@inproceedings{mehay-white-2012-shallow,
title = "Shallow and Deep Paraphrasing for Improved Machine Translation Parameter Optimization",
author = "Mehay, Dennis N. and
White, Michael",
editor = "Okita, Tsuyoshi and
Sokolov, Artem and
Watanabe, Taro",
booktitle = "Workshop on Monolingual Machine Translation",
month = oct # " 28-" # nov # " 1",
year = "2012",
address = "San Diego, California, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2012.amta-monomt.3/",
abstract = "String comparison methods such as BLEU (Papineni et al., 2002) are the de facto standard in MT evaluation (MTE) and in MT system parameter tuning (Och, 2003). It is difficult for these metrics to recognize legitimate lexical and grammatical paraphrases, which is important for MT system tuning (Madnani, 2010). We present two methods to address this: a shallow lexical substitution technique and a grammar-driven paraphrasing technique. Grammatically precise paraphrasing is novel in the context of MTE, and demonstrating its usefulness is a key contribution of this paper. We use these techniques to paraphrase a single reference, which, when used for parameter tuning, leads to superior translation performance over baselines that use only human-authored references."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mehay-white-2012-shallow">
<titleInfo>
<title>Shallow and Deep Paraphrasing for Improved Machine Translation Parameter Optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dennis</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Mehay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-oct 28-nov 1</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Workshop on Monolingual Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tsuyoshi</namePart>
<namePart type="family">Okita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artem</namePart>
<namePart type="family">Sokolov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">San Diego, California, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>String comparison methods such as BLEU (Papineni et al., 2002) are the de facto standard in MT evaluation (MTE) and in MT system parameter tuning (Och, 2003). It is difficult for these metrics to recognize legitimate lexical and grammatical paraphrases, which is important for MT system tuning (Madnani, 2010). We present two methods to address this: a shallow lexical substitution technique and a grammar-driven paraphrasing technique. Grammatically precise paraphrasing is novel in the context of MTE, and demonstrating its usefulness is a key contribution of this paper. We use these techniques to paraphrase a single reference, which, when used for parameter tuning, leads to superior translation performance over baselines that use only human-authored references.</abstract>
<identifier type="citekey">mehay-white-2012-shallow</identifier>
<location>
<url>https://aclanthology.org/2012.amta-monomt.3/</url>
</location>
<part>
<date>2012-oct 28-nov 1</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Shallow and Deep Paraphrasing for Improved Machine Translation Parameter Optimization
%A Mehay, Dennis N.
%A White, Michael
%Y Okita, Tsuyoshi
%Y Sokolov, Artem
%Y Watanabe, Taro
%S Workshop on Monolingual Machine Translation
%D 2012
%8 oct 28 nov 1
%I Association for Machine Translation in the Americas
%C San Diego, California, USA
%F mehay-white-2012-shallow
%X String comparison methods such as BLEU (Papineni et al., 2002) are the de facto standard in MT evaluation (MTE) and in MT system parameter tuning (Och, 2003). It is difficult for these metrics to recognize legitimate lexical and grammatical paraphrases, which is important for MT system tuning (Madnani, 2010). We present two methods to address this: a shallow lexical substitution technique and a grammar-driven paraphrasing technique. Grammatically precise paraphrasing is novel in the context of MTE, and demonstrating its usefulness is a key contribution of this paper. We use these techniques to paraphrase a single reference, which, when used for parameter tuning, leads to superior translation performance over baselines that use only human-authored references.
%U https://aclanthology.org/2012.amta-monomt.3/
Markdown (Informal)
[Shallow and Deep Paraphrasing for Improved Machine Translation Parameter Optimization](https://aclanthology.org/2012.amta-monomt.3/) (Mehay & White, AMTA 2012)
ACL