
An architecture for identifying and using effective learning
behavior to help students manage learning

Paul Salvador Inventado
�

, Roberto Legaspi, Koichi Moriyama, Ken-ichi Fukui and
Masayuki Numao

The Institute of Scienti®c and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, Japan, Osaka, 567-0047

{inventado,roberto,koichi,fukui}@ai.sanken.osaka-u.ac.jp, numao@sanken.osaka-u.ac.jp

ABSTRACT
Self-regulated learners are successful because of their abil-
ity to select learning strategies, monitor their learning out-
comes and adapt them accordingly. However, it is not easy
to measure the outcomes of a learning strategy especially
while learning. We present an architecture that allows stu-
dents to gauge the e�ectiveness of learning behavior after
the learning episode by using an interface that helps them
recall what transpired during the learning episode more ac-
curately. After an annotation process, the pro�t sharing
algorithm is used for creating learning policies based on stu-
dents' learning behavior and their evaluations of the learning
episode's outcomes. A learning policy contains rules which
describe the e�ectiveness of performing actions in a par-
ticular state. Learning policies are utilized for generating
feedback that informs students about which actions could
be changed or retained so that they can better adapt their
behavior in future learning episodes. The algorithms were
also tested using previously collected learning behavior data.
Results showed that the approaches are capable of building
a logical learning policy and utilize the policy for generating
appropriate feedback.

Keywords
delayed feedback, self-regulated learning, pro�t sharing

1. INTRODUCTION
Students often learn on their own when they study for tests,
make assignments and perform research as part of their aca-
demic requirements. They also learn by themselves when
they investigate topics which may not be directly related to
class discussions but are interesting to them. When students
learn alone, they encounter many challenges related to the

� also a�liated with: Center for Empathic Human-Computer
Interactions, College of Computer Studies, De La Salle Uni-
versity, Manila, Philippines

learning task, as well as challenges that are meta-cognitive
and a�ect related.

Students who can self-regulate are capable of overcoming
these challenges better compared to those who cannot. One
reason for this is that self-regulated students know how to
select and adapt their learning strategies depending on the
current situation. However, this is a complex task because
it requires attention and sophisticated reasoning to know
which learning strategies to apply, to monitor the outcomes
of a learning strategy and to know when a strategy needs to
be changed [13].

In this research, we discuss an architecture for helping stu-
dents manage their learning behavior by helping them be-
come aware of the outcomes of the learning strategies they
employed and by helping them identify which strategy is
e�ective in a particular situation.

2. RELATED WORK
Self-regulated learners can be di�erentiated from less self-
regulated learners by looking at the learning behaviors they
exhibit. They are characterized by their diligence and re-
sourcefulness, their awareness of the skills they possess, their
initiative to seek out information and their perseverance to
continue learning and �nd ways to overcome obstacles [13].

Research such as that of Kinnenbrew, Loretz and Biswas
[8] has shown these di�erences in behavior. In their work,
they investigated students' learning behavior while using
Betty's Brain, a computer-based learning environment in
the science domain that helped students develop learning
strategies. They processed log data from student interac-
tions and mapped them to canonical actions. Action se-
quences were then mined using sequential pattern mining
and episode mining to discover learning behaviors. Their
results showed that high performing students showed sys-
tematic reading behavior and frequent re-reading of relevant
information which was not seen in low performing students.

In the work of Sabourin, Shores, Mott and Lester [10], the
authors also observed di�erences in the students' behavior as
they interacted with Crystal Island, a game-based learning
environment developed for the microbiology domain. While
interacting with the environment, students were prompted
to report their mood and status. These were later processed
and used to categorize the students' goal setting and goal

reection behavior. They were then given an overall self-
regulated learning (SRL) score based on their reports and
assigned into low, medium or high SRL category. Students
in the high SRL category frequently used in-game resources
that provided task-related information and resources that
allowed them to record notes. They also spent less time
using resources for testing their hypothesis and had higher
learning gains.

