-
Notifications
You must be signed in to change notification settings - Fork 995
/
LNet.py
139 lines (119 loc) · 5.97 KB
/
LNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import functools
import torch
import torch.nn as nn
from models.transformer import RETURNX, Transformer
from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
FFCADAINResBlocks, Jump, FinalBlock2d
class Visual_Encoder(nn.Module):
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(Visual_Encoder, self).__init__()
self.layers = layers
self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
for i in range(layers):
in_channels = min(ngf*(2**i), img_f)
out_channels = min(ngf*(2**(i+1)), img_f)
model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
if i < 2:
ca_layer = RETURNX()
else:
ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
setattr(self, 'ca' + str(i), ca_layer)
setattr(self, 'ref_down' + str(i), model_ref)
setattr(self, 'inp_down' + str(i), model_inp)
self.output_nc = out_channels * 2
def forward(self, maskGT, ref):
x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
out=[x_maskGT]
for i in range(self.layers):
model_ref = getattr(self, 'ref_down'+str(i))
model_inp = getattr(self, 'inp_down'+str(i))
ca_layer = getattr(self, 'ca'+str(i))
x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
x_maskGT = ca_layer(x_maskGT, x_ref)
if i < self.layers - 1:
out.append(x_maskGT)
else:
out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features !
return out
class Decoder(nn.Module):
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(Decoder, self).__init__()
self.layers = layers
for i in range(layers)[::-1]:
if i == layers-1:
in_channels = ngf*(2**(i+1)) * 2
else:
in_channels = min(ngf*(2**(i+1)), img_f)
out_channels = min(ngf*(2**i), img_f)
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
setattr(self, 'up' + str(i), up)
setattr(self, 'res' + str(i), res)
setattr(self, 'jump' + str(i), jump)
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
self.output_nc = out_channels
def forward(self, x, z):
out = x.pop()
for i in range(self.layers)[::-1]:
res_model = getattr(self, 'res' + str(i))
up_model = getattr(self, 'up' + str(i))
jump_model = getattr(self, 'jump' + str(i))
out = res_model(out, z)
out = up_model(out)
out = jump_model(x.pop()) + out
out_image = self.final(out)
return out_image
class LNet(nn.Module):
def __init__(
self,
image_nc=3,
descriptor_nc=512,
layer=3,
base_nc=64,
max_nc=512,
num_res_blocks=9,
use_spect=True,
encoder=Visual_Encoder,
decoder=Decoder
):
super(LNet, self).__init__()
nonlinearity = nn.LeakyReLU(0.1)
norm_layer = functools.partial(LayerNorm2d, affine=True)
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
self.descriptor_nc = descriptor_nc
self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
)
def forward(self, audio_sequences, face_sequences):
B = audio_sequences.size(0)
input_dim_size = len(face_sequences.size())
if input_dim_size > 4:
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
cropped, ref = torch.split(face_sequences, 3, dim=1)
vis_feat = self.encoder(cropped, ref)
audio_feat = self.audio_encoder(audio_sequences)
_outputs = self.decoder(vis_feat, audio_feat)
if input_dim_size > 4:
_outputs = torch.split(_outputs, B, dim=0)
outputs = torch.stack(_outputs, dim=2)
else:
outputs = _outputs
return outputs