
Proceedings of the

2nd OWL Reasoner Evaluation Workshop

(ORE 2013)

Collocated with DL 2013 Workshop
July 22nd, Ulm, Germany

Volume 1015 of CEUR-WS.org: http://ceur-ws.org/Vol-1015/

Workshop webpage: http://ore2013.cs.manchester.ac.uk/

Edited by
Samantha Bail, Birte Glimm, Rafael Gonçalves, Ernesto Jiménez-Ruiz,

Yevgeny Kazakov, Nicolas Matentzoglu and Bijan Parsia

i

http://ceur-ws.org/Vol-1015/
http://ore2013.cs.manchester.ac.uk/

Preface

OWL is a logic-based ontology language standard designed to promote interoperability, partic-
ularly in the context of the (Semantic) Web. The standard has encouraged the development
of numerous OWL reasoning systems, and such systems are already key components of many
applications.

The goal of this workshop is to bring together both developers and users of reasoners for
(subsets of) OWL, including systems focusing on both intensional (ontology) and extensional
(data) query answering.

This volume contains the papers presented at ORE 2013: The 2nd International Workshop
on OWL Reasoner Evaluation, held in Ulm, Germany, on July 22, 2013. ORE 2013 was
collocated with the 26th edition of the DL workshop. The workshop received a 18 submissions
(14 system papers and 4 ontology/benchmark papers) each of which was reviewed by at least
three members of the program committee or additional reviewers. Since there was not any
off-topic submission, we accepted all submission, following the inclusive tradition of DL, for
oral presentation at the workshop.

In addition to workshop paper submissions, ORE 2013 also included a competition in which
OWL reasoners were faced with different reasoning task, such as ontology classification, con-
sistency checking, and satisfiability checking of concepts. The tasks were performed on several
large corpora of real-life OWL ontologies obtained from the web, as well as user-submitted
ontologies which were found to be challenging for reasoners. The proceedings also contains a
short report summarizing the main results of the competition.

Fourteen OWL reasoners participated in the ORE 2013 competition:

• BaseVISor http://vistology.com/basevisor/basevisor.html

• TrOWL http://trowl.eu/

• Konclude http://www.derivo.de/en/produkte/konclude/

• ELepHant https://code.google.com/p/elephant-reasoner/

• TReasoner https://code.google.com/p/treasoner/

• HermiT http://www.hermit-reasoner.com/

• MORe http://code.google.com/p/more-reasoner/

• ELK http://code.google.com/p/elk-reasoner/

• jcel http://jcel.sourceforge.net/

• SnoRocket http://research.ict.csiro.au/software/snorocket

• FaCT++ http://code.google.com/p/factplusplus/

• Jfact http://sourceforge.net/projects/jfact/

• Chainsaw http://sourceforge.net/projects/chainsaw/

• WSClassifier https://code.google.com/p/wsclassifier/

ii

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

http://vistology.com/basevisor/basevisor.html
http://trowl.eu/
http://www.derivo.de/en/produkte/konclude/
https://code.google.com/p/elephant-reasoner/
https://code.google.com/p/treasoner/
http://www.hermit-reasoner.com/
http://code.google.com/p/more-reasoner/
http://code.google.com/p/elk-reasoner/
http://jcel.sourceforge.net/
http://research.ict.csiro.au/software/snorocket
http://code.google.com/p/factplusplus/
http://sourceforge.net/projects/jfact/
http://sourceforge.net/projects/chainsaw/
https://code.google.com/p/wsclassifier/

Acknowledgements

We thank all members of the program committee, competition organisers, additional reviewers,
authors of the submitted papers, developers of the submitted reasoners and ontologies, and
local organizers for their invaluable effort.

We also thank Konstantin Korovin (supported by the Royal Society grant RG080491) at
the University of Manchester who kindly provided us with the PC cluster for the competition.

We also gratefully acknowledge the support of our sponsors. In particular, we thank the
main workshop sponsor: B2i Healthcare (https://www.b2international.com/).

We would also like to acknowledge that the work of the ORE organisers was greatly simplified
by using the EasyChair conference management system (http://www.easychair.org) and the
CEUR Workshop Proceedings publication service (http://ceur-ws.org/).

iii

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

https://www.b2international.com/
http://www.easychair.org
http://ceur-ws.org/

Organisers, PC Chairs

Samantha Bail University of Manchester
Ernesto Jiménez-Ruiz University of Oxford

Competition Organisers

Rafael Gonçalves University of Manchester
Nicolas Matentzoglu University of Manchester
Bijan Parsia University of Manchester

Local Organisers

Birte Glimm University of Ulm
Yevgeny Kazakov University of Ulm

Program Committee

Ana Armas University of Oxford
Franz Baader TU Dresden
Christine Golbreich LIRMM, CNRS, Montpellier & Univ. Versailles Saint-Quentin
Janna Hastings European Bioinformatics Institute
Pavel Klinov University of Ulm
Despoina Magka University of Oxford
Francisco Martin-Recuerda Universidad Politécnica de Madrid
Christian Meilicke University of Mannheim
Julian Mendez TU Dresden
Maria Del Mar Roldán Garćıa Universidad de Malaga
Stefan Schlobach Vrije Universiteit Amsterdam
Kavitha Srinivas IBM Research
Dmitry Tsarkov University of Manchester
Zhe Wang Griffith University

Additional Reviewers

Andrew Bate University of Oxford
David Carral Wright State University
Maria Copeland University of Manchester
Jared Leo University of Manchester
Jose Mora Universidad Politécnica de Madrid
Weihong Song University of New Brunswick
Yujiao Zhou University of Oxford

iv

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

Table of Contents

Evaluation results

OWL Reasoner Evaluation (ORE) Workshop 2013 Results: Short Report 1

Rafael Gonçalves, Samantha Bail, Ernesto Jiménez-Ruiz, Nicolas Matentzoglu, Bijan
Parsia, Birte Glimm and Yevgeny Kazakov

System papers

YARR!: Yet Another Rewriting Reasoner . 19

Joerg Schoenfisch and Jens Ortmann

TReasoner: System Description . 26

Andrew Grigorev and Alexander Ivashko

Snorocket 2.0: Concrete Domains and Concurrent Classification . 32

Alejandro Metke Jimenez and Michael Lawley

A Transformation Approach for Classifying ALCHI(D) Ontologies with a
Consequence-based ALCH Reasoner. 39

Weihong Song, Bruce Spencer and Weichang Du

Android goes Semantic: DL Reasoners on Smartphones. 46

Roberto Yus, Carlos Bobed, Guillermo Esteban, Fernando Bobillo and Eduardo Mena

FRaQuE: A Framework for Rapid Query Processing Evaluation . 53

Jean-Rémi Bourguet and Luca Pulina

MORe: a Modular OWL Reasoner for Ontology Classification . 61

Ana Armas, Bernardo Cuenca Grau, Ian Horrocks and Ernesto Jiménez-Ruiz

Experimenting with ELK Reasoner on Android. 68

Yevgeny Kazakov and Pavel Klinov

Extending Datatype Support for Tractable Reasoning with OWL 2 EL Ontologies 75

Oleksandr Pospishnyi

DRAOn: A Distributed Reasoner for Aligned Ontologies . 81

Chan Le Duc, Myriam Lamolle, Antoine Zimmermann and Olivier Curé

The ELepHant Reasoner System Description . 87

Bariş Sertkaya

Evaluating SPARQL-to-SQL translation in ontop. 84

Mariano Rodriguez-Muro, Martin Rezk, Josef Hardi, Mindaugas Slusnys, Timea
Bagosi and Diego Calvanese

OBDA with Ontop . 101

Mariano Rodriguez-Muro, Roman Kontchakov and Michael Zakharyaschev

Reasoning the FMA Ontologies with TrOWL. 107

Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk and Jhonatan Garcia

v

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

Ontology and benchmark papers

KB Bio 101 : A Challenge for OWL Reasoners . 114

Michael Wessel, Vinay Chaudhri and Stijn Heymans

Evaluating OWL 2 Reasoners in the context of Clinical Decision Support in Lung
Cancer Treatment Selection . 121

Berkan Sesen, Ernesto Jimenez-Ruiz, Rene Banares-Alcantara and Michael Brady

Genomic CDS: an example of a complex ontology for pharmacogenetics and clinical
decision support . 128

Matthias Samwald

A large-scale gene-centric semantic web knowledge base for molecular biology. 134

Jose Cruz-Toledo, Alison Callahan and Michel Dumontier

vi

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

OWL Reasoner Evaluation (ORE) Workshop

2013 Results: Short Report

Rafael S. Gonçalves1, Samantha Bail1, Ernesto Jimenez-Ruiz2, Nicolas
Matentzoglu1, Bijan Parsia1, Birte Glimm3, and Yevgeny Kazakov3

1 School of Computer Science, The University of Manchester, UK
2 Department of Computer Science, University of Oxford, UK
3 Institut für Künstliche Intelligenz, Ulm University, Germany

Abstract. The OWL reasoner evaluation (ORE) workshop brings to-
gether reasoner developers and ontology engineers in order to discuss
and evaluate the performance and robustness of modern reasoners on
OWL ontologies. In addition to paper submissions, the workshop fea-
tured a live and offline reasoner competition where standard reasoning
tasks were tested: classification, consistency, and concept satisfiability.
The reasoner competition is performed on several large corpora of real-
life OWL ontologies obtained from the web, as well as user-submitted
ontologies which were found to be challenging for reasoners. Overall there
were 14 reasoner submissions for the competition, some of which dedi-
cated to certain subsets or profiles of OWL 2, and implementing different
algorithms and optimisations. In this report, we give an overview of the
competition methodology and present a summary of its results, divided
into the respective categories based on OWL 2 profiles and test corpora.

1 Introduction

The OWL Reasoner Evaluation Workshop (ORE) aims at being an international
venue for the annual systematic evaluation of reasoners for (subsets of) the Web
Ontology Language OWL [9,3] and bringing together both users and developers
of such reasoners. The first ORE workshop was organized in 2012 as a satellite
event4 of the IJCAR conference [10], and started as an initiative in the context of
the SEALS (Semantic Evaluation At Large Scale) project [29]. In 2013 the ORE
workshop was organized together with the Description Logic (DL) workshop.

This report summarizes the results of the ORE 2013 reasoner competition.
All test data, results, and further information about the competition are available
online: http://ore2013.cs.manchester.ac.uk.

The remainder of the report is organized as follows. In Section 2, we present
the methodology of the competition. Section 3 provides a brief description of
each participating OWL reasoner. The results of the offline and live competitions
are shown in Sections 4 and 5, respectively. In Section 6 we present the results
for the user-submitted ontologies. Finally, Section 7 provides a summary of the
competition results.

4 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

1 of 139

2 Methodology

We start by describing the reasoning tasks considered in the competition, fol-
lowed by the presentation of the benchmark framework created for ORE 2013.
Subsequently, we report on the hardware and ontology corpora used.

2.1 Reasoning tasks

The competition was based on three standard reasoning tasks, namely classi-
fication, consistency checking, and concept satisfiability checking. The call for
submissions also included query answering, but there were no reasoners submit-
ted for this task.

2.1.1 Ontology classification The classification task was chosen as the most
complex of the three tasks. Given an ontology, the reasoners were asked to re-
turn an ontology file (parseable by the OWL API) in OWL functional syntax,
containing a set of SubClassOf axioms of the form α := A ⊑ B, for named
concepts A, B ∈ sig(O), where O |= α according to the following specifications:

1. Non-tautology:
– A ∈ sig(O) ∪⊤
– B ∈ sig(O) ∪ ⊥
– A 6= B

2. Directness: there exists no named concept C ∈ sig(O) s.t. O |= A ⊑ C and
C ⊑ B, where C is not equivalent to A, B, or ⊥.

