An architecture for identifying and using effective learning
behavior to help students manage learning

Paul Salvador Inventado , Roberto Legaspi, Koichi Moriyama, Ken-ichi Fukui and
Masayuki Numao
The Institute of Scienti®c and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, Japan, Osaka, 567-0047
{inventado,roberto,koichi,fukui}@ai.sanken.osaka-u.ac.jp, numao@sanken.osaka-u.ac.jp

ABSTRACT

Self-regulated learners are successful because of their abil-
ity to select learning strategies, monitor their learning out-
comes and adapt them accordingly. However, it is not easy
to measure the outcomes of a learning strategy especially
while learning. We present an architecture that allows stu-
dents to gauge the e ectiveness of learning behavior after
the learning episode by using an interface that helps them
recall what transpired during the learning episode more ac-
curately. After an annotation process, the prot sharing
algorithm is used for creating learning policies based on stu-
dents' learning behavior and their evaluations of the learning
episode's outcomes. A learning policy contains rules which
describe the e ectiveness of performing actions in a par-
ticular state. Learning policies are utilized for generating
feedback that informs students about which actions could
be changed or retained so that they can better adapt their
behavior in future learning episodes. The algorithms were
also tested using previously collected learning behavior data.
Results showed that the approaches are capable of building
a logical learning policy and utilize the policy for generating
appropriate feedback.

Keywords
delayed feedback, self-regulated learning, pro t sharing

1. INTRODUCTION

Students often learn on their own when they study for tests,
make assignments and perform research as part of their aca-
demic requirements. They also learn by themselves when
they investigate topics which may not be directly related to
class discussions but are interesting to them. When students
learn alone, they encounter many challenges related to the

also a liated with: Center for Empathic Human-Computer
Interactions, College of Computer Studies, De La Salle Uni-
versity, Manila, Philippines

learning task, as well as challenges that are meta-cognitive
and a ect related.

Students who can self-regulate are capable of overcoming
these challenges better compared to those who cannot. One
reason for this is that self-regulated students know how to
select and adapt their learning strategies depending on the
current situation. However, this is a complex task because
it requires attention and sophisticated reasoning to know
which learning strategies to apply, to monitor the outcomes
of a learning strategy and to know when a strategy needs to
be changed [13].

In this research, we discuss an architecture for helping stu-
dents manage their learning behavior by helping them be-
come aware of the outcomes of the learning strategies they
employed and by helping them identify which strategy is
e ective in a particular situation.

2. RELATED WORK

Self-regulated learners can be di erentiated from less self-
regulated learners by looking at the learning behaviors they
exhibit. They are characterized by their diligence and re-
sourcefulness, their awareness of the skills they possess, their
initiative to seek out information and their perseverance to
continue learning and nd ways to overcome obstacles [13].

Research such as that of Kinnenbrew, Loretz and Biswas
[8] has shown these dierences in behavior. In their work,
they investigated students' learning behavior while using

Betty's Brain, a computer-based learning environment in

the science domain that helped students develop learning
strategies. They processed log data from student interac-
tions and mapped them to canonical actions. Action se-
quences were then mined using sequential pattern mining
and episode mining to discover learning behaviors. Their
results showed that high performing students showed sys-
tematic reading behavior and frequent re-reading of relevant
information which was not seen in low performing students.

In the work of Sabourin, Shores, Mott and Lester [10], the
authors also observed di erences in the students' behavior as
they interacted with Crystal Island, a game-based learning
environment developed for the microbiology domain. While
interacting with the environment, students were prompted
to report their mood and status. These were later processed
and used to categorize the students' goal setting and goal

re ection behavior. They were then given an overall self-
regulated learning (SRL) score based on their reports and
assigned into low, medium or high SRL category. Students
in the high SRL category frequently used in-game resources
that provided task-related information and resources that
allowed them to record notes. They also spent less time
using resources for testing their hypothesis and had higher
learning gains.