MetaTutor is a hypermedia learning environment developed
for the biology domain that identi�es students' SRL pro-
cesses and also helps them use these processes [2]. Students
who used the system indicated the SRL processes they used
by selecting it from the list of SRL processes in the system's
interface. Pedagogical agents also gave them prompts to use
certain SRL processes depending on the current situation
(i.e., student information, time on page, time on current
sub-goal, number of pages visited relevance of the current
page to the sub-goal, etc.) and also gave them feedback re-
garding how they used these processes. Students who used
the version of the system with prompts and feedback were
reported to have higher learning e�ciencies compared to stu-
dents who used a version of the system without prompts and
feedback.

3. SYSTEM ARCHITECTURE
Learners often have di�culty in selecting, monitoring and
adapting learning strategies because of its high cognitive
load requirement. This is especially true for complex do-
mains such as science, math, engineering and technology.
The approach we take in this work involves helping students
understand the outcomes of their learning behavior better
by helping them recall what transpired in a recently con-
cluded learning episode. The advantage of recalling is that
after the learning episode, students do not need to worry
about the learning task and can focus on analyzing their
learning behavior. Students will also have a more complete
and accurate measurement of their learning behavior's e�ec-
tiveness because they can observe both short and long term
e�ects on learning. This information will be useful for stu-
dents in future learning episodes because when they monitor
and adapt learning strategies, they can base their decisions
on the current context as well as their predictions of what
could happen according to their reections from previous
learning episodes.

Asking students to recall a recently concluded learning episode
presents two issues. First, students will not be able to
completely remember what transpired during the learning
episode. We addressed this in our previous work wherein
we developed a tool called Sidekick Retrospect, which took
screenshots of the students' desktop and video frames from
a video of their face during a learning episode [7]. Students
who used the software in our experiment reported that they
were able to discover things about their behavior that they
were previously unaware of. It was also enough to help them
reect on what transpired so that they were able to identify
problems with their learning behavior and think of probable
solutions. Figure 1 shows a screenshot of the system's inter-
face which are presented to the students after the learning
episode. A timeline of the entire learning episode is shown
together with desktop and webcam video screenshots rela-
tive to the mouse's position in the timeline.

Figure 1: Sidekick Retrospect Annotation Interface

An issue we encountered from our previous work was that
students who used the software seemed to focus only on the
most signi�cant aspect of the learning episode. They did
not reect as much on other instances during the learning
episode even when they employed other learning strategies
that also had an impact on their learning. This may have
been the case because students were already too tired to
spend more time analyzing each event in depth.

The architecture presented in Figure 2, integrates the method-
ology we used in our previous work with our current ap-
proach for helping students recall what transpired during
the learning session and helping them discover more insights
about their learning behavior. We designed our system so
that students would not be bound by a speci�c environment
or domain and keep the learning environment as natural as
possible. Students were allowed to learn using any tool or
application on or o� the computer. However, they had to
stay in front of the computer so it could take desktop and we-
bcam video screenshots of their activities and so they could
annotate the data after the learning episode. The entire pro-
cess was split into three phases which are each discussed in
the following subsections.

3.1 Interaction Phase
The interaction phase begins by �rst asking students to in-
put their learning goals for the current learning episode.
Data collection starts right after students �nish inputting
their goals. The system then starts logging the applications
used by the students, the title of the current application's
window and the corresponding timestamps. Screenshots of
the desktop and the webcam's video feed are also taken and
stored using the same timestamp as that of the log data.

3.2 Annotation Phase
In the annotation phase, students are asked to annotate their
intentions , activities and a�ective states . Intentions can ei-
ther be goal related or non-goal related relative to the goals
that were set at the start of the learning episode. Activi-
ties referred to any activity the student did while learning
which could either be done on the computer (e.g., using a
browser) or out of the computer (e.g., reading a book). Two
sets of a�ect labels were used for annotating a�ective states

Figure 2: System architecture

wherein goal-related activities were annotated as either de-
lighted (DEL), engaged (ENG), confused (CNF), frustrated
(FRS), bored (BRD), surprised (SRP) or neutral (NUT) and
non-goal related activities were annotated as either delighted
(DEL), sad (SAD), angry (AGY), disgusted (DIS), surprised
(SRP), afraid (AFR) or neutral (NUT). Academic emotions
[4] are used for annotating goal related intentions because
they give more contextual information about the learning
activity. However, academic emotions might not capture
other emotions outside of the learning context so Ekman's
basic emotions [5] were used to annotate non-goal related
intentions.

