@inproceedings{gaillat-etal-2018-finsentia,
title = "{F}in{S}enti{A}: Sentiment Analysis in {E}nglish Financial Microblogs",
author = "Gaillat, Thomas and
Sousa, Annanda and
Zarrouk, Manel and
Davis, Brian",
editor = "S{\'e}billot, Pascale and
Claveau, Vincent",
booktitle = "Actes de la Conf{\'e}rence TALN. Volume 1 - Articles longs, articles courts de TALN",
month = "5",
year = "2018",
address = "Rennes, France",
publisher = "ATALA",
url = "https://aclanthology.org/2018.jeptalnrecital-court.9/",
pages = "271--280",
abstract = "FinSentiA: Sentiment Analysis in English Financial Microblogs The objective of this paper is to report on the building of a Sentiment Analysis (SA) system dedicated to financial microblogs in English. The purpose of our work is to build a financial classifier that predicts the sentiment of stock investors in microblog platforms such as StockTwits and Twitter. Our contribution shows that it is possible to conduct such tasks in order to provide fine grained SA of financial microblogs. We extracted financial entities with relevant contexts and assigned scores on a continuous scale by adopting a deep learning method for the classification."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gaillat-etal-2018-finsentia">
<titleInfo>
<title>FinSentiA: Sentiment Analysis in English Financial Microblogs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Gaillat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annanda</namePart>
<namePart type="family">Sousa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Sébillot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Claveau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Rennes, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>FinSentiA: Sentiment Analysis in English Financial Microblogs The objective of this paper is to report on the building of a Sentiment Analysis (SA) system dedicated to financial microblogs in English. The purpose of our work is to build a financial classifier that predicts the sentiment of stock investors in microblog platforms such as StockTwits and Twitter. Our contribution shows that it is possible to conduct such tasks in order to provide fine grained SA of financial microblogs. We extracted financial entities with relevant contexts and assigned scores on a continuous scale by adopting a deep learning method for the classification.</abstract>
<identifier type="citekey">gaillat-etal-2018-finsentia</identifier>
<location>
<url>https://aclanthology.org/2018.jeptalnrecital-court.9/</url>
</location>
<part>
<date>2018-5</date>
<extent unit="page">
<start>271</start>
<end>280</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FinSentiA: Sentiment Analysis in English Financial Microblogs
%A Gaillat, Thomas
%A Sousa, Annanda
%A Zarrouk, Manel
%A Davis, Brian
%Y Sébillot, Pascale
%Y Claveau, Vincent
%S Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN
%D 2018
%8 May
%I ATALA
%C Rennes, France
%F gaillat-etal-2018-finsentia
%X FinSentiA: Sentiment Analysis in English Financial Microblogs The objective of this paper is to report on the building of a Sentiment Analysis (SA) system dedicated to financial microblogs in English. The purpose of our work is to build a financial classifier that predicts the sentiment of stock investors in microblog platforms such as StockTwits and Twitter. Our contribution shows that it is possible to conduct such tasks in order to provide fine grained SA of financial microblogs. We extracted financial entities with relevant contexts and assigned scores on a continuous scale by adopting a deep learning method for the classification.
%U https://aclanthology.org/2018.jeptalnrecital-court.9/
%P 271-280
Markdown (Informal)
[FinSentiA: Sentiment Analysis in English Financial Microblogs](https://aclanthology.org/2018.jeptalnrecital-court.9/) (Gaillat et al., JEP/TALN/RECITAL 2018)
ACL