3. Conciseness: if O |= A ≡ ⊥, the only axiom with A on the left-hand side is
A ⊑ ⊥.

4. Consistency: if the given ontology is inconsistent, the only output is the
axiom ⊤ ⊑ ⊥.

5. Non-strictness: if O |= A ≡ B, output A ⊑ B and B ⊑ A.

These specifications were selected in order to obtain a set of SubClassOf

axioms that would represent all subsumptions between named classes, while
omitting irrelevant information.

2.1.2 Ontology consistency For this task, the reasoner was asked to test
the consistency of the ontology (i.e. whether O |= ⊤ ⊑ ⊥), and return ‘true’ or
‘false’, respectively.

2.1.3 Concept satisfiability This task was performed by randomly selecting
ten concepts from each ontology in the respective corpus, giving precedence to
unsatisfiable concepts where possible. The reasoner was then asked to test the
satisfiability of the concept, i.e. whether O |= A ≡ ⊥ for a named concept A,
and return ‘true’ or ‘false’, respectively.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

2 of 139

2.2 Benchmark framework

2.2.1 Implementation The aim of the benchmarking framework is to work
with as many different reasoner configurations as possible, without the need to
interfere with reasoner internals. We therefore asked the system developers to
write a simple executable wrapper for their reasoner which would accept input
arguments (ontology file name, reasoning task, output directory, concept name)
and output results according to our specification (a valid OWL file with the class
hierarchy, ‘true’/‘false’ for the consistency and satisfiability tasks, as well as the
time taken for the task, or a separate file with an error trace).

The time measured is the wall-clock time (in milliseconds) elapsed from the
moment preceding reasoner creation (e.g. before the call to ReasonerFactory.

createReasoner(ontology) in the OWL API [8] where the ontology has already
been parsed into an OWL object) to the completion of the given task, i.e. it
includes the loading and possibly pre-processing time required by the reasoner,
but excludes time taken for file I/O. While measuring CPU time would be more
accurate, it comes with added complexity for concurrent implementations – for
instance, in Java, one would have to aggregate the run times of each thread. The
reasoners are also asked to enforce a five minute timeout, that is, if the measured
time exceeds 5 minutes then the reasoner should stop the ongoing operation, and
terminate itself. Failure to do so will trigger a kill command sent to the running
process after another minute in order to give enough time for the process to
terminate; i.e. the hard timeout is six minutes.

While one might argue that leaving the reporting of operation times to the
reasoners may be error-prone, we believe that letting reasoner developers them-
selves handle the input and output of their system, as well as the time measure-
ment, is the most straightforward way to include as many systems as possible;
regardless of their implementation programming language, whether they use the
OWL API, employ concurrent implementations, and so on. The large number of
reasoners that was submitted to the competition shows that writing this simple
wrapper script lowered the barrier for participation, and despite some difficulties
with non-standard output, most reasoners adhered to the specifications closely
enough for us to analyse their outputs.

Additionally, it is clear that reasoners which do not implement the five minute
timeout, but rather rely on the kill signal after the six minute timeout sent by
the benchmark framework, could potentially gain a slight advantage through
this additional minute. However, not only is the number of successfully com-
pleted tasks between the five and six minute marks negligible, but also we have
automatically induced a timeout for those reasoners that exceeded a runtime of
five minutes for some input.

2.2.2 Correctness check The reasoner output was checked for correctness
by a majority vote, i.e. the result returned by the most reasoners was considered
to be correct.5 Since the ontologies in the test corpus were ‘real-life’ ontologies,

5 Unless most reasoners return an empty OWL file, in which case the majority vote is
taken based on those reasoners which output a non-empty file.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

3 of 139

this was the most straightforward way to automatically determine correctness
without manual inspection or artificially generating test cases.

In the case of the consistency and satisfiability challenges the output was
a simple unambiguous ‘true’ or ‘false’, so any incorrect results were unlikely
to be caused by erroneous output from a sound reasoner; however, for ontology
classification, the reasoners output an ontology file containing OWL SubClassOf

axioms, which may lead to errors if the systems did not exactly follow the above
specifications on which types of axioms to include or exclude. For the purpose
of verifying correctness of the output we rely on an ontology diff to determine
whether two given results are logically equivalent [6]. The diff is tuned to ignore
(1) tautological axioms of the type A ⊑ ⊤ for any named concept A, (2) axioms of
the form⊥ ⊑ B or A ⊑ B, where A,B are named concepts and A is unsatisfiable,
and (3) if two result files are not equivalent due to OWL EquivalentClassOf

axioms, these axioms are ignored.6

2.2.3 Success and failure In the end, the outcome of a reasoning task on
an ontology was either ‘success’ or ‘fail’. A reasoner would pass the test (‘solve
the problem’) successfully if it met the following three criteria:
– Process the ontology without throwing an error (e.g. parsing error, out of

memory, unsupported OWL feature, etc.).
– Return a result within the allocated timeout.
– Return the correct result (based on the majority vote).

Likewise, a reasoner would fail a task if it did one of the following:
– Throw an error and abort the reasoning task.
– Return no result within the allocated time.
– Return an incorrect result (based on the majority vote).
Note that these criteria mean that a reasoner could successfully solve a task

while being unsound or incomplete, or without completing the reasoning task
within the allocated time. For example, for the classification task, if the reasoner
has already found all required entailed atomic subsumptions without performing
all possible entailment checks within the five minute time frame, it can simply
output this ‘intermediate’ result before terminating the process. Since the cor-
rectness check is performed on whatever the reasoner returns within the timeout,
the resulting output would be considered to be correct, despite the fact that the
reasoner has not fully completed the task.

Likewise, a reasoner which does not support certain OWL 2 features, such as
datatypes, might find (if there are any to find) the required atomic subsumptions
via some other ‘route’ if there are several reasons why the entailment holds. In
other words, if there exist multiple justifications (minimal entailing subsets) for
a subsumption of which at least one only contains supported features, then the
reasoner will still be able to find the subsumption without having to process the

6 While the presence of equivalences in some result should not a problem when com-
pared to a result with these equivalences in subsumption form, reasoners tend not to
produce the latter because they are non-strict subsumptions, so we allowed equiva-
lences and tuned our diff to ignore them where applicable.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

4 of 139

unsupported feature. This is an issue we are planning to address with the next
iteration of the benchmark framework by modifying ontologies (i.e. ‘breaking’
their justifications) in order to specifically test certain OWL 2 features.

2.3 Hardware

The experiments were run on a cluster of identical computers (one reasoner per
computer) that were made available to us by Konstantin Korovin of the iProver
project7 at The University of Manchester, supported by the Royal Society grant
RG080491. Each computer had the following configuration:
– Intel Xeon QuadCore CPU @2.33GHz
– 12GB RAM (8GB assigned to the process)
– Running the Fedora 12 operating system
– Java version 1.6

2.4 Test corpora

2.4.1 Main test corpus For each of the OWL 2 profiles [16] used in the
competition (OWL 2 EL, RL, and DL ontologies which were not in any of the
sub-profiles) we gathered a test set of up to 200 ontologies. The pool of ontologies
we sampled from was composed of three corpora: (i) the NCBO BioPortal8

corpus [17], (ii) the Oxford Ontology Library9, and (iii) the corpus of ontologies
from the Manchester Ontology Repository10 [13]. The corpora were filtered to
only include OWL 2 ontologies which had at least 100 axioms and 10 named
concepts. Note that the sample ontology pool, composed of 2499 ontologies,
does contain some degree of duplication due to the intersection of BioPortal, the
Manchester OWL Repository, and the Oxford Ontology Library.

The ontologies were then binned by profile, i.e. one bin for each of the follow-
ing: OWL 2 EL ontologies, OWL 2 RL, and OWL 2 DL. Regarding the latter,
we chose to include here those ontologies that do not fall into any of the sub-
profiles (i.e. OWL 2 EL, RL, or QL) in order to ensure that features outside
the sub-profiles were tested. For each of these profile bins, a stratified random
sample was drawn to obtain a set of 200 ontologies:
– 50 small ontologies (between 100 and 499 logical axioms)
– 100 medium sized ontologies (between 500 and 4,999 logical axioms)
– 50 large ontologies (5,000 and more logical axioms)
Note that these thresholds and weightings were chosen based on the distri-

bution of ontology sizes we have found in several ontology corpora which follow
(roughly) a normal distribution, with a large number of medium-sized ontologies
and fewer small and large ontologies. While it would have been possible to select

7 http://www.cs.man.ac.uk/~korovink/iprover/
8 http://bioportal.bioontology.org/
9 http://www.cs.ox.ac.uk/isg/ontologies/

10 http://owl.cs.manchester.ac.uk/owlcorpus

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

5 of 139

exclusively medium-sized and large ontologies, we also expected some small on-
tologies to be fairly complex for the reasoners, which is why they were included
in the test corpus.

In addition to the ontologies from BioPortal, the Oxford Library, the Manch-
ester Repository, and user-submitted ontologies, the May 2013 version of the Na-
tional Cancer Institute (NCI) Thesaurus (NCIt) [5], and the January 2011 ver-
sion of the Systematized Nomenclature of Medicine (SNOMED) Clinical Terms
(SNOMED CT) [21] were also added to the corpus, respectively to the DL and
EL profile bins.

The experiments were run on the OWL functional syntax serialisations of
the selected ontologies, except for one reasoner (Konclude) which currently only
supports OWL/XML syntax. A number of ontologies serialised into functional
syntax (55 across all the sets) turned out to be broken (they were correctly loaded
and serialised, but the serialisation could not be parsed back by the OWL API),
possibly due to problems with the respective serialiser in the OWL API (version
3.4.4). These were replaced by random selections for their respective bin. The
same occurred for 12 ontologies serialised into OWL/XML.

The entire sampling process was performed twice in order to create two com-
plete test sets: Set A for the offline competition, and Set B for the live compe-
tition. Note that some ontologies occurred in both Set A and B: 40 ontologies
occurred in both Set A and B for the DL category, Set A and B were fully iden-
tical for the EL category, and 29 ontologies were shared between Set A and B
in the RL category.

2.4.2 User-submitted ontologies In the call for submissions to the ORE
2013 workshop, we also included a call for ‘hard’ ontologies and potential rea-
soner benchmark suites. Several groups of ontology and reasoner developers sub-
mitted their ontologies, which were either newly developed OWL ontologies or
modifications of existing ones. These included:
– C. M. Keet, A. Lawrynowicz, C. d’Amato, M. Hilario: the Data Mining

OPtimization Ontology (DMOP) [12], a complex ontology with around 3,000
logical axioms in the SROIQ(D) description logic which makes uses of all
OWL 2 DL features.

– M. Samwald: Genomic CDS [20], anALCQ ontology containing around 4,000
logical axioms, which involves a high number of qualified number restrictions
of the type ‘exactly 2’.

– V. Chaudhri, M. Wessel: Bio KB 101 [2], a set of OWL approximations of
the first-order logic representation of a biology textbook, which consists of
432 different approximations containing various OWL 2 features. Only 72
of these files were in the OWL 2 DL profile and thus used for the reasoner
evaluation.

– W. Song, B. Spencer, W. Du: three ontology variants:
• FMA-FNL, a variant of the FMA (Foundational Model of Anatomy)
ontology [19], a large and highly cyclic ALCOI(D) ontology with over
120,000 locial axioms.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

6 of 139

• GALEN-FNL, a highly cyclic ALCHOI(D) variant of the well-known
Galen ontology [18], which contains around 37,000 logical axioms and
951 object properties.