The system's annotation interface helps students recall what
transpired during the learning episode by showing desktop
and webcam screenshots depending on the position of the
mouse on the timeline. The actual annotations can be cre-
ated by using the mouse to select a time range then clicking
on the corresponding intention, activity and a�ective state
buttons. Students are also allowed to input a description of
the activity when it was done outside of the computer.

While annotating, students inherently recall what transpired
allowing them to identify the appropriate annotation. Going
through the entire learning episode sequentially also helps
the students annotate more accurately because they can see
how and why their activities change. Furthermore, they
also see the outcomes of these activities. It is possible that
students might not annotate the data correctly for fear of
judgment or lower scores. However, reassuring them that the
results will not be used as part of their grades or telling them
that accurately annotating their data will help them become
more self-regulated and e�ective could help minimize these
cases.

After the annotation process, students are asked to give a
learning e�ectiveness rating between one to �ve, indicating
how good they felt the learning episode was. This rating is
likely to be accurate because of the level of detail in which
students reviewed their learning episode.

3.3 Modeling and Feedback Phase
In the modeling and feedback phase, students' data are an-
alyzed to create and update the student's list of e�ective
learning behavior or policy. Students' behavior in the cur-
rent learning episode can be compared to the policy to iden-
tify e�ective and ine�ective behavior that can be adapted in
succeeding episodes.

3.3.1 Learning policy creation
Self-regulation can be viewed as cyclic phases of forethought,
performance and self-reection [14] wherein reections about
the outcomes of behavior after a learning episode can be used
to increase the e�ectiveness of future learning episodes (e.g.,
discarding or modifying ine�ective behavior). The ideal ef-
fect of would be for learning outcomes to continually improve
over time.

We �t this incremental perspective of adapting behavior into
a reinforcement learning (RL) problem in machine learning
which searches for the best actions to take in an environment
(i.e., learning behavior) to maximize a cumulative reward
(i.e., learning e�ectiveness) [11].

Pro�t sharing is a model-free RL approach that is capable of
converging even in domains that do not satisfy the Marko-
vian property [1]. We decided to use this approach primarily
because we deal with human behavior in a non-deterministic
and uncontrolled environment. Pro�t sharing's reinforce-
ment mechanism allows it to learn e�ective, yet sometimes
non-optimal, policies quickly compared to other algorithms.
This is ideal for our situation because we need to give policy-
based feedback using minimal data.

Pro�t sharing di�ers from other RL techniques because it re-
inforces e�ective rules instead of estimating values from suc-
ceeding sequential states. A rule consists of a state-action
pair (Ot ,A t) which means performing A t when Ot is ob-
served. We consider these rules as learning behaviors. An
episoden is a �nite sequence of rules wherein the entire se-
quence is awarded the rewardR based on its outcome. After
each episode, the weights of each rule in the sequence is up-
dated using (1) where function f (R; t) is a credit assignment
with t being the rule's distance from the goal. Note that it
is possible for a rule's weight to be updated more than once
if it appears more than once in a sequence. The set of all
rules and their corresponding weights is called a policy. A
policy is rational or guaranteed to converge to a solution
when the credit assignment fuction satis�es the rationality
theorem (2) with L being the number of possible actions. In
our work, we used a modi�ed version of the rational credit
assignment function (3), which was adapted from [1] so that
the rules' weights will be bound by the reward value.