MetaTutor is a hypermedia learning environment developed
for the biology domain that identi es students' SRL pro-

cesses and also helps them use these processes [2]. Students

who used the system indicated the SRL processes they used
by selecting it from the list of SRL processes in the system's
interface. Pedagogical agents also gave them prompts to use
certain SRL processes depending on the current situation
(i.e., student information, time on page, time on current
sub-goal, number of pages visited relevance of the current
page to the sub-goal, etc.) and also gave them feedback re-
garding how they used these processes. Students who used
the version of the system with prompts and feedback were
reported to have higher learning e ciencies compared to stu-
dents who used a version of the system without prompts and
feedback.

3. SYSTEM ARCHITECTURE

Learners often have di culty in selecting, monitoring and
adapting learning strategies because of its high cognitive
load requirement. This is especially true for complex do-
mains such as science, math, engineering and technology.
The approach we take in this work involves helping students
understand the outcomes of their learning behavior better
by helping them recall what transpired in a recently con-
cluded learning episode. The advantage of recalling is that
after the learning episode, students do not need to worry
about the learning task and can focus on analyzing their
learning behavior. Students will also have a more complete
and accurate measurement of their learning behavior's e ec-
tiveness because they can observe both short and long term
e ects on learning. This information will be useful for stu-
dents in future learning episodes because when they monitor
and adapt learning strategies, they can base their decisions
on the current context as well as their predictions of what
could happen according to their re ections from previous
learning episodes.

Asking students to recall a recently concluded learning episode
presents two issues. First, students will not be able to
completely remember what transpired during the learning
episode. We addressed this in our previous work wherein
we developed a tool called Sidekick Retrospect, which took
screenshots of the students' desktop and video frames from
a video of their face during a learning episode [7]. Students
who used the software in our experiment reported that they
were able to discover things about their behavior that they
were previously unaware of. It was also enough to help them
re ect on what transpired so that they were able to identify
problems with their learning behavior and think of probable
solutions. Figure 1 shows a screenshot of the system's inter-
face which are presented to the students after the learning
episode. A timeline of the entire learning episode is shown
together with desktop and webcam video screenshots rela-
tive to the mouse's position in the timeline.

@ Ammotation Propertes

l 105054 during the selected fime range.
i Sex
o) xe

10:49:01 10:49:30 10:50:00 10:50:30 105100

CH > TD e speeli o

Figure 1: Sidekick Retrospect Annotation Interface

An issue we encountered from our previous work was that
students who used the software seemed to focus only on the
most signi cant aspect of the learning episode. They did
not re ect as much on other instances during the learning
episode even when they employed other learning strategies
that also had an impact on their learning. This may have
been the case because students were already too tired to
spend more time analyzing each event in depth.

The architecture presented in Figure 2, integrates the method-
ology we used in our previous work with our current ap-
proach for helping students recall what transpired during
the learning session and helping them discover more insights
about their learning behavior. We designed our system so
that students would not be bound by a speci ¢ environment
or domain and keep the learning environment as natural as
possible. Students were allowed to learn using any tool or
application on or o the computer. However, they had to
stay in front of the computer so it could take desktop and we-
bcam video screenshots of their activities and so they could
annotate the data after the learning episode. The entire pro-
cess was split into three phases which are each discussed in
the following subsections.

3.1 Interaction Phase

The interaction phase begins by rst asking students to in-
put their learning goals for the current learning episode.
Data collection starts right after students nish inputting
their goals. The system then starts logging the applications
used by the students, the title of the current application's
window and the corresponding timestamps. Screenshots of
the desktop and the webcam's video feed are also taken and
stored using the same timestamp as that of the log data.

3.2 Annotation Phase

In the annotation phase, students are asked to annotate their
intentions, activities and a ective states. Intentions can ei-
ther be goal related or non-goal related relative to the goals
that were set at the start of the learning episode. Activi-
ties referred to any activity the student did while learning
which could either be done on the computer (e.g., using a
browser) or out of the computer (e.g., reading a book). Two
sets of a ect labels were used for annotating a ective states

aseyq uone)

AN
\

\
|
N /
*.‘ PN e B 1 S
S - ®

Feedback Learning Policy Reinforcement
Generator Learner

aselg yprqpaay
3 Surpp oy

Figure 2: System architecture

wherein goal-related activities were annotated as either de-
lighted (DEL), engaged (ENG), confused (CNF), frustrated
(FRS), bored (BRD), surprised (SRP) or neutral (NUT) and
non-goal related activities were annotated as either delighted
(DEL), sad (SAD), angry (AGY), disgusted (DIS), surprised
(SRP), afraid (AFR) or neutral (NUT). Academic emotions
[4] are used for annotating goal related intentions because
they give more contextual information about the learning
activity. However, academic emotions might not capture
other emotions outside of the learning context so Ekman's
basic emotions [5] were used to annotate non-goal related
intentions.

