@inproceedings{simmons-savinov-2024-assessing,
title = "Assessing Generalization for Subpopulation Representative Modeling via In-Context Learning",
author = "Simmons, Gabriel and
Savinov, Vladislav",
editor = "Deshpande, Ameet and
Hwang, EunJeong and
Murahari, Vishvak and
Park, Joon Sung and
Yang, Diyi and
Sabharwal, Ashish and
Narasimhan, Karthik and
Kalyan, Ashwin",
booktitle = "Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.personalize-1.3/",
pages = "18--35",
abstract = "This study evaluates the ability of Large Language Model (LLM)-based Subpopulation Representative Models (SRMs) to generalize from empirical data, utilizing in-context learning with data from the 2016 and 2020 American National Election Studies. We explore generalization across response variables and demographic subgroups. While conditioning with empirical data improves performance on the whole, the benefit of in-context learning varies considerably across demographics, sometimes hurting performance for one demographic while helping performance for others. The inequitable benefits of in-context learning for SRM present a challenge for practitioners implementing SRMs, and for decision-makers who might come to rely on them. Our work highlights a need for fine-grained benchmarks captured from diverse subpopulations that test not only fidelity but generalization."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="simmons-savinov-2024-assessing">
<titleInfo>
<title>Assessing Generalization for Subpopulation Representative Modeling via In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Simmons</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladislav</namePart>
<namePart type="family">Savinov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ameet</namePart>
<namePart type="family">Deshpande</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">EunJeong</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishvak</namePart>
<namePart type="family">Murahari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joon</namePart>
<namePart type="given">Sung</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashish</namePart>
<namePart type="family">Sabharwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Narasimhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwin</namePart>
<namePart type="family">Kalyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study evaluates the ability of Large Language Model (LLM)-based Subpopulation Representative Models (SRMs) to generalize from empirical data, utilizing in-context learning with data from the 2016 and 2020 American National Election Studies. We explore generalization across response variables and demographic subgroups. While conditioning with empirical data improves performance on the whole, the benefit of in-context learning varies considerably across demographics, sometimes hurting performance for one demographic while helping performance for others. The inequitable benefits of in-context learning for SRM present a challenge for practitioners implementing SRMs, and for decision-makers who might come to rely on them. Our work highlights a need for fine-grained benchmarks captured from diverse subpopulations that test not only fidelity but generalization.</abstract>
<identifier type="citekey">simmons-savinov-2024-assessing</identifier>
<location>
<url>https://aclanthology.org/2024.personalize-1.3/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>18</start>
<end>35</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing Generalization for Subpopulation Representative Modeling via In-Context Learning
%A Simmons, Gabriel
%A Savinov, Vladislav
%Y Deshpande, Ameet
%Y Hwang, EunJeong
%Y Murahari, Vishvak
%Y Park, Joon Sung
%Y Yang, Diyi
%Y Sabharwal, Ashish
%Y Narasimhan, Karthik
%Y Kalyan, Ashwin
%S Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F simmons-savinov-2024-assessing
%X This study evaluates the ability of Large Language Model (LLM)-based Subpopulation Representative Models (SRMs) to generalize from empirical data, utilizing in-context learning with data from the 2016 and 2020 American National Election Studies. We explore generalization across response variables and demographic subgroups. While conditioning with empirical data improves performance on the whole, the benefit of in-context learning varies considerably across demographics, sometimes hurting performance for one demographic while helping performance for others. The inequitable benefits of in-context learning for SRM present a challenge for practitioners implementing SRMs, and for decision-makers who might come to rely on them. Our work highlights a need for fine-grained benchmarks captured from diverse subpopulations that test not only fidelity but generalization.
%U https://aclanthology.org/2024.personalize-1.3/
%P 18-35
Markdown (Informal)
[Assessing Generalization for Subpopulation Representative Modeling via In-Context Learning](https://aclanthology.org/2024.personalize-1.3/) (Simmons & Savinov, PERSONALIZE 2024)
ACL