Wn +1 (Ot ; A t) Wn (Ot ; A t) + f (R; T) (1)

8t = 1 ; 2; 3:::; T: L
tX

j =0

f (R; j) < f (R; t) (2)

f n +1 (R; t) = (R ! Wn (Ot ; A t))(0 :3)T t (3)

According to Winne's [12] SRL model, students adapt their

strategies based on the results of metacognitive monitoring
and evaluation. When the outcome of a task satis�es a stu-
dent's expectations, then they may continue performing the
current task or proceed to the next task. On the other hand,
when a task does not achieve its expected outcomes, stu-
dents can adapt their strategies accordingly. Unfortunately,
we did not have access to students' metacognitive evalua-
tions in our data. However, Carver and Scheier's [3] model
theorized that the results of metacognitive evaluations can
be observed in students' emotion. When the outcome of
a task is according to a student's expectation, then neu-
tral a�ect is experienced. However, when the outcome does
not satisfy expectations then negative a�ect is experienced.
On the other hand, when the outcome exceeds expectations
then positive a�ect is experienced. Based on these assump-
tions, we represented our states using the triple < activity,
a�ect, duration > . Apart from a�ect which approximated
students' metacognitive evaluation, we included activity to
indicate the task performed by the student and duration to
indicate how long it was performed by the student.

The data showed that students performed similar activities
but used di�erent applications (e.g., browsing websites with
Google Chrome vs. Mozilla Firefox). Instead of treating
these separately, we categorized the students' activities into
six types: information search [IS] (e.g., using a search en-
gine), view information source [IV] (e.g., reading a book,
viewing a website), write notes [WN], seek help from peers
[HS] (e.g., talking to a friend), knowledge application [KA]
(e.g., paper writing, presentation creation, data processing)
and o�-task [OT] (e.g., playing a game).

Durations were even more varied ranging from one second
(e.g., clicking a link from a search results page) to 53 min-
utes (e.g., watching a video). Using this directly will result
in a large state space so we categorized them into short,
medium or long duration. The duration values were posi-
tively skewed so evenly partitioning the data according to
the number of elements or frequency would cause both short
and medium groups to have small and similar values. The
long duration group on the other hand, would have values
with high variation. We decided to use k-Means to catego-
rize the duration values into three clusters (i.e., k = 3) and
using a Euclidean distance formula as described in [6]. Clus-
tering produced groups with elements having similar dura-
tion values and whose values were di�erent from the other
groups. Elements in the cluster with the smallest values
were labeled short duration, elements in the cluster with the
biggest values were labeled long duration and the elements
in the remaining cluster were labeled with medium duration.
The centroids identi�ed by k-means for short, medium and
long durations were 69.4 seconds (1.15 minutes), 614.5 (10.2
minutes) seconds and 1999.4 seconds (33.3 minutes) respec-
tively. 90.83% of the duration values were short, 8.17% were
medium and 0.10% were long.

In the learning context, actions would refer to changing from
one activity to the other. So, we used the same eight activity
categories as actions. However, we added a change informa-
tion source [CS] action to handle cases when students would
either view a di�erent website or change to or from a physical
information source (e.g., book, printed conference paper).

In this representation, there would be no consecutive rules
with states having the same values unless they were paired
with di�erent actions. Otherwise, these rules were merged
and their durations added. An example of a rule would have
the form (< IV, CNF, short > , CS).

The student's rating of the learning episode's e�ectiveness
can directly be used as the reward value. Data from learning
episodes can then be converted into rule sequences and be
used to update each rule's weight incrementally using (1)
with the corresponding reward values. The rules' weights
are expected to converge to the reward value it is commonly
associated with.

3.3.2 Learning policy-based feedback
According to Pressley, Levin and Ghatala [9], adult stu-
dents who were given information regarding the utility of
two learning strategies and a chance to practice them were
capable of validating its outcomes and were reported to use
the more e�ective strategy. In our case, the utility of per-
forming an action in a certain state is its weight value (i.e.,
applying the rule will likely lead to a learning e�ectiveness
rating that is at least the weight value). Information about
the utility of two or more competing rules (i.e., rules refer-
ring to the same state but with di�erent actions) can be used
to give students feedback at the end of a learning episode
so they can verify and adapt them accordingly in succeed-
ing episodes. When students used more e�ective rules, it
is assumed to result in better learning e�ectiveness ratings
which will reinforce the rule in the learning policy.