• GALEN-Heart: a highly cyclic ALCHOI(D) ontology containing a mod-
ule extracted from the Galen ontology with over 10,000 logical axioms.

– S. Croset: Functional Therapeutic Chemical Classification System (FTC)11,
a large ontology with nearly 300,000 logical axioms in the OWL 2 EL profile.
As mentioned above, some of the user-submitted ontologies (all except Bio

KB and DMOP) were added to the set used in the competition. Additionally, we
also performed a separate benchmark on all of the user-submitted ontologies.

3 Participating reasoners

3.1 OWL 2 DL reasoners

Chainsaw [28] is a ‘metareasoner’ which first computes modules for an ontol-
ogy, then delegates the processing of those modules to an existing OWL 2
DL reasoner, e.g. FaCT++ in the current implementation.

FaCT++ [27] is a tableaux reasoner written in C++ which supports the full
OWL 2 DL profile.

HermiT [4] is a Java-based OWL 2 DL reasoner implementing a hypertableau
calculus.

JFact is a Java implementation of the FaCT++ reasoner with extended datatype
support.12

Konclude is a C++ reasoner supporting the full OWL 2 DL profile except
datatypes. It uses an optimised tableau algorithm which also supports par-
allelised processing of non-deterministic branches and the parallelisation of
higher-level reasoning tasks, e.g. satisfiability and subsumption tests.13

MORe [1] is Java-based modular reasoner which integrates a fully-fledged (and
slower) reasoner with a profile specific (and more efficient) reasoner. In the
competition, MORe has integrated both HermiT and Pellet [24] as OWL 2
DL reasoners and ELK as the OWL 2 EL profile specific reasoner.

Treasoner [7] is a Java reasoner which implements a standard tableau algo-
rithm for SHIQ.

TrOWL [26] is an approximative OWL 2 DL reasoner. In particular, TrOWL
utilises a semantic approximation to transform OWL 2 DL ontologies into
OWL 2 QL for conjunctive query answering and a syntactic approximation
from OWL 2 DL to OWL 2 EL for TBox and ABox reasoning.

WSClassifier [25] is a Java reasoner for the ALCHOI(D) fragment of OWL
2 DL, using a hybrid of the consequence based reasoner ConDOR [23] and
hypertableau reasoner HermiT.

11 https://www.ebi.ac.uk/chembl/ftc/
12 http://sourceforge.net/projects/jfact/
13 http://www.derivo.de/en/produkte/konclude/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

7 of 139

3.2 OWL 2 EL reasoners

ELepHant [22] is a highly optimised consequence-based EL+ reasoner writ-
ten in C, which is aimed at platforms with limited memory and computing
capabilities (e.g. embedded systems).

ELK [11] is a consequence-based Java reasoner which utilises multiple cores/processors
by parallelising multiple threads.

jcel [14] uses a completion-based algorithm, which is a generalization of CEL’s
algorithm. It is a Java reasoner which supports ontologies in EL+.

SnoRocket [15] is a Java reasoner developed for the efficient classification of the
SNOMED CT ontology. It implements a multi-threaded saturation algorithm
similar to that of ELK, thus support concurrent classification.

3.3 OWL 2 RL reasoners

BaseVISor is a Java-based forward-chaining inference engine which supports
OWL 2 RL and XML Schema Datatypes.14

4 Results – Offline competition

4.1 OWL 2 DL results

Nine reasoners entered the OWL 2 DL category, although not all of them com-
peted in the three reasoning tasks. MORe participated with both HermiT and
Pellet as the internal DL reasoner. The results for the classification, consistency,
and satisfiability tasks are shown in Figure 1.

In the classification task, HermiT performed best in terms of robustness with
147 out of 204 ontologies that were correctly processed within the timeout (at
12.3s per ontology), whereas MORe-Pellet achieved the smallest mean time (2.8s
per ontology) for the 141 ontologies it processed correctly.

In the consistency task, Konclude processed the highest number of ontologies
correctly (186 out of 204), while also performing fastest on average with 1.7s per
ontology; Konclude was also twice as fast as the second faster reasoner (HermiT).

Finally, for the DL satisfiability task, Konclude also processed the highest
number of concepts correctly (1,929 out of 2,040) within the given timeout, while
coming second after Chainsaw (1.3s) in terms of speed, with a mean time of 1.8s
per ontology.

4.2 OWL 2 EL results

In addition to the EL-specific reasoners, all OWL 2 DL reasoners also partici-
pated in the EL category; the results for all participating reasoners on the three
reasoning tasks in the EL profile are shown in Figure 2. In both the classifica-
tion and consistency categories, ELK performed extremely well both in terms

14 http://vistology.com/basevisor/basevisor.html

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

8 of 139

 0

 50

 100

 150

 200

herm
it

m
ore-pellet

m
ore-herm

it

konclude

fact
jfact

trowl
wsclassifier

treasoner

chainsaw

 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

04
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Classification OWL 2 DL Ontologies

Robustness
Avg. time (s)

147 141 141
126 125 119 115 115

95

58

12.3

2.8

8.2

3.6

9.1

5.6 5.2

13.8

7.3

29.2

 0

 50

 100

 150

 200

konclude

fact
chainsaw

herm
it

treasoner

jfact

 0

 2

 4

 6

 8

 10

 12

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

04
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Consistency OWL 2 DL Ontologies

Robustness
Avg. time (s)

186
177

171 168
158

146

1.7

4.7

3.7 3.4

4.7

9.9

 0

 500

 1000

 1500

 2000

konclude

m
ore-herm

it

m
ore-pellet

treasoner

chainsaw

herm
it

fact
jfact

 0

 2

 4

 6

 8

 10

 12

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

04
0)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Class Satisfiability OWL 2 DL Ontologies

Robustness
Avg. time (s)

1929 1920 1903
1808

1709
1619 1585

1400

1.8

4.1 4.2

5.4

1.3

4.0

5.3

9.9

Fig. 1: Results (robustness/average time) for the OWL 2 DL category.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

9 of 139

 0

 50

 100

 150

 200

elk wsclassifier

m
ore-herm

it

m
ore-pellet

fact
herm

it

jfact
konclude

trowl
treasoner

jcel
snorocket

elephant

chainsaw

 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

00
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Classification OWL 2 EL Ontologies

Robustness
Avg. time (s)

185 181 181 179 176 176 171 169 168 164 162 156

138 137

0.9
2.7 2.9 2.3 2.6 3.2

7.0

0.7
1.9

20.2

4.8

1.9
0.1

30.6

 0

 50

 100

 150

 200

elk konclude

herm
it

fact
chainsaw

treasoner

jfact
jcel

snorocket

 0

 2

 4

 6

 8

 10

 12

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

00
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Consistency OWL 2 EL Ontologies

Robustness
Avg. time (s)

200 199 199 195 194 194
187 184

174

0.5 0.6

2.2

1.3
1.8

4.1

4.9 4.6

1.8

 0

 500

 1000

 1500

 2000

chainsaw

m
ore-herm

it

m
ore-pellet

elk herm
it

konclude

fact
treasoner

jfact
jcel

snorocket

 0

 2

 4

 6

 8

 10

 12

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

00
0)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Class Satisfiability OWL 2 EL Ontologies

Robustness
Avg. time (s)

2000 2000 2000 1990 1986 1966 1950 1932
1868 1840

1564

1.0
1.6 1.7

0.9

2.4

1.3 1.1

4.4
4.8 4.6

2.6

Fig. 2: Results (robustness/average time) for the OWL 2 EL category.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

10 of 139

of robustness (185 and 200 out of 200 correctly processed ontologies) as well
as average speed (0.9s for classification, 0.5s for consistency checking). Perhaps
surprisingly, MORe with both HermiT and Pellet performed worse than ELK on
robustness, as we expected its combination of ELK with a DL reasoner to handle
more ontologies than the stand-alone version of ELK which does not support the
full OWL 2 EL profile. However, it is possible that the DL reasoners in MORe
got in fact ‘held up’ by those parts of the ontologies that the stand-alone ELK
simply ignored, which may have caused a this slightly worse result.

Two of the EL-specific reasoners SnoRocket and ELepHant both performed
comparatively fast on those ontologies they did successfully process, but failed
to process a large number of ontologies (44 and 62, respectively). The remaining
EL reasoner, jcel, was slower than most other reasoners, while also failing to
process 38 of the 200 ontologies in the given time.

Finally, for the satisfiability checking task in the EL category, Chainsaw
processed the highest number of concepts (all 2,000) correctly while also being
second fastest with an average of 1s per concept. MORe with both Pellet and
HermiT also completed all 2,000 concepts within the given timeouts, while ELK
performed fastest on those 1,990 concepts it did process.

4.3 OWL 2 RL results

Only one profile-specific reasoner (BaseVISor) competed in the OWL 2 RL cat-
egory. Figure 3 shows the results for the three challenges in the RL profile cate-
gory. Out of the eleven competing reasoners, BaseVISor failed on a significantly
large number of ontologies in the classification challenge and processed only 34
of the 197 ontologies correctly. 17 of these failures were due to parsing errors,
ten were caused by timeouts that did not return any results, and the remaining
failures were due to incorrect results (according to our correctness check). The
winning reasoner here was TReasoner, which—despite being the second-slowest
reasoner in the group—correctly classified 181 of the 197 ontologies, while most
other reasoners correctly processed between 151 and 157 ontologies.

In the consistency checking task, Konclude correctly processed all 197 ontolo-
gies, while also performing significantly faster than the other reasoners. Finally,
the RL satisfiability category was won by both MORe versions, which correctly
processed all 1,970 concepts at an average speed of 0.7s per concept.

5 Results – Live competition

The live competition was performed using only the classification task in the
OWL 2 DL and EL categories, since this is the task supported by most reasoners.
The setup was slightly modified from that of the live competition: rather than
running the reasoners until they had processed all ontologies in the corpus, we
set a strict timeout of one hour for the EL classification task and two hours
for the DL classification task, and measured how many ontologies the reasoners
would successfully classify in the given time (applying the same five/six minute

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

11 of 139

 0

 50

 100

 150

 200

treasoner

konclude

trowl
wsclassifier

m
ore-herm

it

herm
it

fact
m

ore-pellet

jfact
chainsaw

basevisor

 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 1

97
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Classification OWL 2 RL Ontologies

Robustness
Avg. time (s)

181

157 157 157 156 156 154 154 151

130

34

13.9

0.2 0.6
2.4 1.5 1.6 0.7 1.3

9.4

25.1

0.8

 0

 50

 100

 150

 200

konclude

herm
it

chainsaw

fact
jfact

treasoner

basevisor

 0

 2

 4

 6

 8

 10

 12

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 1

97
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Consistency OWL 2 RL Ontologies

Robustness
Avg. time (s)

197 196 195 195 190 189

168

0.14
0.6 0.6 0.7

7.3

2.1

3.7

 0

 500

 1000

 1500

 2000

m
ore-herm

it

m
ore-pellet

konclude

herm
it

treasoner

chainsaw

fact
jfact

 0

 2

 4

 6

 8

 10

 12

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 1

97
0)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Class Satisfiability OWL 2 RL Ontologies

Robustness
Avg. time (s)

1970 1970 1964 1960 1960 1959 1950 1890

0.7 0.7
0.2

0.7

2.4

0.3
0.7

7.3

Fig. 3: Results (robustness/average time) for the OWL 2 RL category.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

12 of 139

 0

 50

 100

 150

 200

wsclassifier

konclude

treasoner

m
ore-herm

it

m
ore-pellet

fact
herm

it

jfact
chainsaw

trowl

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

21
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Classification OWL 2 DL Ontologies (live)

Robustness
Avg. time (s)

153
141

115
104

82 82
68

50

33
265.1

1.4

11.7

7.4

1.8

11.5 11.3

22.7

37.8

10.8

Fig. 4: Results (robustness/average time) for the live competition DL category.

timeout per ontology as in the offline competition). As mentioned above, the
live competition was performed on Set B, which was entirely different for the
DL category, but nearly identical (due to the small number of available EL
ontologies) to Set A in the EL category. That is, we expected the results for the
DL category to differ from the offline competition, while the results for the EL
competition would be largely identical.

