
JavaParser: A Fine-Grain Concept Indexing Tool
for Java Problems

Roya Hosseini, Peter Brusilovsky

University of Pittsburgh, Pittsburgh, USA

{roh38,peterb}@pitt.edu

Abstract. Multi-concept nature of problems in the domain of programming

languages requires fine-grained indexing which is critical for sequencing pur-

poses. In this paper, we propose an approach for extracting this set of concepts

in a reliable automated way using JavaParser tool. To demonstrate the im-

portance of fine-grained sequencing, we provide an example showing how this

information can be used for problem sequencing during exam preparation.

Keywords: indexing, sequencing, parser, java programming

1 Introduction

One of the oldest functions performed by adaptive educational systems is guiding

students to most appropriate educational problems at any time of their learning pro-

cess. In classic ICAI and ITS system this function was known as task sequencing [1;

6]. In modern hypermedia-based systems it is more often referred as navigation sup-

port. The intelligent decision mechanism behind these approaches is typically based

on a domain model that decomposes the domain into a set of knowledge units. This

domain model serves as a basis of student overlay model and as a dictionary to index

educational problems or tasks. Considering the learning goal and the current state of

student knowledge reflected by the student model, various sequencing approaches are

able to determine which task is currently the most appropriate.

An important aspect of this decision process is the granularity of the domain model

and the related granularity of task indexing. In general, the finer are the elements of

the domain model and the more precise is task indexing, the better precision could be

potentially offered by the sequencing algorithm in determining the best task to solve.

However, fine-grained domain models that dissect a domain into many dozens to

many hundreds of knowledge units are much harder to develop and to use for index-

ing. As a result, many adaptive educational systems use relatively coarse-grained

models where a knowledge unit corresponds to a considerably-sized topic of learning

material, sometimes even a whole lecture.. With these coarse-grain models, each task

is usually indexed with just 1-3 topics. In particular, this approach is used by the ma-

jority of adaptive systems in the area of programming [2; 4; 5; 7].

Our past experience with adaptive hypermedia systems for programming [2; 4]

demonstrated that adaptive navigation support based on coarse grain problem index-

ing is surprisingly effective way to guide students over their coursework, yet it

doesn’t work well in special cases such as remediation or exam preparation. In these

special situations students might have a reasonable overall content understanding (i.e.,

coarse-grain student model registers good knowledge), while still possessing some

knowledge gaps and misconceptions that could be only registered using a finer-grain

student model.. In this situation only a fine-grain indexing and sequencing is able to

suggest learning tasks that can address these gaps and misconceptions.

To demonstrate the importance of fine-grained indexing, we can look at an exam-

ple of a system called Knowledge Maximizer [3] that uses fine-grain concept-level

problem indexing to identify gaps in user knowledge for exam preparation. This sys-

tem assumes a student already did considerable amount of work and the goal is to

help her define gaps in knowledge and try to fix that holes as soon as possible. Fig. 1

represents the Knowledge Maximizer interface. The question with the highest rank is

shown first. User can navigate the ranked list of questions using navigation buttons at

the top. Right side of the panel shows the list of fine-grained concepts covered by the

question. The color next to each concept visualizes the student’s current knowledge

level (from red to green). Evaluation results confirm that using fine-grained indexing

in Knowledge Maximizer has positive effect on students’ performance and also short-

en the time for exam preparation.

Fig. 1. The Knowledge Maximizer interface.

The problem with finer-grain indexing, such as used by the Knowledge Maximizer

is the high cost of indexing. While fine-grain domain model has to be developed just

once, the indexing process has to be repeated for any new question. Given that most

complex questions used by the system include over 90 concepts each, the high cost of

indexing effectively prevents an expansion of the body of problems. To resolve this

problem, we developed an automatic approach for fine-grained indexing for pro-

gramming problems in Java based on program parsing. This approach is presented in

the following section.

Navigation Buttons

Knowledge Level Question Concept

Question Area

2 Java Parser

Java parser is a tool that we developed to index Java programs with concepts of Java

ontology developed by our group (http://www.sis.pitt.edu/~paws/ont/java.owl). This

tool provides the user with semi-automated indexing support during developing new

learning materials for the Java Programming Language course. This parser is devel-

oped using the Eclipse Abstract Syntax Tree framework. This framework generates an

Abstract Syntax Tree (AST) that entirely represents the program source. AST consists

of several nodes each containing some information known as structural properties.

For example, Fig. 2 shows structural properties for the following method declaration:
public void start(BundleContext context) throws Exception {

 super.start(context);

}

Fig. 2. Structural properties of a method declaration

Table 1. Sample of JavaParser output

Source Output

public void

start(BundleContext context)

throws Exception {

super.start(context);

}

Super Method Invocation,

Public Method Declaration,

Exception,

Formal Method Parameter,

Single Variable Declaration,

Void

After building the tree using Eclipse AST API, the parser performs a semantic ana-

lyzed using the information in each node. This information is used to identify fine-

grained indexes for the source program. Table 1 shows the output concepts of

JavaParser for the code fragment mentioned above. Note that the goal of the parser is

to detect the lowest level ontology concepts behind the code since the upper level

concepts can be deduced using ontology link propagation. For example, as you see in

Table 1, parser detects “void” and “main” ignoring upper-level concept of “modifier”.

We compared the accuracy of JavaParser with manual indexing for 103 Java prob-

lems and found out that our parser was able to index 93% of the manually indexed

concepts. Therefore, automatic parser can replace time-consuming process of manual

indexing with a high precision and open the way to community-driven problem au-

thoring and targeted expansion of the body of problems.

3 Conclusion

Having fine-grained indexing for programming problems is necessary for better se-

quencing of learning materials for students; however, the cost of manual fine-grained

indexing is prohibitively high. In this paper, we presented a fine grained indexing

approach and tool for automatic indexing of Java problems. We also showed an appli-

cation of fine-grained problem indexing during exam preparation where small size of

knowledge units is critical for finding sequence of problems that fills the gaps in stu-

dent knowledge. Results show that proposed automatic indexing tool can offer the

quality of indexing that is comparable with manual indexing by expert for a fraction

of its cost.

References

1. Brusilovsky, P.: A framework for intelligent knowledge sequencing and task

sequencing. In: Proc. of Second International Conference on Intelligent Tutoring

Systems, ITS'92. Springer-Verlag (1992) 499-506

2. Brusilovsky, P., Sosnovsky, S., Yudelson, M.: Addictive links: The motivational

value of adaptive link annotation. New Review of Hypermedia and Multimedia

15, 1 (2009) 97-118

3. Hosseini, R., Brusilovsky, P., Guerra, J.: Knowledge Maximizer: Concept-based

Adaptive Problem Sequencing for Exam Preparation. In: Proc. of the 16th

International Conference on Artificial Intelligence in Education. (2013) In Press

4. Hsiao, I.-H., Sosnovsky, S., Brusilovsky, P.: Guiding students to the right

questions: adaptive navigation support in an E-Learning system for Java

programming. Journal of Computer Assisted Learning 26, 4 (2010) 270-283

5. Kavcic, A.: Fuzzy User Modeling for Adaptation in Educational Hypermedia.

IEEE Transactions on Systems, Man, and Cybernetics 34, 4 (2004) 439-449

6. McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task

sequencing in an intelligent tutor for basic algebra. Instructional Science 17, 4

(1988) 281-307

7. Vesin, B., Ivanovi , M., Klašnja-Mili evi A., Budimac, Z.: Protus 2.0:

Ontology-based semantic recommendation in programming tutoring system.

Expert Systems with Applications 39, 15 (2012) 12229-12246

