As the official OpenAI Guided Diffusion and Improved Diffusion implementations crash when training new models on non-distributed systems (like my laptop), here is a customised version of Guided Diffusion with the distributed capability disabled for use at home. This won't be updated with the original project, but these changes can be implemented locally as the official implementation is updated
Changes to official implementation (these also work in Improved Diffusion):
- guided_diffusion/train_util.py: disabled distributed synch params call, commented out line 124
- guided_diffusion/dist_util.py: changed hostname and backend code, starting on line 31:
/# SINGLE SYSTEM FIX: Set backend to 'gloo' all the time and hostname to 'localhost'
#FIX: added below
hostname = "localhost"
backend = "gloo"
#FIX: commented out below
#backend = "gloo" if not th.cuda.is_available() else "nccl"
#if backend == "gloo":
/# hostname = "localhost"
#else:
/# hostname = socket.gethostbyname(socket.getfqdn())
Note that to train at home, you'll likely need to change some input parameters due to GPU memory limitations:
- Use --microbatch instead of --batch. E.g. --microbatch 4
- Potentially reduce --image_size and --num_channels to lower numbers, such as 256 and 64
Also note that although undocumented, I recommend training with the guided diffusion codebase rather than improved diffusion, as it contains things such as support for an image size of 512.
Example command line to train from scratch with a bunch of images in the images/training folder: python scripts/image_train.py --data_dir images/training --image_size 256 --num_channels 128 --num_res_blocks 3 --diffusion_steps 1000 --noise_schedule linear --lr 2e-5 --microbatch 4 --learn_sigma True
This won't be maintained, but hope it helps someone out there - I already hit the same issues yesterday in the improved_diffusion codebase
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.
This repository is based on openai/improved-diffusion, with modifications for classifier conditioning and architecture improvements.
We have released checkpoints for the main models in the paper. Before using these models, please review the corresponding model card to understand the intended use and limitations of these models.
Here are the download links for each model checkpoint:
- 64x64 classifier: 64x64_classifier.pt
- 64x64 diffusion: 64x64_diffusion.pt
- 128x128 classifier: 128x128_classifier.pt
- 128x128 diffusion: 128x128_diffusion.pt
- 256x256 classifier: 256x256_classifier.pt
- 256x256 diffusion: 256x256_diffusion.pt
- 256x256 diffusion (not class conditional): 256x256_diffusion_uncond.pt
- 512x512 classifier: 512x512_classifier.pt
- 512x512 diffusion: 512x512_diffusion.pt
- 64x64 -> 256x256 upsampler: 64_256_upsampler.pt
- 128x128 -> 512x512 upsampler: 128_512_upsampler.pt
- LSUN bedroom: lsun_bedroom.pt
- LSUN cat: lsun_cat.pt
- LSUN horse: lsun_horse.pt
- LSUN horse (no dropout): lsun_horse_nodropout.pt
To sample from these models, you can use the classifier_sample.py
, image_sample.py
, and super_res_sample.py
scripts.
Here, we provide flags for sampling from all of these models.
We assume that you have downloaded the relevant model checkpoints into a folder called models/
.
For these examples, we will generate 100 samples with batch size 4. Feel free to change these values.
SAMPLE_FLAGS="--batch_size 4 --num_samples 100 --timestep_respacing 250"
Note for these sampling runs that you can set --classifier_scale 0
to sample from the base diffusion model.
You may also use the image_sample.py
script instead of classifier_sample.py
in that case.
- 64x64 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --dropout 0.1 --image_size 64 --learn_sigma True --noise_schedule cosine --num_channels 192 --num_head_channels 64 --num_res_blocks 3 --resblock_updown True --use_new_attention_order True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 1.0 --classifier_path models/64x64_classifier.pt --classifier_depth 4 --model_path models/64x64_diffusion.pt $SAMPLE_FLAGS
- 128x128 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 128 --learn_sigma True --noise_schedule linear --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 0.5 --classifier_path models/128x128_classifier.pt --model_path models/128x128_diffusion.pt $SAMPLE_FLAGS
- 256x256 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 1.0 --classifier_path models/256x256_classifier.pt --model_path models/256x256_diffusion.pt $SAMPLE_FLAGS
- 256x256 model (unconditional):
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 10.0 --classifier_path models/256x256_classifier.pt --model_path models/256x256_diffusion_uncond.pt $SAMPLE_FLAGS
- 512x512 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 512 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 False --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 4.0 --classifier_path models/512x512_classifier.pt --model_path models/512x512_diffusion.pt $SAMPLE_FLAGS
For these runs, we assume you have some base samples in a file 64_samples.npz
or 128_samples.npz
for the two respective models.