As more rules are observed and added into the learning pol-
icy, some rules may not be relevant to a particular learning
episode. The rules with their corresponding utilities should
�rst be �ltered before they are presented to the student.
In the �rst learning episode, the learning policy will still
be empty so feedback will be unavailable. When a policy
already contains rules, each rule employed in the current
learning episode can be compared to the rules in the learn-
ing policy and provide relevant feedback. The pseudo code
presented below describes how three types of feedback can
be given to the student. First, when students perform an
action with a worse utility based on the policy, the system
can remind the student to select the better action. Second,
if the student performs an action which isn't in the policy
but has lower utility than the best action in the policy, the
student is told that the action may be ine�ective. Lastly,
if the student performs an action which isn't in the policy
but has a higher utility than the best action, the student
is informed that a better action has been found compared
to the previous best action. Whenever a student performs
the best action according to the policy, feedback is no longer
given because it is assumed that the student already knows
this and is the reason why the action was selected. In cases
when the student performs an action in an unknown state,
feedback cannot be given as well because of insu�cient in-
formation.

Initialize set of weighted rules X
Copy old policy P into P'
For each (Ot ; A t) in the current learning episode

Update W (Ot ; A t) in P' using (1)

For each (Op ; Ap) in policy P
If Ot = Op;i

Add W (Op;i ; Ap;i) into X
End

End
End
For each (Ot ; A t) in the current learning episode

If (Ot ; A t) not in X
Unknown utility

Else if (Ot ; A t) not in P
If W (Ot ; A t) < max (W (Op;i 0; Ap;i 0)) in X

Inform student that Ap;i 0 > A t

Else
Inform student that A t > A p;i 0

End
Else

If A t <> A p;i 0 where max (W (Op;i 0; Ap;i 0)) in X
Inform student that Ap;i 0 > A t

End
End

End

A cause for concern is that the learning policy might not
have converged yet resulting in incorrect feedback (e.g., telling
the student to perform an action which is actually ine�ec-
tive). Again according to Pressley et. al. [9], despite being
given incorrect utility information adults are able to select
better strategies after practice wherein they are able to ob-
serve the strategy's actual utility. As students constantly se-
lect e�ective actions (i.e., as a result of their own evaluation),
the policy will be updated to reinforce these actions and de-
crease the chance of providing incorrect feedback. This em-
phasizes the need for students in this environment to explore
other actions so that they can �nd the best actions which
will also be reected in the policy. It also then becomes nec-
essary for other mechanisms to encourage exploration such
as looking at other students' learning policies for possible
actions or using expert knowledge.

4. LEARNING BEHAVIOR DATA
The methodology described in the interaction and annota-
tion phases of the architecture was used in collecting the
data in our previous work [7]. The data was collected from
four students aged between 17 and 30 years old, conducting
research as part of their academic requirements. Three of
the students were taking Information Science while one stu-
dent was taking Physics. During the data collection period,
two of the students were writing conference papers and two
made power point presentations about their research. They
all processed and performed experiments on their collected
data, searched for related literature and created a report or
document. Although their topics were di�erent, they per-
formed similar types of activities. Two hours of annotated
learning behavior data in �ve separate learning episodes
were collected from each student over a one week period.
The annotation data was processed using the method de-
scribed in Section 3.3.1 resulting in �ve separate learning
episodes for every student and each episode consisting of
the sequenced rules. On average, students used 54.35 rules
per session (N=20; � =27.71) including repeated rules.

