forked from aharley/pips
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
170 lines (135 loc) · 5.68 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import time
import numpy as np
import io
import os
from PIL import Image
import cv2
import saverloader
import imageio.v2 as imageio
from nets.pips import Pips
import utils.improc
import random
import glob
from utils.basic import print_, print_stats
import torch
from tensorboardX import SummaryWriter
import torch.nn.functional as F
random.seed(125)
np.random.seed(125)
def run_model(model, rgbs, N, sw, device):
rgbs = rgbs.to(device).float() # B, S, C, H, W
B, S, C, H, W = rgbs.shape
rgbs_ = rgbs.reshape(B*S, C, H, W)
H_, W_ = 360, 640
rgbs_ = F.interpolate(rgbs_, (H_, W_), mode='bilinear')
H, W = H_, W_
rgbs = rgbs_.reshape(B, S, C, H, W)
# pick N points to track; we'll use a uniform grid
N_ = np.sqrt(N).round().astype(np.int32)
grid_y, grid_x = utils.basic.meshgrid2d(B, N_, N_, stack=False, norm=False, device=device)
grid_y = 8 + grid_y.reshape(B, -1)/float(N_-1) * (H-16)
grid_x = 8 + grid_x.reshape(B, -1)/float(N_-1) * (W-16)
xy = torch.stack([grid_x, grid_y], dim=-1) # B, N_*N_, 2
_, S, C, H, W = rgbs.shape
print_stats('rgbs', rgbs)
preds, preds_anim, vis_e, stats = model(xy, rgbs, device, iters=6, )
trajs_e = preds[-1]
print_stats('trajs_e', trajs_e)
pad = 50
rgbs = F.pad(rgbs.reshape(B*S, 3, H, W), (pad, pad, pad, pad), 'constant', 0).reshape(B, S, 3, H+pad*2, W+pad*2)
trajs_e = trajs_e + pad
if sw is not None and sw.save_this:
linewidth = 2
# visualize the input
o1 = sw.summ_rgbs('inputs/rgbs', utils.improc.preprocess_color(rgbs[0:1]).unbind(1))
# visualize the trajs overlaid on the rgbs
o2 = sw.summ_traj2ds_on_rgbs('outputs/trajs_on_rgbs', trajs_e[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='spring', linewidth=linewidth)
# visualize the trajs alone
o3 = sw.summ_traj2ds_on_rgbs('outputs/trajs_on_black', trajs_e[0:1], torch.ones_like(rgbs[0:1])*-0.5, cmap='spring', linewidth=linewidth)
# concat these for a synced wide vis
wide_cat = torch.cat([o1, o2, o3], dim=-1)
sw.summ_rgbs('outputs/wide_cat', wide_cat.unbind(1))
# write to disk, in case that's more convenient
wide_list = list(wide_cat.unbind(1))
wide_list = [wide[0].permute(1,2,0).cpu().numpy() for wide in wide_list]
wide_list = [Image.fromarray(wide) for wide in wide_list]
out_fn = './out_%d.gif' % sw.global_step
wide_list[0].save(out_fn, save_all=True, append_images=wide_list[1:])
print('saved %s' % out_fn)
# alternate vis
sw.summ_traj2ds_on_rgbs2('outputs/trajs_on_rgbs2', trajs_e[0:1], vis_e[0:1], utils.improc.preprocess_color(rgbs[0:1]))
# animation of inference iterations
rgb_vis = []
for trajs_e_ in preds_anim:
trajs_e_ = trajs_e_ + pad
rgb_vis.append(sw.summ_traj2ds_on_rgb('', trajs_e_[0:1], torch.mean(utils.improc.preprocess_color(rgbs[0:1]), dim=1), cmap='spring', linewidth=linewidth, only_return=True))
sw.summ_rgbs('outputs/animated_trajs_on_rgb', rgb_vis)
return trajs_e-pad
def main():
# the idea in this file is to run the model on some demo images, and return some visualizations
exp_name = '00' # (exp_name is used for logging notes that correspond to different runs)
init_dir = 'reference_model'
## choose hyps
B = 1
S = 8
N = 16**2 # number of points to track
filenames = glob.glob('./demo_images/*.jpg')
filenames = sorted(filenames)
print('filenames', filenames)
max_iters = len(filenames)//S # run each unique subsequence
log_freq = 2 # when to produce visualizations
## autogen a name
model_name = "%02d_%d_%d" % (B, S, N)
model_name += "_%s" % exp_name
import datetime
model_date = datetime.datetime.now().strftime('%H:%M:%S')
model_name = model_name + '_' + model_date
print('model_name', model_name)
log_dir = 'logs_demo'
writer_t = SummaryWriter(log_dir + '/' + model_name + '/t', max_queue=10, flush_secs=60)
global_step = 0
# Pick a device
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
model = Pips(stride=4).to(device)
parameters = list(model.parameters())
if init_dir:
_ = saverloader.load(init_dir, model, device=device)
global_step = 0
model.eval()
while global_step < max_iters:
read_start_time = time.time()
global_step += 1
sw_t = utils.improc.Summ_writer(
writer=writer_t,
global_step=global_step,
log_freq=log_freq,
fps=5,
scalar_freq=int(log_freq/2),
just_gif=True)
try:
rgbs = []
for s in range(S):
fn = filenames[(global_step-1)*S+s]
if s==0:
print('start frame', fn)
im = imageio.imread(fn)
im = im.astype(np.uint8)
rgbs.append(torch.from_numpy(im).permute(2,0,1))
rgbs = torch.stack(rgbs, dim=0).unsqueeze(0) # 1, S, C, H, W
read_time = time.time()-read_start_time
iter_start_time = time.time()
with torch.no_grad():
trajs_e = run_model(model, rgbs, N, sw_t, device)
iter_time = time.time()-iter_start_time
print('%s; step %06d/%d; rtime %.2f; itime %.2f' % (
model_name, global_step, max_iters, read_time, iter_time))
except FileNotFoundError as e:
print('error', e)
writer_t.close()
if __name__ == '__main__':
main()