]:copy(interpolationReconstructions[{1, k}]:type(torch.getdefaulttensortype()))
end
end
if j % canvasHW == 0 then counter = counter + 1 end
zSamples = nil
zInterpolations = nil
samplesReconstructions = nil
samplesSilhouettesReconstructions = nil
interpolationReconstructions = nil
interpolationSilhouettesReconstructions = nil
collectgarbage()
end
if manifoldExp ~= 'data' then
for k=1, numVPs do
interpolationCanvas[{{k}, {(counter-2) * imgSize + 1, (counter - 1) * imgSize}, {(canvasHW ^ 2 - 1) % canvasHW * imgSize + 1, ((canvasHW ^ 2 - 1) % canvasHW + 1) * imgSize}}] = dataBeingUsed[{{l}, {k}}]:type(torch.getdefaulttensortype())
interpolationsilhouetteCanvas[{{k}, {(counter-2) * imgSize + 1, (counter - 1) * imgSize}, {(canvasHW ^ 2 - 1) % canvasHW * imgSize + 1, ((canvasHW ^ 2 - 1) % canvasHW + 1) * imgSize}}]:copy(silhouettes[{{l}, {k}}])
end
end
if manifoldExp ~= 'interpolate' then
paths.mkdir(string.format('%s/%s/example-%d/samples', savePathDataInterpolate, data.category[class], nTotalSamples - 1))
paths.mkdir(string.format('%s/%s/example-%d/samples/mask', savePathDataInterpolate, data.category[class], nTotalSamples - 1))
end
if manifoldExp ~= 'data' then
paths.mkdir(string.format('%s/%s/example-%d/', savePathDataInterpolate, data.category[class], nTotalSamples - 1))
paths.mkdir(string.format('%s/%s/example-%d//mask', savePathDataInterpolate, data.category[class], nTotalSamples - 1))
end
for k=1, numVPs do
if manifoldExp ~= 'interpolate' then
image.save(string.format(savePathDataInterpolate .. '/%s/example-%d/samples/VP-%d.png', data.category[class], nTotalSamples - 1, k-1), canvas[{k}])
image.save(string.format(savePathDataInterpolate .. '/%s/example-%d/samples/mask/VP-%d.png', data.category[class], nTotalSamples - 1, k-1), silhouetteCanvas[{k}])
end
if manifoldExp ~= 'data' then
image.save(string.format(savePathDataInterpolate .. '/%s/example-%d/VP-%d.png', data.category[class], nTotalSamples - 1, k-1), interpolationCanvas[{k}])
image.save(string.format(savePathDataInterpolate .. '/%s/example-%d/mask/VP-%d.png', data.category[class], nTotalSamples - 1, k-1), interpolationsilhouetteCanvas[{k}])
end
end
end
-- Clone the mean and [log] variance vectors for interpolation use
zVecPrevExample = zVectors[{{2}}]:clone()
end
canvas = nil
silhouetteCanvas = nil
silhouettes = nil
originalReconstructions = nil
originalSilhouettesReconstructions = nil
model:clearState()
collectgarbage()
end -- END if passFlag
i = i + 1
end -- END while loop
tempData = nil
model:clearState()
collectgarbage()
end -- END if matchingElements:sum() > 1
end -- END if continueFlag
end -- END for class
end -- END for if epoch % 3 == 0
end
return sampleManifold