Table 1: Rule Categories
Type State Action Reward
1 PRL ENG, IV, short KA 0.360000
2 PRL ENG, IV, short CS 0.004154
3 CDH CON, IV, short CS 0.441939
4 CDH CON, IV, short KA 2.34E-05
5 CDH CON, IV, short OT 9.16E-15
6 RLX ENG, KA, long, OT 1.830000
7 RLX ENG, KA, long, HS 0.009720
8 RLX ENG, KA, long, IV 2.13E-06
9 RSL DEL, OT, short KA 0.389484
10 RSL DEL, OT, short IV 2.00E-18
11 RSL DEL, OT, short HS 9.57E-26

5. RESULTS AND ANALYSIS
The learning policies generated by the pro�t sharing algo-
rithm on the learning behavior data consisted of rules based
on the state and action representation used. There were
many rules due to our selected state-action space, but we
observed four categories after analyzing the data{ Prolonged
learning (PRL), Cognitive disequilibrium handling (CDH),
Relaxation (RLX) and Resumed learning (RSL). Table 1
presents examples of each category which were taken from
the learning policy of the doctoral physics student who was
experimenting with her data and used its results for writing
a conference paper.

PRL rules refer to states wherein students feel engaged while
performing a learning-related activity and switch to another
learning-related activity. It describes how long a certain
type of activity could be e�ective and what other activities
may complement it. Taking the physics student's data as an
example, let us consider that she was looking into di�erent
concepts for data manipulation because she needed it for
writing her conference paper. According to rules 1 and 2, it
was better for her to try and run an experiment on her data
(i.e., apply knowledge), before shifting to a di�erent concept
(i.e., view information source). This would allow her to have
a better understanding of the concept and allow her to write
the paper more easily.

CDH rules refer to states wherein students adapt their be-
havior to handle negative a�ect (e.g., confusion or boredom)
while learning. These give an idea how long to stay in a con-
fusing or bored learning state before shifting to an activity
that will probably alleviate the problem. For example, rule
3 indicates that it is probably better to �nd a di�erent in-
formation source if it is confusing instead of spending a lot
time trying to understand it. Rule 5 also indicates that it is
not a good idea to just engage in o�-task activities when it
is di�cult to understand a certain information source.

RLX rules refer to states wherein students relax or shift
to o�-task activities after learning. According to rule 6, it
was e�ective for the student to relax after spending a long
time learning. This supports claims that o�-task activities
or relaxation are important for continued learning [7].

RSL rules refer to cases wherein students shift back to learn-
ing from an o�-task activity. It seemed that the utility for
performing actions in this category are context-dependent.

Table 2: Rule correctness over learning episodes
Ep + - New+ New Unknown Reward
2 0 0 1 0 3 4
3 1 0 2 1 1 3
4 12 0 5 0 1 4
5 4 51 0 1 6 2

For example, according to rule 9, it was more e�ective to
apply knowledge probably because the goal was to write
a conference paper. Spending too much time reading in-
formation sources would help, but not directly lead to the
achievement of the goal. This e�ect is important to consider
because if students change their goals, the policy may not be
directly applicable to the new goal. A separate experiment
needs to be conducted to observe how the architecture will
handle such scenarios. We think however that the speed in
which the algorithm adjusts the learning policy is a good
factor that can make it capable of handling such changes.

After a student completes a learning episode, an updated
learning policy can now be used to generate feedback. The
feedback will be based on �ve cases: the student chooses the
best action according to the policy (+), the student does
not choose the best action according to the policy (-), the
student tries a new action which has better results than the
best action in the policy (New+), the student tries a new
action which has worse results than the best action in the
policy (New) and the student performs the only action
associated to a state in the policy or the student performs
an action in an unknown state for the �rst time such that
the policy will not be able to identify if there is a better
action (Unknown).

We simulated how feedback would be generated for these
�ve cases by testing the algorithm on data from the same
student. The student's actions in the �rst learning episode
were used to build an initial policy. No feedback was gener-
ated at this point because learning policy would only contain
rules based on the current episode. Feedback for the second
episode could now be generated because it can be compared
with the learning policy created using data from the �rst
learning episode. The learning policy was updated using
data from the second episode, and was used to generate
feedback for the third learning episode. This was repeated
for all remaining learning episodes. Table 2 presents the
number of times each case is encountered as new learning
episodes are experienced by the student.