The live competition was held on the second day of the Description Logic
2013 workshop, allowing workshop participants to place bets on the reasoner
performance, while the current status for each reasoner (number of attempted
and number of successfully classified ontologies) was shown and continuously
updated on a screen.

5.1 OWL 2 DL classification results

Due to the use of the different test corpus (Set B) in the live competition, we
expected a slightly different outcome from the offline competition. And indeed,
the winning reasoner (in terms of number of correctly processed ontologies) was
WSClassifier, which had shown an average performance in the offline compe-
tition. WSClassifier processed 153 out of the 221 ontologies in the test corpus,
with an average time of 5.1s per ontology, while the reasoner in second place was
Konclude, with 141 ontologies and an average time of 1.4s per ontology. Figure 4
shows an overview of the number of processed ontologies and classification times
in the DL category.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

13 of 139

 0

 50

 100

 150

 200

elk m
ore-herm

it

m
ore-pellet

herm
it

wsclassifier

konclude

trowl
snorocket

jcel
fact

elephant

jfact
treasoner

chainsaw

 0

 5

 10

 15

 20

 25

 30

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

(o
ut

 o
f 2

00
)

A
ve

ra
ge

 ti
m

e
pe

r
so

lv
ed

 p
ro

bl
em

 (
s)

Classification OWL 2 EL Ontologies (live)

Robustness
Avg. time (s)196 196 194 193 193

185
178

168
162

149 144

99

47
36

0.5

2.9 2.8 2.9 3.1

0.6
1.6 2.0

4.4 3.7

0.1

6.4

25.0

7.6

Fig. 5: Results (robustness/average time) for the live competition EL category.

5.2 OWL 2 EL classification results

The number of processed ontologies and mean classifications for all reasoners
participating in the EL live competition can be found in Figure 5. Perhaps
unsurprisingly, in the EL classification challenge the results were very similar
to the offline challenge, with ELK classifying 196 out of the 200 ontologies at
an average speed of 0.5s per ontology. Again, ELepHant was clearly the fastest
reasoner with less than 0.1 seconds per ontology, but it also failed on 56 of the
200 ontologies.

6 Results – User-submitted ontologies

As with the live competition, the results for the user-submitted ontologies pre-
sented here are limited to the classification task, as we consider this to be the
most relevant (TBox) reasoning task which is supported by all reasoners in the
competition. Note that due to the high number of timeouts and errors on some
of these ontologies, the correctness of the successful reasoners could not be de-
termined.

6.1 OWL 2 DL classification results

In total, 66 user-submitted ontologies fell into the OWL 2 DL profile, which
included the three modified versions of FMA and GALEN discussed above, two
versions of the Genomic CDS knowledge base (CDS and CDS-demo), 58 different
variants of the Bio KB 101 ontology (of which four were considered to be the
most challenging by the ontology developers), and three of the DMOP ontologies.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

14 of 139

Except for Chainsaw and TReasoner, all reasoners could successfully classify
54 of the Bio KB ontologies within the five minute timeout, while none of the
reasoners processed any of the four ‘hard’ Bio KB ontologies within the timeout.

The only reasoners that could process both Genomic CDS ontologies were
TrOWL and WSClassifier (at an average time of approximately 3 and 8 seconds),
while FaCT++ also managed to classify the complete Genomic CDS in 100
seconds. Interestingly, HermiT was the only reasoner to report that the Genomic
CDS ontology was inconsistent.

TrOWL and WSClassifier were also the only reasoners to classify the FMA
and GALEN modifications within the timeout (perhaps unsurprisingly, since
WSClassifier was tuned to work with these ontologies), while both Chainsaw
and FaCT++ successfully processed the two GALEN versions, and MORe-Pellet
processed the GALEN-FNL version in 14 seconds. For the remaining ontologies,
all reasoners except FaCT++ and TrOWL reported datatype errors.

At an average of 0.17 seconds per processed ontology, Konclude was clearly
fastest, while most other reasoners also managed average times of less than five
seconds for the ontologies they processed correctly.

6.2 OWL 2 EL classification results

There were 19 user-submitted OWL 2 EL ontologies, 18 of which were variants
of the Bio KB 101 ontology, and the FTC knowledge base. Neither Chainsaw
nor ELepHant could process any of the Bio KB ontologies within the five minute
timeout, while ELK reported a parsing error. The remaining reasoners, except
Snorocket, processed all 18 Bio KB ontologies correctly within the timeout, with
Konclude being fastest at 0.1 seconds per ontology.

ELK, Konclude, and WSClassifier all successfully processed the FTC KB,
with ELK clearly being fastest at five seconds (it did, however, ignore three Ob-
jectPropertyRange axioms which are outside the OWL 2 EL fragment supported
by ELK), and the other two reasoners taking between 20 and 30 seconds. The
remaining reasoners either timed out or reported an error for this ontology.

6.3 OWL 2 RL classification results

All 18 ontologies in the OWL 2 RL profile were variants of Bio KB 101. BaseVI-
Sor failed to parse the input on all files, while Chainsaw timed out on 15 of the
ontologies. The remaining reasoners all classified the ontologies correctly within
the five minute timeout, with Konclude processing the ontologies at an average
of 0.15 seconds.

7 Summary

In this report we presented an overview of the methodology and results of the
ORE reasoner competition for the different categories, OWL 2 profiles, and test
corpora. There were a total of 14 OWL reasoners submitted for participation

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

15 of 139

in the competition, which made it all the more successful. Out of these, 5 were
profile specific reasoners (4 OWL 2 EL and 1 OWL 2 RL) while 9 were OWL 2
DL reasoners or supported a large fragment of SROIQ(D) not included within
the OWL 2 EL, RL or QL profiles. The reasoners were evaluated with a random
sample of ontologies from known repositories, on three standard reasoning tasks:
classification, consistency checking, and concept satisfiability. In the competition
we gave preference to how robust the systems were, that is, the number of tests
correctly passed within the given timeout, rather than reasoning times alone.
The top 3 reasoners for each category are listed below:

OWL 2 DL Ontologies

– Classification: (1) HermiT (2) MORe-HermiT/MORe-Pellet (3) Konclude
– Consistency: (1) Konclude (2) FaCT++ (3) Chainsaw
– Satisfiability: (1) Konclude (2) MORe-Pellet/MORe-HermiT (3) TReasoner
– Classification (live): (1) WSClassifier (2) Konclude (3) TReasoner

OWL 2 EL Ontologies

– Classification: (1) ELK (2) WSClassifier (3) MORe-HermiT
– Consistency: (1) ELK (2) HermiT (3) Konclude
– Satisfiability: (1) Chainsaw (2) MORe-Pellet (3) TrOWL
– Classification (live): (1) ELK (2) MORe-HermiT/MORe-Pellet (3) HermiT

OWL 2 DL Ontologies

– Classification: (1) TReasoner (2) Konclude (3) TrOWL
– Consistency: (1) Konclude (2) HermiT (3) Chainsaw
– Satisfiability: (1) MORe-HermiT/MORe-Pellet (2) Konclude (3) HermiT

Additionally, the MORe and ELepHant reasoners were also given a special
recognition prize. MORe was selected as the best newcomer reasoner since it
consistently performed well in terms of time and robustness. The ELepHant
reasoner, although it struggled with a high number of errors, was incredibly fast
for the ontologies that it was able to classify correctly, and so was awarded a
special mention. We look forward to seeing the evolution of these novel reasoners.

Regarding the user-submitted ontologies, it is interesting to see that most
reasoners could either process all or none of the Bio KB ontologies. When they
did process them, the classification times were fairly uniform. The results for the
GALEN and FMA modifications, which were specifically developed for testing
with WSClassifier, confirmed the robustness of the reasoner on these ontologies;
however, the other two reasoners which could process the GALEN modifications
(Chainsaw and FaCT++) were significantly faster within the timeout. Our ex-
periments on the Genomic CDS ontologies confirmed the reports of the ontol-
ogy developer [20] who found that out of the now ‘mainstream’ reasoners, only
TrOWL could process the ontology in reasonable time, while HermiT (falsely)
reported an inconsistency error. While we have seen that WSClassifier could also
process the ontology, the correctness of the classification result is unclear, since
WSClassifier does not support qualified number restrictions which are heavily
used in Genomic CDS.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

16 of 139

Finally, we have only carried out our benchmark with a fixed timeout of five
minutes in the main offline and live competitions, which may have been too short
for some of these ontologies, e.g. the four ‘challenging’ Bio KB ontologies could
not be processed by any of the reasoners Thus, we are planning to re-run these
tests with longer timeouts in the near future.

Acknowledgements

We thank Konstantin Korovin (supported by the Royal Society grant RG080491)
at the University of Manchester who kindly provided us with the PC cluster for
the competition. We also thank the developers of the submitted reasoners and on-
tologies for their invaluable effort. We also gratefully acknowledge the support of
the ORE workshop sponsor: B2i Healthcare (https://www.b2international.
com/). Ernesto Jimenez-Ruiz was supported by the Seventh Framework Program
(FP7) of the European Commission under Grant Agreement 318338, ‘Optique’,
and the EPSRC projects Score!, ExODA and MaSI3.

References

1. Armas Romero, A., Cuenca Grau, B., Horrocks, I., Jiménez-Ruiz, E.: MORe: a
Modular OWL Reasoner for Ontology Classification. In: OWL Reasoning Evalua-
tion Workshop (ORE) (2013)

2. Chaudhri, V.K., Wessel, M.A., Heymans, S.: KB Bio 101: A Challenge for OWL
Reasoners. In: 2nd OWL Reasoner Evaluation Workshop (ORE) (2013)

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler,
U.: OWL 2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)

4. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to
ontology classification. J. of Web Semantics 10(1) (2011)

5. Golbeck, J., Fragoso, G., Hartel, F.W., Hendler, J.A., Oberthaler, J., Parsia, B.:
The National Cancer Institute’s Thésaurus and Ontology. J. Web Sem. 1(1), 75–80
(2003)

6. Gonçalves, R.S., Parsia, B., Sattler, U.: Categorising logical differences between
OWL ontologies. In: ACM Conference on Information and Knowledge Management
(CIKM) (2011)

7. Grigoryev, A., Ivashko, A.: TReasoner: System Description. In: 2nd OWL Reasoner
Evaluation Workshop (ORE) (2013)

8. Horridge, M., Bechhofer, S.: The OWL API: A java api for owl ontologies. Semantic
Web 2(1), 11–21 (2011)

9. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Sem. 1(1), 7–26 (2003)

10. Horrocks, I., Yatskevich, M., Jiménez-Ruiz, E. (eds.): Proceedings of the 1st In-
ternational Workshop on OWL Reasoner Evaluation (ORE), CEUR Workshop
Proceedings, vol. 858. CEUR-WS.org (2012)

11. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of EL ontolo-
gies. In: International Semantic Web Conference (ISWC). pp. 305–320 (2011)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