- 64 -> 256:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --large_size 256 --small_size 64 --learn_sigma True --noise_schedule linear --num_channels 192 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python super_res_sample.py $MODEL_FLAGS --model_path models/64_256_upsampler.pt --base_samples 64_samples.npz $SAMPLE_FLAGS
- 128 -> 512:
MODEL_FLAGS="--attention_resolutions 32,16 --class_cond True --diffusion_steps 1000 --large_size 512 --small_size 128 --learn_sigma True --noise_schedule linear --num_channels 192 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python super_res_sample.py $MODEL_FLAGS --model_path models/128_512_upsampler.pt $SAMPLE_FLAGS --base_samples 128_samples.npz
These models are class-unconditional and correspond to a single LSUN class. Here, we show how to sample from lsun_bedroom.pt
, but the other two LSUN checkpoints should work as well:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --dropout 0.1 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python image_sample.py $MODEL_FLAGS --model_path models/lsun_bedroom.pt $SAMPLE_FLAGS
You can sample from lsun_horse_nodropout.pt
by changing the dropout flag:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --dropout 0.0 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python image_sample.py $MODEL_FLAGS --model_path models/lsun_horse_nodropout.pt $SAMPLE_FLAGS
Note that for these models, the best samples result from using 1000 timesteps:
SAMPLE_FLAGS="--batch_size 4 --num_samples 100 --timestep_respacing 1000"
This table summarizes our ImageNet results for pure guided diffusion models:
Dataset | FID | Precision | Recall |
---|---|---|---|
ImageNet 64x64 | 2.07 | 0.74 | 0.63 |
ImageNet 128x128 | 2.97 | 0.78 | 0.59 |
ImageNet 256x256 | 4.59 | 0.82 | 0.52 |
ImageNet 512x512 | 7.72 | 0.87 | 0.42 |
This table shows the best results for high resolutions when using upsampling and guidance together:
Dataset | FID | Precision | Recall |
---|---|---|---|
ImageNet 256x256 | 3.94 | 0.83 | 0.53 |
ImageNet 512x512 | 3.85 | 0.84 | 0.53 |
Finally, here are the unguided results on individual LSUN classes:
Dataset | FID | Precision | Recall |
---|---|---|---|
LSUN Bedroom | 1.90 | 0.66 | 0.51 |
LSUN Cat | 5.57 | 0.63 | 0.52 |
LSUN Horse | 2.57 | 0.71 | 0.55 |
Training diffusion models is described in the parent repository. Training a classifier is similar. We assume you have put training hyperparameters into a TRAIN_FLAGS
variable, and classifier hyperparameters into a CLASSIFIER_FLAGS
variable. Then you can run:
mpiexec -n N python scripts/classifier_train.py --data_dir path/to/imagenet $TRAIN_FLAGS $CLASSIFIER_FLAGS
Make sure to divide the batch size in TRAIN_FLAGS
by the number of MPI processes you are using.
Here are flags for training the 128x128 classifier. You can modify these for training classifiers at other resolutions:
TRAIN_FLAGS="--iterations 300000 --anneal_lr True --batch_size 256 --lr 3e-4 --save_interval 10000 --weight_decay 0.05"
CLASSIFIER_FLAGS="--image_size 128 --classifier_attention_resolutions 32,16,8 --classifier_depth 2 --classifier_width 128 --classifier_pool attention --classifier_resblock_updown True --classifier_use_scale_shift_norm True"
For sampling from a 128x128 classifier-guided model, 25 step DDIM:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --image_size 128 --learn_sigma True --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
CLASSIFIER_FLAGS="--image_size 128 --classifier_attention_resolutions 32,16,8 --classifier_depth 2 --classifier_width 128 --classifier_pool attention --classifier_resblock_updown True --classifier_use_scale_shift_norm True --classifier_scale 1.0 --classifier_use_fp16 True"
SAMPLE_FLAGS="--batch_size 4 --num_samples 50000 --timestep_respacing ddim25 --use_ddim True"
mpiexec -n N python scripts/classifier_sample.py \
--model_path /path/to/model.pt \
--classifier_path path/to/classifier.pt \
$MODEL_FLAGS $CLASSIFIER_FLAGS $SAMPLE_FLAGS
To sample for 250 timesteps without DDIM, replace --timestep_respacing ddim25
to --timestep_respacing 250
, and replace --use_ddim True
with --use_ddim False
.