The table shows that the student implemented a few rules
in episode two which was caused by the student spending a
long time performing an activity. We see that her learning
policy was updated with three new rules as well as a new
e�ective action (i.e., performing an o�-task activity after
spending a long time experimenting with data). The high
reward value indicates that the student did well because
all actions, including those unknown actions, were e�ective.
This was con�rmed by checking her updated learning policy
generated in the �fth episode. The unknown actions were
in fact the best actions in their corresponding states (i.e.,
performing an o�-task activity after spending some time ex-
perimenting with data, resume data experimentation after

a short o�-task activity and consulting a friend about the
experiment after a short o�-task activity). The student also
performed few actions in the third episode but gave it a
smaller reward value probably because she spent too much
time talking to a friend even though the other actions were
e�ective (i.e., resuming data experimentation after a short
o�-task activity and viewing a paper after some time ex-
perimenting with data). In the fourth episode, the student
constantly performed e�ective actions and even discovered
a new action which probably caused the increase in reward.
Finally in the �fth episode, the student performed a lot of
ine�ective actions which probably caused the big decrease in
the reward value. Speci�cally, as we have discussed earlier,
she spent short amounts of time repeatedly viewing di�er-
ent information sources. The policy indicated that it would
have been better for her to apply knowledge, which in her
context would mean either writing the paper or experiment-
ing with her data. This could in fact be an e�ective strategy
because she could verify and learn more about the concept
by applying it rather than moving on to another concept
right away.

Our results also showed that there was a relationship be-
tween the number of times students correctly followed rules
in their learning policy and their learning e�ectiveness rat-
ing. Figure 3 presents graphs corresponding to each student
showing this relationship. The learning e�ectiveness ratings
were expressed as ratios relative to the highest rating (i.e.,
�ve) and the number of correct actions were expressed as
ratios relative to the total number of actions in the learning
episode. The trend indicates that the learning policy was
able to identify e�ective actions from the students' behavior
such that when the students selected more e�ective actions
(i.e., based on the learning policy), they also had a more
e�ective learning episode. This means that if the student
will be able to follow the feedback provided by the system
in succeeding learning episodes, it is likely for them to have
more e�ective learning experiences.

6. CONCLUSION AND FUTURE WORK
We have presented an architecture for collecting students'
learning behavior data, uncovering e�ective learning behav-
iors and using them to help students manage their learning.
The approach does not require a speci�c learning environ-
ment so the student's behavior is naturalistic and captures
how he/she actually learns. However, it does require stu-
dents to annotate their data. Annotation is done after learn-
ing so it does not require additional cognitive load during
the learning episode. Desktop and web cam screenshots can
help students recall the context in which they learned and
can likely improve annotation accuracy.

The pro�t sharing algorithm was used for building learning
policies that contained rules describing an action's e�ective-
ness in a particular state. Learning policies generated from
previous learning episodes can be compared with data from
the current learning episode to identify which actions were
e�ective or ine�ective and generate feedback accordingly.
Feedback about possible improvements can be useful for stu-
dents to adapt their actions in future learning episodes.

Simulations from actual data showed that updating the learn-
ing policy also changed the resulting feedback such that

Figure 3: Relationship between action correctness
and student rating

newer, more e�ective actions were presented to the student.
This helps ensure that the student will always be prompted
to select the most e�ective learning behavior. The relation-
ship between the number of e�ective rules followed by the
student and their learning e�ectiveness ratings indicate that
the learning policy-based feedback will have a good chance
of helping students learn more e�ectively.

The architecture we have designed still has some issues that
need to be addressed. Our state representation did not con-
tain information regarding students' metacognitive evalu-
ations. Although we used emotions to approximate these
evaluations, asking students to annotate them will be more
accurate and create better policies. The reward values we
used were based on students' self-evaluations and it would
be interesting to see the di�erence when using learning gains
instead (e.g., asking students to take a pretest and posttest).
Combining both learning gains and self-evaluation to create
the reward value may be a better measurement because it
will consider both the student's preferred learning behavior
and knowledge gained.