17 of 139

12. Keet, C.M., Lawrynowicz, A., d’Amato, C., Hilario, M.: Modeling issues and
choices in the Data Mining OPtimization Ontology. In: OWL: Experiences and
Directions (2013)

13. Matentzoglu, N., Bail, S., Parsia, B.: A corpus of owl dl ontologies. In: 26th Inter-
national Workshop on Description Logics (DL). pp. 829–841 (2013)

14. Mendez, J.: jcel: A Modular Rule-based Reasoner. In: 1st OWL Reasoner Evalua-
tion Workshop (ORE) (2012)

15. Metke Jimenez, A., John Lawley, M.: Snorocket 2.0: Concrete Domains and Con-
current Classification. In: 2nd OWL Reasoner Evaluation Workshop (ORE) (2013)

16. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
web ontology language profiles. W3C Recommendation (2009)

17. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Rubin, D.L., Storey, M.A.D., Chute, C.G., Musen, M.A.: Bioportal: ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research 37(Web-
Server-Issue), 170–173 (2009)

18. Rector, A.L., Rogers, J.E., Zanstra, P.E., Van Der Haring, E., Openg: Open-
GALEN: open source medical terminology and tools. AMIA Annu Symp Proc
(2003)

19. Rosse, C., Mejino Jr., J.: A reference ontology for biomedical informatics: the
Foundational Model of Anatomy. J. Biomed. Informatics 36(6), 478–500 (2003)

20. Samwald, M.: Genomic CDS: an example of a complex ontology for pharmacoge-
netics and clinical decision support. In: 2nd OWL Reasoner Evaluation Workshop
(ORE) (2013)

21. Schulz, S., Cornet, R., Spackman, K.A.: Consolidating SNOMED CT’s ontological
commitment. Applied Ontology 6(1), 1–11 (2011)

22. Sertkaya, B.: The ELepHant Reasoner System Description. In: 2nd OWL Reasoner
Evaluation Workshop (ORE) (2013)

23. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-Based Reasoning beyond
Horn Ontologies. In: 22nd International Joint Conference on Artificial Intelligence
(IJCAI). pp. 1093–1098 (2011)

24. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL DL reasoner. J. of Web Semantics 5(2), 51–53 (2007)

25. Song, W., Spencer, B., Du, W.: A Transformation Approach for Classifying
ALCHI(D) Ontologies with a Consequence-based ALCH Reasoner. In: 2nd OWL
Reasoner Evaluation Workshop (ORE) (2013)

26. Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: Tractable OWL 2 Reasoning Infrastruc-
ture. In: 7th Extended Semantic Web Conference (ESWC). pp. 431–435 (2010)

27. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Third International Joint Conference on Automated Reasoning (IJCAR).
pp. 292–297 (2006)

28. Tsarkov, D., Palmisano, I.: Chainsaw: a Metareasoner for Large Ontologies. In: 1st
OWL Reasoner Evaluation Workshop (ORE) (2012)

29. Wrigley, S.N., Garcia-Castro, R., Nixon, L.J.B.: Semantic Evaluation At Large
Scale (SEALS). In: The 21st World Wide Web Conf., WWW (Companion Volume).
pp. 299–302 (2012), http://www.seals-project.eu

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

18 of 139

YARR!: Yet Another Rewriting Reasoner

Joerg Schoenfisch and Jens Ortmann

Softplant GmbH, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
{joerg.schoenfisch, jens.ortmann}@softplant.de

Abstract. In this paper we present our implementation of an OWL2QL
reasoner using query rewriting to answer SPARQL queries in a relational
database. To answer queries in the database through rewriting, ontolo-
gies are limited to the OWL2QL profile. The rewriting algorithm inter-
nally produces a non-recursive Datalog program from the given SPARQL
query. This program is then translated to SQL and executed by the
database.

Keywords: reasoning, query rewriting, Presto, OWL2QL

1 Introduction

In this paper we present YARR, our implementation of a reasoner using query
rewriting which is part of the Living Semantic Platform [10]. The platform con-
sists of a relational database as storage for ontologies, an importer for OWL2QL1

and RDF2 data, a web-based GUI to edit the knowledge base, and our reasoner.
YARR exposes a SPARQL3 endpoint and answers queries through the database.

To enable processing of semantic queries by a relational database some re-
strictions apply and several steps are performed. The ontologies stored in the
database are limited to the expressiveness of the OWL2QL profile which is
specifically designed to facilitate query answering through query rewriting and
processing in a relational database.

Query rewriting is employed to retrieve complete and sound answers from the
database. The rewriting which incorporates knowledge from the TBox into the
query to also enable extraction of implicit knowledge from the ABox takes place
in three steps. First, the SPARQL query is parsed and translated to Datalog.
Second, this query is then rewritten into a non-recursive Datalog program to
include the knowledge from the TBox. Third, the program is translated to SQL
and executed in the database system.

YARR fully supports ontologies formulated in OWL2QL and most of the
SPARQL1.1 SELECT syntax. Some built-ins and complex mathematical ex-
pressions in FILTER and ORDER BY clauses still have to be implemented.
Furthermore, there is no reasoning on datatypes.

1 http://www.w3.org/TR/owl2-profiles/
2 http://www.w3.org/TR/rdf-primer/
3 http://www.w3.org/TR/sparql11-overview/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

19 of 139

II

2 Related Work

The OWL2QL profile is based on the description logic DL-Lite [1]. Calvanese et
al. [1] proposed PerfectRef as one of the first rewriting algorithms. A second, pop-
ular rewriting algorithm is REQUIEM [6], of which an optimized version called
Blackout [7] is used in Stardog4. Pérez-Urbina et al. also provide an overview
over other rewriting algorithms, for instance Nyaya [5], Clipper [4], Rapid [3],
Presto [9] and Prexto [8].

YARR is based on the Presto algorithm, which produces a non-recursive
Datalog program.

3 Query Rewriting

Query rewriting is the process of transforming a query over a knowledge base in
such a way that it produces sound and complete answers without the need for
any reasoning in the knowledge base itself. In the case of OWL2QL and similar
description logics this means that the query is expanded with knowledge from
the TBox so that implicit knowledge can be extracted from the ABox without
the need for any information about the ABox itself. This is achieved by limiting
the expressiveness of the description logic. A thorough overview is given in the
description of the DL-Lite family by Calvanese et al. [2].

An opposing approach to this is materialization. Here, all knowledge that can
be inferred from known facts is explicitly stored when the data is loaded. Thus,
no reasoning is needed later on, as long as the data is not modified. If the data
is modified the materialization has to be computed anew which can be quite
expensive, e.g. when removing a subclass-of relation, the class assertion with the
super class has to be removed from every single instance of the subclass.

There are three reasons why we chose query rewriting in our implementation.
First, rewriting allows the query to be processed by regular RDBMS, which
are readily available in enterprise environments and require well-known effort
concerning administration, maintenance, backup, etc.

The omission of a reasoning step in the ABox during query answering is the
second point in favor of query rewriting. This way, changes in the ABox, which
might happen quite frequently due to the collaborative setting in which we want
to deploy YARR, can directly be reflected in the answers to a query.

Third, in an ontology-based data access scenario it is often not feasible or
possible to modify or expand the ABox due to its size or missing write permis-
sions.

Presto rewrites a Datalog query in three major steps. The first step splits
each Datalog rule into its independent join components. This produces more,
smaller Datalog rules, resulting in smaller rewritings in the end. This is beneficial
as every Datalog rule is later translated to SQL and must be processed by the
RDBMS. Thus, smaller rewritings positively affect the speed of query answering.

4 http://stardog.com/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

20 of 139

III

The second step removes redundant rules. These rules would produce answers
other rules already did, so there is no need to rewrite, translate and execute
them. An example would be two rules, one asking for all individuals, and the
other asking for individuals of a specific type. The individuals of a specific type
are already included in all individuals, and thus the specific rule is superfluous.

The last step defines TBox views for each concept and role, e.g. a view for a
concept would be the union of all individuals directly of this type or of the type
of one of its subclasses.

As an example, the simple SPARQL query that selects all triples is translated
to a single Datalog rule with one atom, and results in an SQL query consisting
of a union over 3 sub-selects with 3 joins each. If the rewriting step is left out,
the size of the SQL grows linearly with the number of triple patterns in the
SPARQL query.

4 Architecture

The two major parts of YARR’s architecture are on the one hand the steps
and libraries involved to transform and rewrite a query from SPARQL to the
corresponding SQL, and the database architecture on the other hand.

Other parts include the import and export functionality for which we utilize
the OWL API5 to parse and write OWL documents, and consistency checking
which is currently transferred to Jena6. Jena is the only reasoner freely available
for commercial use. However, it does not officially support OWL2 as of yet and
its performance is behind that of other reasoners like Pellet or HermiT.

4.1 Rewriting Architecture

The rewriting takes place in several steps, along which our architecture is split.
We try to use existing libraries as much as possible for the steps not directly
related to the rewriting.

The first step is the parsing of the SPARQL query and its translation to our
internal Datalog model. We are using the parser implementation of Sesame7.
Their parser produces an abstract model of the query which we translate to
Datalog rules. The rules incorporate some additional information, e.g. aggre-
gate functions or mathematical expressions for FILTER clauses, which are not
directly represented in Datalog.

These rules are then passed on to the Presto algorithm, which is a straightfor-
ward implementation of the rewriting procedure described by Rosati et al. [9].
The resulting Datalog program includes all the knowledge needed to produce
sound and complete answers to the query.

The process is finished after the final translation from Datalog to SQL. To
gain some syntax and type checking, and to be as agnostic to the underlying

5 http://owlapi.sourceforge.net/
6 http://jena.apache.org/
7 http://www.openrdf.org/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

21 of 139

IV

database systems as possible, we us jOOQ8, a domain specific language for SQL
in Java. Each rule of the Datalog program is translated to an SQL query. The
queries are then aggregated into a single query as subqueries. This SQL query
can then be passed to the database to retrieve the answers.

4.2 Database Design

Our database design is loosely based on the way in which facts are stated in
OWL. Overall, it consists of 22 tables. There are individual tables for each type
of assertions, for subclass and subproperty axioms, disjointness and equivalency
axioms, range and domain axioms, literals, and one table for all types of entities
(classes, properties, and individuals).

Another quite obvious choice would have been a design which follows the
structure of RDF. There would have been one (or to optimize for performance
several partitioned) table(s) storing only triples. In fact, this is the layout several
triple stores, like Sesame, Jena, or OWLIM, chose. However, as our reasoner is
part of a platform that focuses on OWL semantics and also offers an editor,
historization, and versioning, we opted for the initially more complex layout to
ease these other tasks.

5 Expected Performance

We conducted a benchmark to compare YARR to state-of-the-art triple stores.
As benchmark we chose SP2Bench9 and various sizes of the data. The other
stores we used for comparison are OWLIM-Lite 5.210 and Stardog 1.0.7 Com-
munity Edition. OWLIM uses a materialization approach, which means all in-
ferences are computed and stored before a query is processed. Stardog uses a
query rewriting algorithm similar to our approach.

Figures 1 and 2 show a comparison to OWLIM and Stardog for different sizes
of SP2Bench (10k, 250k, and 5M triples). This benchmark was run on a desktop
machine with a Intel Core 2 Duo at 3 GHz and 8GB RAM. As database backend
for YARR we used Oracle 11g Express Edition11. Note that to make for a fair
comparison the times include the time needed to send the results to the client.

Most of the time that YARR needs for query answering is spent by the
RDBMS for query planning, processing and result serialization. The overhead
of the rewriting step, and the translation from SPARQL to Datalog and SQL is
negligible for larger datasets and complex queries (well below 50ms).

