New to CAPEC? Start Here
Home > CAPEC List > CAPEC-318: IP 'ID' Echoed Byte-Order Probe (Version 3.9)  

CAPEC-318: IP 'ID' Echoed Byte-Order Probe

Attack Pattern ID: 318
Abstraction: Detailed
View customized information:
+ Description
This OS fingerprinting probe tests to determine if the remote host echoes back the IP 'ID' value from the probe packet. An attacker sends a UDP datagram with an arbitrary IP 'ID' value to a closed port on the remote host to observe the manner in which this bit is echoed back in the ICMP error message. The identification field (ID) is typically utilized for reassembling a fragmented packet. Some operating systems or router firmware reverse the bit order of the ID field when echoing the IP Header portion of the original datagram within an ICMP error message.
+ Likelihood Of Attack

Medium

+ Typical Severity

Low

+ Relationships
Section HelpThis table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
NatureTypeIDName
ChildOfStandard Attack PatternStandard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.312Active OS Fingerprinting
Section HelpThis table shows the views that this attack pattern belongs to and top level categories within that view.
+ Consequences
Section HelpThis table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality
Read Data
Confidentiality
Access Control
Authorization
Bypass Protection Mechanism
Hide Activities
+ Taxonomy Mappings
Section HelpCAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (see parent )
+ References
[REF-33] Stuart McClure, Joel Scambray and George Kurtz. "Hacking Exposed: Network Security Secrets & Solutions". Chapter 2: Scanning, pg. 56. 6th Edition. McGraw Hill. 2009.
[REF-128] Defense Advanced Research Projects Agency Information Processing Techniques Office and Information Sciences Institute University of Southern California. "RFC793 - Transmission Control Protocol". Defense Advanced Research Projects Agency (DARPA). 1981-09. <http://www.faqs.org/rfcs/rfc793.html>.
[REF-212] Gordon "Fyodor" Lyon. "Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning". Chapter 8. Remote OS Detection. 3rd "Zero Day" Edition,. Insecure.com LLC. 2008.
[REF-130] Gordon "Fyodor" Lyon. "The Art of Port Scanning". Volume: 7, Issue. 51. Phrack Magazine. 1997. <http://phrack.org/issues/51/11.html>.
+ Content History
Submissions
Submission DateSubmitterOrganization
2014-06-23
(Version 2.6)
CAPEC Content TeamThe MITRE Corporation
Modifications
Modification DateModifierOrganization
2017-05-01
(Version 2.10)
CAPEC Content TeamThe MITRE Corporation
Updated Attack_Motivation-Consequences, Related_Attack_Patterns, Typical_Likelihood_of_Exploit
2018-07-31
(Version 2.12)
CAPEC Content TeamThe MITRE Corporation
Updated References, Related_Weaknesses
More information is available — Please select a different filter.
Page Last Updated or Reviewed: July 31, 2018