Our architecture also faces a common problem in RL called
the exploration-exploitation problem. In order for the pol-
icy to be optimal, students need to try as much actions as
possible. Due to the approach's reliance on the student's
learning behavior, it cannot suggest actions outside of the
current learning policy. This would require mechanisms for
suggesting actions not in the learning policy such as using
other students' learning policies or using expert knowledge.

Even though the approach can create policies that span
across learning episodes, it has only been tested with learn-
ing episodes having the same goal. In the case of our data,
students were either writing a conference paper or creating
a power point presentation. It will be more useful if it could
also be used across di�erent learning goals. The current ap-
proach needs to be tested to see how well it fares in such a
case and necessary modi�cations need to be applied accord-
ingly.

The data we used was collected from adult learners and may
be e�ective for them. However, according to Pressley et. al.
[9], children have di�culty in verifying learning strategy util-
ity even after practice. It is possible that additional feedback
may be needed to �t this approach to younger learners.

Acknowledgements
This work was supported in part by the Management Ex-
penses Grants for National Universities Corporations from
the Ministry of Education, Culture, Sports, Science and
Technology of Japan (MEXT) and JSPS KAKENHI Grant
Number 23300059. We would also like to thank all the stu-
dents who participated in our data collection.

7. REFERENCES
[1] S. Arai and K. Sycara. E�ective learning approach for

planning and scheduling in Multi-Agent domain. In
6th International Conference on Simulation of
Adaptive Behavior, pages 507{516, 2000.

[2] R. Azevedo, R. S. Landis, R. Feyzi-Behnagh,
M. Du�y, G. Trevors, J. M. Harley, F. Bouchet,
J. Burlison, M. Taub, N. Pacampara, M. Yeasin, A. K.

M. M. Rahman, M. I. Tanveer, and G. Hossain. The
e�ectiveness of pedagogical agents' prompting and
feedback in facilitating co-adapted learning with
MetaTutor. In Intelligent Tutoring Systems , pages
212{221, 2012.

[3] C. S. Carver and M. F. Scheier. Origins and functions
of positive and negative a�ect: A control-process view.
Psychological Review, 97(1):19{35, 1990.

[4] S. D. Craig, A. C. Graesser, J. Sullins, and
B. Gholson. A�ect and learning: An exploratory look
into the role of a�ect in learning with AutoTutor.
Journal of Educational Media , 29(3):241{250, 2004.

[5] P. Ekman. Are there basic emotions? Psychological
Review, 99(3):550{553, 1992.

[6] G. Gan, C. Ma, and J. Wu. Data clustering: theory,
algorithms, and applications, volume 20. Society for
Industrial and Applied Mathematics, 2007.

[7] P. S. Inventado, R. Legaspi, R. Cabredo, and
M. Numao. Student learning behavior in an
unsupervised learning environment. In 20th
International Conference on Computers in Education ,
pages 730{737, 2012.

[8] J. S. Kinnebrew, K. M. Loretz, and G. Biswas. A
contextualized, di�erential sequence mining method to
derive students' learning behavior patterns. Journal of
Educational Data Mining , in press.

[9] M. Pressley, J. R. Levin, and E. S. Ghatala. Memory
strategy monitoring in adults and children. Journal of
Verbal Learning and Verbal Behavior , 23(2):270{288,
1984.

[10] J. Sabourin, L. R. Shores, B. W. Mott, and J. C.
Lester. Predicting student self-regulation strategies in
game-based learning environments. In Intelligent
Tutoring Systems, pages 141{150, 2012.

[11] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction (Adaptive Computation and Machine
Learning) . A Bradford Book, 1998.

[12] P. H. Winne. Self-regulated learning viewed from
models of information processing. Self-regulated
learning and academic achievement: Theoretical
perspectives, 2:153{189, 2001.

[13] B. J. Zimmerman. Self-regulated learning and
academic achievement: An overview. Educational
psychologist, 25(1):3{17, 1990.

[14] B. J. Zimmerman. Becoming a Self-Regulated learner:
An overview. Theory Into Practice , 41(2):64{70, 2002.

