@inproceedings{mille-etal-2023-generating,
title = "Generating {I}rish Text with a Flexible Plug-and-Play Architecture",
author = "Mille, Simon and
U{\'i} Dhonnchadha, Elaine and
Cassidy, Lauren and
Davis, Brian and
Dasiopoulou, Stamatia and
Belz, Anya",
editor = "Surdeanu, Mihai and
Riloff, Ellen and
Chiticariu, Laura and
Frietag, Dayne and
Hahn-Powell, Gus and
Morrison, Clayton T. and
Noriega-Atala, Enrique and
Sharp, Rebecca and
Valenzuela-Escarcega, Marco",
booktitle = "Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.pandl-1.4/",
doi = "10.18653/v1/2023.pandl-1.4",
pages = "25--42",
abstract = "In this paper, we describe M-FleNS, a multilingual flexible plug-and-play architecture designed to accommodate neural and symbolic modules, and initially instantiated with rule-based modules. We focus on using M-FleNS for the specific purpose of building new resources for Irish, a language currently under-represented in the NLP landscape. We present the general M-FleNS framework and how we use it to build an Irish Natural Language Generation system for verbalising part of the DBpedia ontology and building a multilayered dataset with rich linguistic annotations. Via automatic and human assessments of the output texts we show that with very limited resources we are able to create a system that reaches high levels of fluency and semantic accuracy, while having very low energy and memory requirements."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mille-etal-2023-generating">
<titleInfo>
<title>Generating Irish Text with a Flexible Plug-and-Play Architecture</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elaine</namePart>
<namePart type="family">Uí Dhonnchadha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lauren</namePart>
<namePart type="family">Cassidy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Davis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stamatia</namePart>
<namePart type="family">Dasiopoulou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anya</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Chiticariu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dayne</namePart>
<namePart type="family">Frietag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gus</namePart>
<namePart type="family">Hahn-Powell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Clayton</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Morrison</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrique</namePart>
<namePart type="family">Noriega-Atala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Sharp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Valenzuela-Escarcega</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe M-FleNS, a multilingual flexible plug-and-play architecture designed to accommodate neural and symbolic modules, and initially instantiated with rule-based modules. We focus on using M-FleNS for the specific purpose of building new resources for Irish, a language currently under-represented in the NLP landscape. We present the general M-FleNS framework and how we use it to build an Irish Natural Language Generation system for verbalising part of the DBpedia ontology and building a multilayered dataset with rich linguistic annotations. Via automatic and human assessments of the output texts we show that with very limited resources we are able to create a system that reaches high levels of fluency and semantic accuracy, while having very low energy and memory requirements.</abstract>
<identifier type="citekey">mille-etal-2023-generating</identifier>
<identifier type="doi">10.18653/v1/2023.pandl-1.4</identifier>
<location>
<url>https://aclanthology.org/2023.pandl-1.4/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>25</start>
<end>42</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Irish Text with a Flexible Plug-and-Play Architecture
%A Mille, Simon
%A Uí Dhonnchadha, Elaine
%A Cassidy, Lauren
%A Davis, Brian
%A Dasiopoulou, Stamatia
%A Belz, Anya
%Y Surdeanu, Mihai
%Y Riloff, Ellen
%Y Chiticariu, Laura
%Y Frietag, Dayne
%Y Hahn-Powell, Gus
%Y Morrison, Clayton T.
%Y Noriega-Atala, Enrique
%Y Sharp, Rebecca
%Y Valenzuela-Escarcega, Marco
%S Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F mille-etal-2023-generating
%X In this paper, we describe M-FleNS, a multilingual flexible plug-and-play architecture designed to accommodate neural and symbolic modules, and initially instantiated with rule-based modules. We focus on using M-FleNS for the specific purpose of building new resources for Irish, a language currently under-represented in the NLP landscape. We present the general M-FleNS framework and how we use it to build an Irish Natural Language Generation system for verbalising part of the DBpedia ontology and building a multilayered dataset with rich linguistic annotations. Via automatic and human assessments of the output texts we show that with very limited resources we are able to create a system that reaches high levels of fluency and semantic accuracy, while having very low energy and memory requirements.
%R 10.18653/v1/2023.pandl-1.4
%U https://aclanthology.org/2023.pandl-1.4/
%U https://doi.org/10.18653/v1/2023.pandl-1.4
%P 25-42
Markdown (Informal)
[Generating Irish Text with a Flexible Plug-and-Play Architecture](https://aclanthology.org/2023.pandl-1.4/) (Mille et al., PANDL 2023)
ACL
- Simon Mille, Elaine Uí Dhonnchadha, Lauren Cassidy, Brian Davis, Stamatia Dasiopoulou, and Anya Belz. 2023. Generating Irish Text with a Flexible Plug-and-Play Architecture. In Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning, pages 25–42, Singapore. Association for Computational Linguistics.