@inproceedings{wuraola-etal-2024-understanding,
title = "Understanding Slang with {LLM}s: Modelling Cross-Cultural Nuances through Paraphrasing",
author = "Wuraola, Ifeoluwa and
Dethlefs, Nina and
Marciniak, Daniel",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.869/",
doi = "10.18653/v1/2024.emnlp-main.869",
pages = "15525--15531",
abstract = "In the realm of social media discourse, the integration of slang enriches communication, reflecting the sociocultural identities of users. This study investigates the capability of large language models (LLMs) to paraphrase slang within climate-related tweets from Nigeria and the UK, with a focus on identifying emotional nuances. Using DistilRoBERTa as the base-line model, we observe its limited comprehension of slang. To improve cross-cultural understanding, we gauge the effectiveness of leading LLMs ChatGPT 4, Gemini, and LLaMA3 in slang paraphrasing. While ChatGPT 4 and Gemini demonstrate comparable effectiveness in slang paraphrasing, LLaMA3 shows less coverage, with all LLMs exhibiting limitations in coverage, especially of Nigerian slang. Our findings underscore the necessity for culturally sensitive LLM development in emotion classification, particularly in non-anglocentric regions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wuraola-etal-2024-understanding">
<titleInfo>
<title>Understanding Slang with LLMs: Modelling Cross-Cultural Nuances through Paraphrasing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ifeoluwa</namePart>
<namePart type="family">Wuraola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Dethlefs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Marciniak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the realm of social media discourse, the integration of slang enriches communication, reflecting the sociocultural identities of users. This study investigates the capability of large language models (LLMs) to paraphrase slang within climate-related tweets from Nigeria and the UK, with a focus on identifying emotional nuances. Using DistilRoBERTa as the base-line model, we observe its limited comprehension of slang. To improve cross-cultural understanding, we gauge the effectiveness of leading LLMs ChatGPT 4, Gemini, and LLaMA3 in slang paraphrasing. While ChatGPT 4 and Gemini demonstrate comparable effectiveness in slang paraphrasing, LLaMA3 shows less coverage, with all LLMs exhibiting limitations in coverage, especially of Nigerian slang. Our findings underscore the necessity for culturally sensitive LLM development in emotion classification, particularly in non-anglocentric regions.</abstract>
<identifier type="citekey">wuraola-etal-2024-understanding</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.869</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.869/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>15525</start>
<end>15531</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding Slang with LLMs: Modelling Cross-Cultural Nuances through Paraphrasing
%A Wuraola, Ifeoluwa
%A Dethlefs, Nina
%A Marciniak, Daniel
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wuraola-etal-2024-understanding
%X In the realm of social media discourse, the integration of slang enriches communication, reflecting the sociocultural identities of users. This study investigates the capability of large language models (LLMs) to paraphrase slang within climate-related tweets from Nigeria and the UK, with a focus on identifying emotional nuances. Using DistilRoBERTa as the base-line model, we observe its limited comprehension of slang. To improve cross-cultural understanding, we gauge the effectiveness of leading LLMs ChatGPT 4, Gemini, and LLaMA3 in slang paraphrasing. While ChatGPT 4 and Gemini demonstrate comparable effectiveness in slang paraphrasing, LLaMA3 shows less coverage, with all LLMs exhibiting limitations in coverage, especially of Nigerian slang. Our findings underscore the necessity for culturally sensitive LLM development in emotion classification, particularly in non-anglocentric regions.
%R 10.18653/v1/2024.emnlp-main.869
%U https://aclanthology.org/2024.emnlp-main.869/
%U https://doi.org/10.18653/v1/2024.emnlp-main.869
%P 15525-15531
Markdown (Informal)
[Understanding Slang with LLMs: Modelling Cross-Cultural Nuances through Paraphrasing](https://aclanthology.org/2024.emnlp-main.869/) (Wuraola et al., EMNLP 2024)
ACL