@inproceedings{heredia-etal-2024-xnlieu,
title = "{XNLI}eu: a dataset for cross-lingual {NLI} in {B}asque",
author = "Heredia, Maite and
Etxaniz, Julen and
Zulaika, Muitze and
Saralegi, Xabier and
Barnes, Jeremy and
Soroa, Aitor",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.234/",
doi = "10.18653/v1/2024.naacl-long.234",
pages = "4177--4188",
abstract = "XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="heredia-etal-2024-xnlieu">
<titleInfo>
<title>XNLIeu: a dataset for cross-lingual NLI in Basque</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Heredia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julen</namePart>
<namePart type="family">Etxaniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muitze</namePart>
<namePart type="family">Zulaika</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xabier</namePart>
<namePart type="family">Saralegi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aitor</namePart>
<namePart type="family">Soroa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.</abstract>
<identifier type="citekey">heredia-etal-2024-xnlieu</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.234</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.234/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4177</start>
<end>4188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T XNLIeu: a dataset for cross-lingual NLI in Basque
%A Heredia, Maite
%A Etxaniz, Julen
%A Zulaika, Muitze
%A Saralegi, Xabier
%A Barnes, Jeremy
%A Soroa, Aitor
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F heredia-etal-2024-xnlieu
%X XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.
%R 10.18653/v1/2024.naacl-long.234
%U https://aclanthology.org/2024.naacl-long.234/
%U https://doi.org/10.18653/v1/2024.naacl-long.234
%P 4177-4188
Markdown (Informal)
[XNLIeu: a dataset for cross-lingual NLI in Basque](https://aclanthology.org/2024.naacl-long.234/) (Heredia et al., NAACL 2024)
ACL
- Maite Heredia, Julen Etxaniz, Muitze Zulaika, Xabier Saralegi, Jeremy Barnes, and Aitor Soroa. 2024. XNLIeu: a dataset for cross-lingual NLI in Basque. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 4177–4188, Mexico City, Mexico. Association for Computational Linguistics.