The diagram clearly shows that our implementation behaves similarly in
terms of scalability as OWLIM and Stardog. We have some disadvantages for
very fast queries due to the rewriting step and the translation to SQL, and the
round-trip to the database (Queries 1, 12c). Although the database is hosted on

8 http://www.jooq.org/
9 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B

10 http://www.ontotext.com/owlim
11 http://www.oracle.com/technetwork/products/express-edition/overview/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

22 of 139

V

1 2 3a 3b 3c 4 5a 5b 6

10k LSP 0,0167 0,8453 0,0383 0,0157 0,0140 37,8023 0,1647 1,1867 0,2933

10k OWLIM 0,0010 0,0067 0,0047 0,0020 0,0020 15,3383 2,5103 0,3570 4,4750

10k Stardog 0,0210 0,0370 0,0233 0,0200 0,0160 0,1137 0,1723 0,0267 0,0557

250K LSP 0,0313 2,6503 0,3000 0,0310 0,0317 1800,0000 1,2663 2,9617 2,2693

250k OWLIM 0,0013 0,2200 0,0417 0,0260 0,0260 1800,0000 1800,0000 360,8620 1800,0000

250k Stardog 0,0167 0,1630 1,7893 0,0193 0,0237 1,7873 203,2773 0,3327 20,0597

5M LSP 0,3380 78,3443 5,2533 0,3317 0,3733 1800,0000 26,6530 40,6263 64,5100

5M OWLIM 0,0140 9,6743 0,5257 0,3077 0,3097 1800,0000 1800,0000 1800,0000 1800,0000

5m Stardog 0,0277 35,1750 3,9043 0,0217 0,0183 117,5650 1800,0000 7,2007 1617,1033

0,0001

0,0010

0,0100

0,1000

1,0000

10,0000

100,0000

1000,0000

10000,0000

s
e
c

Fig. 1. Benchmark SP2Bench Queries 1 - 6

7 8 9 10 11 12a 12b 12c

10k LSP 0,4143 36,9597 0,5450 0,0067 0,0147 0,0863 35,9443 0,0027

10k OWLIM 3,8273 0,0093 0,0357 0,0003 0,0137 0,3727 0,0033 0,0003

10k Stardog 0,0233 0,0927 0,0193 0,0167 0,0203 0,4457 0,1103 0,0100

250K LSP 0,5723 21,6380 1,5933 0,0170 0,0957 0,3947 21,7037 0,0027

250k OWLIM 1800,0000 0,0773 0,9390 0,0007 0,3207 302,2110 0,0703 0,0003

250k Stardog 0,0833 0,4183 0,0613 0,0057 0,0503 204,4030 0,5690 0,0123

5M LSP 41,4237 533,6507 43,1820 0,1153 1,5877 4,7917 427,6407 0,0030

5M OWLIM 1800,0000 1,1983 45,1623 0,0010 7,5273 1800,0000 1,1003 0,0003

5m Stardog 0,5690 0,6397 1,4493 0,0213 0,8983 1800,0000 0,9240 0,0133

0,0001

0,0010

0,0100

0,1000

1,0000

10,0000

100,0000

1000,0000

10000,0000

s
e
c

Fig. 2. Benchmark SP2Bench Queries 7 - 12

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

23 of 139

VI

the same machine it is running in a different process outside the JVM and has
to be accessed over the network which is considerably slower than to access a
database in the same process.

However, more importantly, we are on par with OWLIM’s performance for
some queries on the larger datasets (Queries 3b, 3c, 9) and sometimes consider-
ably faster (Queries 5a, 5b, 6, 7, 11, 12a). For six of these OWLIM is not able
to complete the request within the 30 minutes timeout that SP2Bench imposes
on reasoners, whereas this only happens for one query in YARR (Query 4).

The comparison to Stardog shows similar results. The overall impression is
that Stardog performs slightly better than the other two. It is especially fast on
query 4, where it is the only reasoner without a timeout, and queries 7 and 9,
but also seems to have some penalty if the result of the query can be computed
very fast (Queries 1, 10, 12c).

Further investigation is needed to determine the source for YARRs slow per-
formance on the remaining queries (Queries 2, 3a, 8, 10, 12b). Possible reasons
are bad query plans, missing indexes, or queries inherently hard for relational
database systems.

We also did benchmarks for different database backends, i.e. Oracle, Post-
gres12, HSQLDB13 and H214. Oracle and Postgres showed comparable perfor-
mance for all benchmarks. The tests on HSQLDB and H2 were only done in-
memory and for small datasets, so the performance values we have for those are
not conclusive, yet. However, it was quite surprising that for some queries, H2
was not able to find a query plan for the SQL and did not produce any results.

6 Future Work and Conclusion

We presented our implementation of an OWL2QL reasoner using the Presto
algorithm to answer SPARQL queries in a relational database. The first bench-
marks we conducted to compare it to state-of-the-art triple stores are promising.
We still have planned further optimization but we already expect our reasoner
to compete well with other implementations.

Our future work is focused on a more thorough support of SPARQL1.1,
mainly for SELECT, ASK and CONSTRUCT queries. Built-ins defined by the
recommendation will also be implemented as the need for them arises.

Furthermore, we have planned several optimizations, e.g. caching of TBox
statistics to reduce the size of the SQL queries or to improve the join order.

In a wider perspective there is ongoing work to implement adapters for
ontology-based data access (OBDA) to support arbitrary database schemes. One
possibility herein is the use of R2RML15, which provides a mapping language
from relational schemas to RDF.

12 http://www.postgresql.org/
13 http://hsqldb.org/
14 http://www.h2database.com/html/main.html
15 http://www.w3.org/TR/r2rml/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

24 of 139

VII

References

1. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Dl-lite: Tractable description logics for ontologies. In Pro-
ceedings of the National Conference on Artificial Intelligence, volume 20, page 602.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

2. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The dl-lite family. Journal of Automated reasoning, 39(3):385–429,
2007.

3. Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Optimized query
rewriting for owl 2 ql. In Automated Deduction–CADE-23, pages 192–206. Springer,
2011.

4. Thomas Eiter, Magdalena Ortiz, M Simkus, Trung-Kien Tran, and Guohui Xiao.
Towards practical query answering for horn-shiq. Description Logics, 846, 2012.

5. Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Ontological queries: Rewriting
and optimization. In Data Engineering (ICDE), 2011 IEEE 27th International
Conference on, pages 2–13. IEEE, 2011.

6. Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable query answer-
ing and rewriting under description logic constraints. Journal of Applied Logic,
8(2):186–209, 2010.

7. Héctor Pérez-Urbina, Edgar Rodrıguez-Dıaz, Michael Grove, George Konstantini-
dis, and Evren Sirin. Evaluation of query rewriting approaches for owl 2. In Joint
Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+
HPCSW 2012), page 32, 2012.

8. Riccardo Rosati. Query rewriting under extensional constraints in dl-lite. In Pro-
ceedings of the international workshop on description logics, DL-2012, 2012.

9. Riccardo Rosati and Alessandro Almatelli. Improving query answering over dl-lite
ontologies. Proc. of KR, 2010, 2010.

10. Joerg Schoenfisch, Florian Lautenbacher, Julian Lambertz, and Willy
Chen. Living Semantic Platform. 10th International Semantic
Web Conference - Industry Track, 25 October 2011. Available at
http://www.softplant.de/innovation/konferenzteilnahmen.html.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

25 of 139

TReasoner: System Description

Andrey V. Grigorev and Alexander G. Ivashko

Tyumen State University,
Semakova. 18, 625003 Tyumen, Russian Federation

{ivashco,107th}@mail.ru

Abstract. TReasoner is a reasoning system supporting the SHOIQ(D)
logic expressiveness, which forms the basis of the OWL DL language.
The TReasoner was developed for using in the enterprise architecture
verification expert systems, but the OWL API package allows to use
the system for performing ontology operations. The reasoner implements
a tableau algorithm and optimization techniques, some of them were
developed and were used for the first time. This description also contains
an assessment of the developed system efficiency.

Keywords: Description Logic, OWL, Tableau Algorithm, Reasoner, Clas-
sification

1 Introduction

Ontologies are a powerful tool of knowledge representation, which became very
popular for using by expert systems [8]. First of all because of the fact that
they are based on the description logic formalism, which has a formally defined
semantics allowing to develop tableau algorithm for a logic inference. OWL [13]
is the basic ontology representation language recommended by the W3C consor-
tium. Nowadays the OWL 2 standard is valid. The OWL DL language uses the
SHOIN [1] description logic with support of data values.

To date many OWL reasoning systems such as FaCT++ [15], HermiT [7] (for
OWL DL), jcel [11], ELK [10] (for OWL 2 EL) were developed, they implement
different algorithms for a logic inference.

The article introduces a new OWL Reasoner. The TReasoner is SHOIQ(D)
reasoner implementing tableau algorithm with some novel optimization tech-
niques. TReasoner is free distributed by GNU General Public License v2. Source
code of the TReasoner, compiled class library and wrapper for system usage are
available at http://treasoner.googlecode.com.

This system description has the following structure. Section 2 provides a
supported language and an implemented algorithm. Section 3 contains informa-
tion about architecture, implementation and optimization techniques that are
used by the TReasoner. Results of the system testing are described in section 4.
Section 5 concludes this work.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

26 of 139

2 Andrey V. Grigoryev, Alexander G. Ivashko

2 Supported Language Subset and Implemented
Reasoning Algorithm

The TReasoner allows to perform a concept satisfiability checking, a consistency
checking and a classification on OWL ontologies that use the SHOIQ(D) de-
scription logic. It means that the system works correctly with concepts described
by the disjunction, the conjunction, the existential quantifier and the universal
quantifier. Besides, the SHOIQ allows roles to be transitive and inverse to other
roles. There may be concepts consisting of one individual (nominal), at the same
time the SHOIQ is extended by number restrictions (n ≤ R.C or n ≥ R.C).
D letter at SHOIQ(D) logics allows to describe knowledge with support of
datatypes (strings, numbers, dates and etc.).

The TReasoner implements the tableau algorithm [6]. The concept satisfia-
bility checking is carried out through graph-model existence checking.

The tableau algorithm for SHOIQ has NExpTime complexity, but the de-
veloped system implements different new and old optimization techniques, which
allow to significantly reduce worktime in practice.

3 Architecture and Implementation

The TReasoner was developed using the Java language, because of the cross-
platform portability. The system consists of 6 packages. The RuleGraph package
implements data structures for the inner representation of concepts. Also this
package implements algorithms for the concepts simplification and the axiom
simplification. TBox, ABox and RBox axioms are contained in KnowledgeBase
package classes. The OWL API package is used for loading the OWL ontolo-
gies and transforming them to inner system representation. Main package is
Checker. It contains classes that implement tableau algorithm and optimization
techniques for it. Checker package classes use Interpretation package classes,
which implement data structures for the interpretation building. All packages use
classes of the Help package, which implements different supporting algorithms
and data structures such as binary heap, hash-table, etc. The UML package
diagram is presented on the Fig. 1.

The TReasoner implements optimization techniques, which can be divided
into 3 groups:

1. Preprocessing optimizations;
2. Tableau algorithm optimizations;
3. Classification optimizations.

The system uses both time-tested and newly developed optimizations.

