-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluate_t2m_seq2seq.py
202 lines (162 loc) · 7.96 KB
/
evaluate_t2m_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
from os.path import join as pjoin
import utils.paramUtil as paramUtil
from options.evaluate_options import TestT2MOptions
from utils.plot_script import *
from networks.transformer import TransformerV1, TransformerV2
from networks.quantizer import *
from networks.modules import *
from networks.trainers import TransformerT2MTrainer
from data.dataset import Motion2TextEvalDataset
from scripts.motion_process import *
from torch.utils.data import DataLoader
from utils.word_vectorizer import WordVectorizerV2
from utils.utils import *
def plot_t2m(data, captions, save_dir):
data = data * std + mean
for i in range(len(data)):
joint_data = data[i]
caption = captions[i]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
joint = motion_temporal_filter(joint)
save_path = '%s_%02d.mp4' % (save_dir, i)
np.save('%s_%02d.npy'%(save_dir, i), joint)
plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=fps, radius=radius)
def build_models(opt):
vq_decoder = VQDecoderV3(opt.dim_vq_latent, dec_channels, opt.n_resblk, opt.n_down)
quantizer = None
if opt.q_mode == 'ema':
quantizer = EMAVectorQuantizer(opt.codebook_size, opt.dim_vq_latent, opt.lambda_beta)
elif opt.q_mode == 'cmt':
quantizer = Quantizer(opt.codebook_size, opt.dim_vq_latent, opt.lambda_beta)
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.tokenizer_name, 'model', 'finest.tar'),
map_location=opt.device)
vq_decoder.load_state_dict(checkpoint['vq_decoder'])
quantizer.load_state_dict(checkpoint['quantizer'])
t2m_model = Seq2SeqText2MotModel(300, n_mot_vocab, opt.dim_txt_hid, opt.dim_mot_hid,
opt.n_mot_layers, opt.device, opt.early_or_late)
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name, 'model', 'finest.tar'),
map_location=opt.device)
t2m_model.load_state_dict(checkpoint['t2m_model'])
print('Loading t2m_model model: Epoch %03d Total_Iter %03d' % (checkpoint['ep'], checkpoint['total_it']))
return vq_decoder, quantizer, t2m_model
if __name__ == '__main__':
parser = TestT2MOptions()
opt = parser.parse()
opt.device = torch.device("cpu" if opt.gpu_id==-1 else "cuda:" + str(opt.gpu_id))
torch.autograd.set_detect_anomaly(True)
if opt.gpu_id != -1:
torch.cuda.set_device(opt.gpu_id)
opt.result_dir = pjoin(opt.result_path, opt.dataset_name, opt.name, opt.ext)
opt.joint_dir = pjoin(opt.result_dir, 'joints')
opt.animation_dir = pjoin(opt.result_dir, 'animations')
os.makedirs(opt.joint_dir, exist_ok=True)
os.makedirs(opt.animation_dir, exist_ok=True)
if opt.dataset_name == 't2m':
opt.data_root = './dataset/HumanML3D/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.m_token_dir = pjoin(opt.data_root, 'VQVAEV3_CB1024_CMT_H1024_NRES3')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 22
opt.max_motion_token = 55
opt.max_motion_frame = 196
dim_pose = 263
radius = 4
fps = 20
kinematic_chain = paramUtil.t2m_kinematic_chain
elif opt.dataset_name == 'kit':
opt.data_root = './dataset/KIT'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.m_token_dir = pjoin(opt.data_root, 'VQVAEV3_CB1024_CMT_H1024_NRES3')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 21
radius = 240 * 8
fps = 12.5
dim_pose = 251
opt.max_motion_token = 55
opt.max_motion_frame = 196
kinematic_chain = paramUtil.kit_kinematic_chain
else:
raise KeyError('Dataset Does Not Exist')
