@inproceedings{kuparinen-etal-2023-dialect,
title = "Dialect-to-Standard Normalization: A Large-Scale Multilingual Evaluation",
author = "Kuparinen, Olli and
Mileti{\'c}, Aleksandra and
Scherrer, Yves",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.923/",
doi = "10.18653/v1/2023.findings-emnlp.923",
pages = "13814--13828",
abstract = "Text normalization methods have been commonly applied to historical language or user-generated content, but less often to dialectal transcriptions. In this paper, we introduce dialect-to-standard normalization {--} i.e., mapping phonetic transcriptions from different dialects to the orthographic norm of the standard variety {--} as a distinct sentence-level character transduction task and provide a large-scale analysis of dialect-to-standard normalization methods. To this end, we compile a multilingual dataset covering four languages: Finnish, Norwegian, Swiss German and Slovene. For the two biggest corpora, we provide three different data splits corresponding to different use cases for automatic normalization. We evaluate the most successful sequence-to-sequence model architectures proposed for text normalization tasks using different tokenization approaches and context sizes. We find that a character-level Transformer trained on sliding windows of three words works best for Finnish, Swiss German and Slovene, whereas the pre-trained byT5 model using full sentences obtains the best results for Norwegian. Finally, we perform an error analysis to evaluate the effect of different data splits on model performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kuparinen-etal-2023-dialect">
<titleInfo>
<title>Dialect-to-Standard Normalization: A Large-Scale Multilingual Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olli</namePart>
<namePart type="family">Kuparinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandra</namePart>
<namePart type="family">Miletić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Scherrer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text normalization methods have been commonly applied to historical language or user-generated content, but less often to dialectal transcriptions. In this paper, we introduce dialect-to-standard normalization – i.e., mapping phonetic transcriptions from different dialects to the orthographic norm of the standard variety – as a distinct sentence-level character transduction task and provide a large-scale analysis of dialect-to-standard normalization methods. To this end, we compile a multilingual dataset covering four languages: Finnish, Norwegian, Swiss German and Slovene. For the two biggest corpora, we provide three different data splits corresponding to different use cases for automatic normalization. We evaluate the most successful sequence-to-sequence model architectures proposed for text normalization tasks using different tokenization approaches and context sizes. We find that a character-level Transformer trained on sliding windows of three words works best for Finnish, Swiss German and Slovene, whereas the pre-trained byT5 model using full sentences obtains the best results for Norwegian. Finally, we perform an error analysis to evaluate the effect of different data splits on model performance.</abstract>
<identifier type="citekey">kuparinen-etal-2023-dialect</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.923</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.923/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>13814</start>
<end>13828</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dialect-to-Standard Normalization: A Large-Scale Multilingual Evaluation
%A Kuparinen, Olli
%A Miletić, Aleksandra
%A Scherrer, Yves
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F kuparinen-etal-2023-dialect
%X Text normalization methods have been commonly applied to historical language or user-generated content, but less often to dialectal transcriptions. In this paper, we introduce dialect-to-standard normalization – i.e., mapping phonetic transcriptions from different dialects to the orthographic norm of the standard variety – as a distinct sentence-level character transduction task and provide a large-scale analysis of dialect-to-standard normalization methods. To this end, we compile a multilingual dataset covering four languages: Finnish, Norwegian, Swiss German and Slovene. For the two biggest corpora, we provide three different data splits corresponding to different use cases for automatic normalization. We evaluate the most successful sequence-to-sequence model architectures proposed for text normalization tasks using different tokenization approaches and context sizes. We find that a character-level Transformer trained on sliding windows of three words works best for Finnish, Swiss German and Slovene, whereas the pre-trained byT5 model using full sentences obtains the best results for Norwegian. Finally, we perform an error analysis to evaluate the effect of different data splits on model performance.
%R 10.18653/v1/2023.findings-emnlp.923
%U https://aclanthology.org/2023.findings-emnlp.923/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.923
%P 13814-13828
Markdown (Informal)
[Dialect-to-Standard Normalization: A Large-Scale Multilingual Evaluation](https://aclanthology.org/2023.findings-emnlp.923/) (Kuparinen et al., Findings 2023)
ACL