3.1 Optimization Techniques

Preprocessing optimizations are used by the ontologies transformation to inner
structures, which are understandable by the TReasoner. Also they are used for

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

27 of 139

TReasoner: System Description 3

Fig. 1. The structure of packages of the TReasoner system

the transformation of GCIs and equivalence axioms. For the concept represen-
tation the system uses direct acyclic graph (DAG), each vertex of the graph
corresponds to some operation or quantifier, and neighbours of this vertex are
operands of the operation, in addition each vertex in the DAG has a number
that uniquely identifies it. To reduce memory usage, same concepts are repre-
sented by only one subgraph. For each vertex (in order of height increasing), a
hash-function value is calculated, this function consider unique numbers of all
neighbours, operation type of the vertex, unique number of a role and number
restriction (for existential and universal quantifiers, and for number restriction
operations). If this function value doesn’t exists in hash-table, the vertex with
its hash-function value will be added to hash-table. If function value is found
then all edges which enter to this vertex will change its direction to vertex with
corresponding value of hash-function that contained in hash-table.

To reduce memory usage, removal of brackets technique was developed. The
algorithm is performed in two runs. In first run, for each vertex v (in order of
height increasing) that represent a concept, set of concepts H(v) is calculated.
Concepts of this set defined as follows:

1. If current graph vertex v represents atomic cocnept C, then H(v) set contains
two elements: C and >;

2. If current graph vertex v represents u-cocnept then H(v) set contains el-
ements of H(u1) t H(u2) t ... t H(uk) for all ui which are neighbours of
v;

3. If current graph vertex v represents t-cocnept then H(v) set contains el-
ements of H(u1) u H(u2) u ... u H(uk) for all ui which are neighbours of
v;

In second run, vertexes are considered in order of height decreasing, each vertex
is transformed to u-vertex with neighbours of all concepts from H(v) and itself

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

28 of 139

4 Andrey V. Grigoryev, Alexander G. Ivashko

vertex, so each concept of H(v) will be deleted from H(ui) for all ui which are
neighbours of v. For example, concept (((C u B) t (D u B)) u A) t (B u ((C u
A) t (E u C))) will be transformed to B u ((C u (A t E)) t (A u (C tD)))

After loading and preprocessing of concepts, a processing of axioms will be
performed. Absorption technique [5] is used for this task.

Tableau algorithm optimizations that are implemented in the TReasoner, include
such optimizations as backJumping [14], caching [3, 5] and global caching [12].
The system implements novel optimization techniques. The main of such tech-
niques is the SS-branching [9], which determine disjointness of concepts without
using of tableau algorithm. It is applicable not in every cases, but in wide range
of concepts. The SS-branching procedure determine disjointness of two concepts
by analyzing of structures of DAGs that represent its. For example, if concepts
C and D are conjunctions of other concepts (C ≡ C1 u C2 u ... u Cn, D ≡
D1 u D2 u ... u Dn) and some of the concepts Ci and Dj are disjoint, then C
and D are disjoint. Conditions of disjointness for cases when C and D are dis-
junctions, disjunction and conjunction, existential and unversal quantifiers were
identified. However, SS-branching can not to determine disjointness of concepts.
To cover wider class of concepts Bron-Kerbosch algorithm was used. For dis-
jointness checking of the concepts like E1 u E2 u ... u En, where every concept
Ei is a disjunction (EI ≡ F1 t F2 t ... t Fk). Such concepts will be presented of
n-partite form, where every vertex of the part presents Fj concept, so vertexes
form different parts will be connected, if corresponding concepts are disjointness.
Model existing checking of such concepts performed by using of Bron-Kerbosch
algorithm, which used for n-clique finding in n-partite graph.

Classification optimizations allow to reduce system worktime to perform the
classification operation. Enhanced traversal method [2] is used for the classifi-
cation, information about disjointness is extracted not only from subsumption
test, but during the concept satisfiability testing. During the construction of
model by tableau algorithm, labels of all individuals are checked in the presence
of concepts A and ¬B, though A and B are concept names. If those individuals
exist, then A 6v B, without performing A v B subsumption test.

4 System Performance Evaluation

The TReasoner system performance testing uses ontologies classification tests
that were used on the OWL Reasoner Evaluation Workshop 2012 and compares
the results received by HermiT (ver. 1.3.6) and FaCT++ (1.6.2) reasoners. They
implement hypertableau and tableau algorithms and support the SROIQ(D)
logic. Information about used ontologies is shown in table 1.

System testing results in comparison with other reasoners are shown in table
2. First column of the table contains name of used ontology, and every subse-
quent column shows time spent for ontology classification by the relevant system.
Testing was carried out on ASUS Notebook VX7SX Series Intel Core i7-2630QM
CPU@2.00 GHz 2.00 GHz; 6.00 GB RAM running under Windows 7.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

29 of 139

TReasoner: System Description 5

Table 1. Used ontologies

Ontology Logic Axioms Concepts Roles Individuals

obi SHOIN(D) 8530 1161 60 140
plant trait ALC 4317 976 1 3177
po temporal ALC 2839 284 1 2559
DLPOnts Information 397 SHOIN 1037 120 198 12
DLPOnts DOLCE-Lite 397 SHIF 351 37 70 0
DLPOnts Plans 397 SHOIN 1281 117 264 27
pathway ALC 1927 646 1 1160
protein ALCS 5821 1055 2 4768
quality ALCSH 4815 1980 13 2653
rex ALC 1725 555 2 991

Table 2. Testing results

Ontology TReasoner FaCT++ HermiT

obi 17,065 1,313 130,359
plant trait 1,035 0,099 0,228
po temporal 0,098 0,071 0,064
DLPOnts Information 397.owl.txt 5,177 0,94 11,443
DLPOnts DOLCE-Lite 397.owl.txt 0,045 0,13 0,4
DLPOnts Plans 397.owl.txt 5,515 0,167 217,667
pathway.owl 0,458 0,094 0,519
protein.owl 0,851 0,179 0,376
quality.owl 3,337 0,101 0,411
rex.owl 0,504 0,53 0,124

The resulting classification coincides to the reference classification provided
together with chosen ontologies.

5 Conclusion

This system description presents the new reasoning system, implemented algo-
rithms and implemented optimization techniques, which contribute to reduce
worktime of different ontologies operations (classification, concept satisfiability
checking, consistency checking). The developed system allows to perform logical
analysis for expressive SHOIN(D) logic that is used in OWL DL. This fact
allows to use TReasoner to perform operations on a wide class of ontologies.

The presented testing results show that TReasoner may not compete yet with
most popular systems such as HermiT and FaCT++ reasoners, but in future
implementation of tableau algorithm will be improved and reduce of system
worktime is expected.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

30 of 139

6 Andrey V. Grigoryev, Alexander G. Ivashko

In further researches improving of the TReasoner is expected in order to use
it not only as module of the enterprise architecture verification expert system,
but as self-dependent OWL reasoning system.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
CUP, 2003.

2. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, E. Franconi. An Empirical
Analysis of Optimization Techniques for Terminological Representation Systems
or Making KRIS get a move on* KR-92, pages 270-281, 1992

3. Y. Ding and V. Haarslev. Tableau caching for description logics with inverse and
transitive roles. In Proc. DL-2006: International Workshop on Description Logics,
pages 143-149, 2006.

4. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
Ontologies. Semantic Web 2(1): 11-21, 2011.

5. I. Horrocks. Optimising Tableaux Decision Procedures for DescriptionLogics. PhD
thesis, University of Manchester, 1997.

6. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In D. MacAllester, editor, Proc. of the CADE 2000, number 1831,
pages 482496. Springer-Verlag, 2000.

7. Ian Horrocks, Boris Motik, and Zhe Wang. The HermiT OWL Reasoner. OWL
Reasoner Evaluation Workshop. 2012.

8. A. Ivashko, E. Ivanova, E. Ovsyannikova, S. Kolomiyets. Applying DL for informa-
tion system architecture description. Vestnik of Tyumen State University, 98(4):
137-142, 2012.

9. A. Ivashko, A. Grigorjev, M. Grigorjev. Modification of tableau algorithm based
on checking disjointness of complex concepts. Vestnik of Tyumen State University,
98(4): 143-150, 2012.

10. Yevgeny Kazakov, Markus Krotzsch and Frantisek Simancik. ELK Reasoner: Ar-
chitecture and Evaluation. OWL Reasoner Evaluation Workshop. 2012.

11. Julian Mendez. jcel: A Modular Rule-based Reasooner. OWL Reasoner Evaluation
Workshop. 2012.

12. Linh Anh Nguyen. An Efficient Tableau Prover using Global Caching for the De-
scription Logic ALC. Artificial Intelligence, 93(1):273-288, 2009.

13. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL WebOntology Lan-
guage: Semantics and Abstract Syntax, W3C Recommendation, February 10 2004.
http://www.w3.org/TR/owl-semantics/.

14. P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Computa-
tional Intelligence. 9(3): 268-299, 1993.

15. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. IJCAR 2006, pages 292-297, 2006.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

31 of 139

Snorocket 2.0: Concrete Domains and
Concurrent Classification

Alejandro Metke-Jimenez and Michael Lawley

The Australian e-Health Research Centre
ICT Centre, CSIRO

Brisbane, Queensland, Australia
{alejandro.metke,michael.lawley}@csiro.au

http://aehrc.com

Abstract. Snorocket is a high-performance ontology reasoner that sup-
ports a subset of the OWL EL profile. In the newest version, additional
expressive power has been added to support concrete domains, enabling
the classification of ontologies that use these constructs. Also, the rea-
soning algorithm has been modified to support concurrent classification.
This feature is important because it enables the use of the full processing
power available in modern multi-processor hardware.

Keywords: ontology, classification, concrete domains, concurrent

1 Introduction

This paper presents Snorocket 2.0, a high-performance ontology reasoner based
on the CEL algorithm [6]. Snorocket was the first reasoner to provide ultra-
fast classification of SNOMED CT and support incremental classification [1].
The initial version is used in the IHTSDO workbench to support SNOMED CT
authoring and it is designed to work with a small heap footprint∗. Snorocket 2.0
is now an open source project available at GitHub†.

Some biomedical ontologies, such as SNOMED CT, have been built using
a subset of the OWL EL profile. Even though most of their content can be
correctly modelled using this subset, some concepts cannot be fully modelled
without concrete domains. For example, it is not possible to fully represent a
“Hydrochlorothiazide 50mg tablet” without using a data literal to represent the
quantity of the active ingredient. To overcome this limitation AMT v3, an ex-
tension of SNOMED CT used in Australia to model medicines, has recently
introduced concrete domains. This has motivated the inclusion of concrete do-
mains into the subset of constructs supported by Snorocket.

The development of extensions to SNOMED CT also means that ontology
reasoners should be able to support classification of larger ontologies. This has
motivated the implementation of a concurrent classification algorithm that al-
lows using the extra processing power available in multi-processor machines.

∗This was required to support 32-bit JVMs running on Windows machines.
†https://github.com/aehrc/snorocket

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

32 of 139

2

2 Background

The initial version of Snorocket was developed to support the fast classification
of SNOMED CT and therefore only included support for a limited number of
constructs. A table comparing the OWL EL constructs supported by Snorocket
and other EL reasoners is available on the Snorocket website‡.

Concrete domains are supported by several general tableaux-based reasoners
such as FaCT++ [8] and HermiT [9]. The only specialised EL reasoner that
currently supports concrete domains is ELK [4].

Concrete domains are used in AMT mainly to model quantities in the def-
inition of medicines. An OWL version of AMT v3 can be obtained by using
an updated version of the Perl script originally included in the SNOMED CT
distribution. An example of a typical axiom found in AMT is available on the
Snorocket website§.

Most of the commonly used reasoners, including FACT++ [8], HermiT [9],
CEL [6], and jCEL [7] are only capable of using a single processor. To our
knowledge, the only reasoner that has successfully implemented a concurrent
classification algorithm is ELK [4]. Because most modern hardware achieves
better performance by providing more than one processor or core, it is important
to be able to make use of this extra processing power.