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.tokenizer_name, 'meta', 'mean.npy'))
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.tokenizer_name, 'meta', 'std.npy'))
n_mot_vocab = opt.codebook_size + 3
opt.mot_start_idx = opt.codebook_size
opt.mot_end_idx = opt.codebook_size + 1
opt.mot_pad_idx = opt.codebook_size + 2
enc_channels = [1024, opt.dim_vq_latent]
dec_channels = [opt.dim_vq_latent, 1024, dim_pose]
w_vectorizer = WordVectorizerV2('../text2motion/glove', 'our_vab')
n_txt_vocab = len(w_vectorizer) + 1
_, _, opt.txt_start_idx = w_vectorizer['sos/OTHER']
_, _, opt.txt_end_idx = w_vectorizer['eos/OTHER']
opt.txt_pad_idx = len(w_vectorizer)
vq_decoder, quantizer, t2m_model = build_models(opt)
split_file = pjoin(opt.data_root, opt.split_file)
dataset = Motion2TextEvalDataset(opt, mean, std, split_file, w_vectorizer)
data_loader = DataLoader(dataset, batch_size=opt.batch_size,num_workers=1, shuffle=True, pin_memory=True)
vq_decoder.to(opt.device)
quantizer.to(opt.device)
t2m_model.to(opt.device)
vq_decoder.eval()
quantizer.eval()
t2m_model.eval()
opt.repeat_times = opt.repeat_times if opt.sample else 1
'''Generating Results'''
print('Generating Results')
result_dict = {}
with torch.no_grad():
for i, batch_data in enumerate(data_loader):
print('%02d_%03d'%(i, opt.num_results))
word_emb, pos_ohot, captions, sent_lens, motions, m_tokens, m_lens, _ = batch_data
# word_emb, word_ids, caption, cap_lens, m_tokens, len_tokens = batch_data
word_emb = word_emb.detach().to(opt.device).float()
m_tokens = m_tokens.detach().to(opt.device).long()
# word_ids = word_ids.detach().to(opt.device).long()
# gt_tokens = motions[:, :m_lens[0]]
print(captions[0])
# print('Ground Truth Tokens')
# print(gt_tokens[0])
# rec_vq_latent = quantizer.get_codebook_entry(gt_tokens)
# rec_motion = vq_decoder(rec_vq_latent)
name = 'L%03dC%03d' % (m_lens[0], i)
item_dict = {
'caption': captions,
'length': m_lens[0],
'gt_motion': motions[:, :m_lens[0]].cpu().numpy()
}
for t in range(opt.repeat_times):
pred_tokens, len_map = t2m_model.sample_batch(word_emb, sent_lens, trg_sos=opt.mot_start_idx,
trg_eos=opt.mot_end_idx, max_steps=49, top_k=opt.top_k)
# print(pred_tokens)
pred_tokens = pred_tokens[:, 1:len_map[0]+1]
print('Sampled Tokens %02d'%t)
print(pred_tokens[0])
if len(pred_tokens[0]) == 0:
continue
vq_latent = quantizer.get_codebook_entry(pred_tokens)
gen_motion = vq_decoder(vq_latent)
sub_dict = {}
sub_dict['motion'] = gen_motion.cpu().numpy()
sub_dict['length'] = len(gen_motion[0])
item_dict['result_%02d'%t] = sub_dict
result_dict[name] = item_dict
if i > opt.num_results:
break
print('Animating Results')
'''Animating Results'''
for i, (key, item) in enumerate(result_dict.items()):
print('%02d_%03d'%(i, opt.num_results))
captions = item['caption']
gt_motions = item['gt_motion']
joint_save_path = pjoin(opt.joint_dir, key)
animation_save_path = pjoin(opt.animation_dir, key)
os.makedirs(joint_save_path, exist_ok=True)
os.makedirs(animation_save_path, exist_ok=True)
# np.save(pjoin(joint_save_path, 'gt_motions.npy'), gt_motions)
plot_t2m(gt_motions, captions, pjoin(animation_save_path, 'gt_motion'))
for t in range(opt.repeat_times):
sub_dict = item['result_%02d'%t]
motion = sub_dict['motion']
# np.save(pjoin(joint_save_path, 'gen_motion_%02d_L%03d.npy' % (t, motion.shape[1])), motion)
plot_t2m(motion, captions, pjoin(animation_save_path, 'gen_motion_%02d_L%03d' % (t, motion.shape[1])))