The system's annotation interface helps students recall what
transpired during the learning episode by showing desktop
and webcam screenshots depending on the position of the
mouse on the timeline. The actual annotations can be cre-
ated by using the mouse to select a time range then clicking
on the corresponding intention, activity and a ective state
buttons. Students are also allowed to input a description of
the activity when it was done outside of the computer.

While annotating, students inherently recall what transpired
allowing them to identify the appropriate annotation. Going
through the entire learning episode sequentially also helps
the students annotate more accurately because they can see
how and why their activities change. Furthermore, they
also see the outcomes of these activities. It is possible that
students might not annotate the data correctly for fear of
judgment or lower scores. However, reassuring them that the
results will not be used as part of their grades or telling them
that accurately annotating their data will help them become
more self-regulated and e ective could help minimize these
cases.

After the annotation process, students are asked to give a
learning e ectiveness rating between one to ve, indicating
how good they felt the learning episode was. This rating is
likely to be accurate because of the level of detail in which
students reviewed their learning episode.

3.3 Modeling and Feedback Phase

In the modeling and feedback phase, students' data are an-
alyzed to create and update the student's list of e ective
learning behavior or policy. Students' behavior in the cur-
rent learning episode can be compared to the policy to iden-
tify e ective and ine ective behavior that can be adapted in
succeeding episodes.

3.3.1 Learning policy creation

Self-regulation can be viewed as cyclic phases of forethought,
performance and self-re ection [14] wherein re ections about
the outcomes of behavior after a learning episode can be used
to increase the e ectiveness of future learning episodes (e.g.,
discarding or modifying ine ective behavior). The ideal ef-
fect of would be for learning outcomes to continually improve
over time.

We t this incremental perspective of adapting behavior into
a reinforcement learning (RL) problem in machine learning
which searches for the best actions to take in an environment
(i.e., learning behavior) to maximize a cumulative reward
(i.e., learning e ectiveness) [11].

Pro t sharing is a model-free RL approach that is capable of
converging even in domains that do not satisfy the Marko-
vian property [1]. We decided to use this approach primarily
because we deal with human behavior in a non-deterministic
and uncontrolled environment. Prot sharing's reinforce-
ment mechanism allows it to learn e ective, yet sometimes
non-optimal, policies quickly compared to other algorithms.
This is ideal for our situation because we need to give policy-
based feedback using minimal data.

Pro t sharing di ers from other RL techniques because it re-
inforces e ective rules instead of estimating values from suc-
ceeding sequential states. A rule consists of a state-action
pair (O¢,At) which means performing A; when O is ob-
served. We consider these rules as learning behaviors. An
episoden is a nite sequence of rules wherein the entire se-
quence is awarded the rewardR based on its outcome. After
each episode, the weights of each rule in the sequence is up-
dated using (1) where function f (R;t) is a credit assignment
with t being the rule's distance from the goal. Note that it
is possible for a rule's weight to be updated more than once
if it appears more than once in a sequence. The set of all
rules and their corresponding weights is called a policy. A
policy is rational or guaranteed to converge to a solution
when the credit assignment fuction satis es the rationality
theorem (2) with L being the number of possible actions. In
our work, we used a modi ed version of the rational credit
assignment function (3), which was adapted from [1] so that
the rules' weights will be bound by the reward value.

Wh+1 (Or; Avt) Wh (Ot;A) + T(R;T) 1)

8t=1;23:;T: L f(R;j) <f (R;t) 2)
j=0

foa (Rit)=(R! Wi (O A))0:3)" (3)

According to Winne's [12] SRL model, students adapt their