3 Architecture

Figure 1 shows a high-level architecture diagram of Snorocket 2.0. The public
Snorocket API, shown inside the snorocket-core module, enables third party
applications to use the reasoner. The API uses a simple model to represent
ontologies. This model is vastly simpler than other publicly available ontology
models, such as OWL API, and excludes all the constructs not currently sup-
ported. This simplifies the usage of the public API. A more detailed description
of this model is available on the Snorocket website¶. All external formats, such
as OWL, RF1, and RF2, are transformed to and from this model. Additional
ontology formats can be supported by adding new importer-exporter modules.

The Snorocket API defines an interface, IReasoner, to perform several rea-
soning functions. The reasoner interface defined by OWL API, OWLReasoner, is
also implemented in the snorocket-owlapi module. Applications that want to
use the reasoner can use either one. SNOMED CT-specific applications can use
the RF1 and RF2 importer-exporter components to generate the axioms in our
simple ontology format from the distribution files. It is also possible to create
these axioms programatically. OWL ontologies are imported using OWL API
and transformed into our simple model using the OWL importer-exporter com-
ponent. A plugin for Protégé is also available in the snorocket-protege module.

‡http://aehrc.com/software/snorocket/index.html#constructs
§http://aehrc.com/software/snorocket/index.html#amtv3
¶http://aehrc.com/software/snorocket/index.html#model

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

33 of 139

3

Snorocket 2.0

ontology-import

RF1 Importer
Exporter

RF2 Importer
Exporter

OWL Importer
Exporter

snorocket-protege

Protégé

snorocket-core

Other 3rd
Party

Applications

Snorocket
API

ontology-model

uses

Internal
Model

uses

snorocket-owlapi

SNOMED CT
Applications

Fig. 1. Snorocket 2.0 architecture. The labels in bold refer to Maven modules.

4 Implementation

The current implementation of Snorocket is targeted at supporting the OWL
EL profile. It is implemented using Java and built using Maven. The following
sections describe the implementation details of the new features.

4.1 Concrete domains

In description logics a concrete domain is a construct that can be used to define
new classes by specifying restrictions on attributes that have literal values (as
opposed to relationships to other concepts). For example, children of age six can
be defined by using the concrete domain expression ∃hasAge.(=, 6). The class
of individuals, in this case children of age six, is expressed as a restriction on the
age attribute, which has a numeric value. The binary operators <,<=, >,>=
can also be used in a concrete domain expression, and attributes can have other
types of literal values such as floating point numbers, string literals, and dates.

Support for equality An ontology can contain many complex axioms that in-
clude nested sub-expressions. The CEL algorithm works with normalised axioms
and therefore creates a conservative extension of the original ontology containing

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

34 of 139

4

Table 1. Normal forms and completion rules.

Normal form Completion rules

A1 uA2 v B R1 If A1, A2 ∈ S(X), A1 uA2 v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A v ∃r.B R2 If A ∈ S(X), A v ∃r.B ∈ O, and (X,B) 6∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

∃r.A v B R3 If (X,Y) ∈ R(r), A ∈ S(Y), ∃r.A v B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

r v s R4 If (X,Y) ∈ R(r), r v s ∈ O, and (X,Y) 6∈ R(s)
then R(s) := R(s) ∪ {(X,Y)}

r ◦ s v t R5 If (X,Y) ∈ R(r), (Y,Z) ∈ R(s), r ◦ s v t ∈ O, and (X,Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X,Z)}

A v ∃f.(o, v) R6 If A ∈ S(X), A v ∃f.(o1, v1) ∈ O, ∃f.(o2, v2) v B ∈ O,
∃f.(o, v) v B eval(o1, v1, o2, v2) = true, and B 6∈ S(X)

then S(X) := S(X) ∪ {B}

only axioms in normal form [2]. The normal forms and the corresponding com-
pletion rules R1 to R5 from the original CEL algorithm are shown in Table 1.
The last two normal forms and completion rule R6 have been added to support
concrete domains.

The normalised forms of concrete domain expressions are A v ∃f.(o, v) and
∃f.(o, v) v A, where f represents a feature, o an operator, and v a value. The
original normalisation algorithm requires only minor changes to deal with these
new constructs.

The classification algorithm does require significant changes to deal with the
new concrete domain axioms. A new type of queue is introduced to deal with the
queue entries of the form A v ∃f.(o, v) and it is initialised with these axioms.
The entries are then processed in the following way:

1. The axioms of the form ∃f.(o, v) v B that match the feature f of the data
type in the queue entry are retrieved.

2. The data types are then compared using the eval() function.
3. If only the equality operator needs to be supported then the two data types

are considered to be matching if their literal value is equal.

Support for other operators It is known that supporting arbitrary combi-
nations of different operators leads to intractability [3]. In this implementation
no checks are made to ensure that the ontology being classified complies with
the restrictions that guarantee tractability. If non-compliant axioms are found
then the reasoning procedure will be sound but possibly incomplete.

Adding support for other operators requires a modification to the eval() func-
tion that compares the data types when evaluating feature queue entries. The
different combinations of operators and values have to be evaluated to determine
if there is a match or not.

For example, consider the following axioms:

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

35 of 139

5

toddler ≡ person u ∃hasAge.(≤, 3)
child ≡ person u ∃hasAge.(≤, 17)

After the normalisation process these axioms are transformed into the fol-
lowing:

∃hasAge.(≤, 17) v A person uA v child
child v person child v ∃hasAge.(≤, 17)
∃hasAge.(≤, 3) v B person uB v toddler
toddler v person toddler v ∃hasAge.(≤, 3)

These axioms allow us to infer that a toddler is also a child (but a child
is not necessarily a toddler). This conclusion is derived when evaluating the
expressions toddler v ∃hasAge.(≤, 3) and ∃hasAge.(≤, 17) v A. The eval()
function in this case takes the arguments (≤, 3,≤, 17) and returns a positive
match because all the possible values of the first operator-value pair are covered
by the possible values of the second operator-value pair. Whenever this is not the
case the function returns false. Notice that this happens in some cases regardless
of the literal values. For example, assuming we are dealing with integer values,
eval(x,<, y >) and eval(x,>, y,<) will always return false because no matter
what values are assigned to x and y, the second operator-value pair will never
be able to cover all the possible values expressed by the first pair.

4.2 Concurrent classification

This new version of Snorocket implements a multi-threaded saturation algorithm
inspired by the algorithm used by ELK. The main idea of the algorithm is to split
the computation into contexts that can be processed by workers independently
while generating minimal locking overhead. Details of the original algorithm
can be found in [5]. The main techniques in the algorithm can be applied in a
straightforward manner to the CEL algorithm implemented by Snorocket.

5 Experimental results

Protégé was used to compare the performance of Snorocket against four other
ontology reasoners: FaCT++, HermiT, jCel, and ELK. The previous version
of Snorocket was also included. Two OWL ontologies were used in the tests:
SNOMED CT and AMT v3. Both of these were derived from the RF2 distribu-
tion files using the corresponding Perl scripts.

The experiments were run in a computer equipped with a 3.3 GHz Intel
i5 processor with 4 cores, 8 GB of physical memory, and running Windows 7.
Protégé was run with Java 7 and a heap size of 4 GB. All the experiments use
elapsed time as an indicator and use the external timing reported by Protégé.
The multi-threaded reasoners (ELK 0.32 and Snorocket 2.0.1) were run using 4
threads.

Table 2 shows the profiles of the selected ontologies and Table 3 shows the
classification times, in seconds, achieved by the reasoners, averaged over 5 runs.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

36 of 139

6

Table 2. Profiles of the test ontologies.

#Classes #Object #Data #Axioms
Properties Properties

Ontology Original Normalised

SNOMED CT 296518 62 0 660610 1169913
AMT 61059 78 4 150750 561331

Table 3. Average classification times in seconds using various reasoners in Protégé on
Windows averaged over 5 runs. mem indicates an OutOfMemory error.

SNOMED CT AMT

FACT++ 1.6.2 330 4220
HermiT 1.3.7 1567.3 mem

jCel 0.15‡ 761 -
ELK 0.32 9.1 10.5
Snorocket 1.3.4 33.8 -
Snorocket 2.0.1 26 26.2

The results show that the performance of the tableaux-based reasoners was very
poor when classifying AMT. On the other hand, the specialised EL reasoners
were able to classify it in a fraction of the time. ELK currently provides the best
performance, which is expected since Snorocket’s multi-threaded implementation
is based on the same techniques but has not been optimised. Also, Snorocket only
runs the saturation phase concurrently, while the rest of the steps are still run
sequentially.

6 Conclusions and future work

This paper presented Snorocket 2.0 and compared it against its previous version
and four other reasoners using two large medical ontologies. Even though ELK
obtained the fastest results, Snorocket 2.0 achieved competitive performance.
Snorocket’s built-in support for SNOMED CT distribution formats makes it an
interesting alternative to ELK for SNOMED CT-centric applications.

Future work will include adding multi-threading to the whole classification
process and incorporating the restrictions necessary to ensure tractability when
dealing with concrete domains, either as a hard restriction or as a warning to
the user.

‡The current version of the jCel plugin is 0.18.2 but version 0.15 was the most
recent one that was compatible with our testing environment.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

37 of 139

7

References

1. Lawley, M. J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2
EL reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA10). Conferences
in Research and Practice in Information Technology, pp. 45–49. (2010)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: International Joint
Conference on Artificial Intelligence, p. 364 (2005)

3. Magka, D., Kazakov, Y., Horrocks, I.: Tractable Extensions of the Description Logic
EL with Numerical Datatypes. In: Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2010). LNAI, vol. 6173, pp. 61–75. Springer (2010)

4. Kazakov, Y., Krötzsch, M., Simančk, F.: ELK Reasoner: Architecture and Evalua-
tion. In: Proceedings of the 1st International Workshop on OWL Reasoner Evalua-
tion, CEUR Workshop Proceedings, (2012)

5. Kazakov, Y., Kötzsch, M., Simančk, F.: Concurrent Classification of EL+ Ontolo-
gies. In: The Semantic Web ISWC 2011, pp. 305–320 (2011)

6. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In: Proceed-
ings of DL 2006, p.189 (2006)

7. Mendez, J. jcel: A Modular Rule-based Reasoner. In: Proc. of the 1st Int. Workshop
on OWL Reasoner Evaluation (ORE12), pp. 130-135 (2012)

8. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006). LNCS, vol.
4130, pp. 292-297. Springer (2006)

9. Motik, B., Shearer, R., Horrocks, I.: HermiT: Hypertableau Reasoning for Descrip-
tion Logics. Journal of Artificial Intelligence Research 36, pp. 165–228 (2009)

10. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. of Web Semantics 5(2), pp. 51-53 (2007)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

38 of 139

A Transformation Approach for Classifying
ALCHI(D) Ontologies with a

Consequence-based ALCH Reasoner

Weihong Song, Bruce Spencer, and Weichang Du

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

Abstract. Consequence-based techniques have been developed to pro-
vide efficient classification for less expressive languages. Ontology trans-
formation techniques are often used to approximate axioms in a more ex-
pressive language by axioms in a less expressive language. In this paper,
we present an approach to use a fast consequence-based ALCH reasoner
to classify anALCHI(D) ontology with a subset of OWL 2 datatypes and
facets. We transform datatype and inverse role axioms intoALCH axiom-
s. The transformed ontology preserves sound and complete classification
w.r.t the original ontology. The proposed approach has been implement-
ed in the prototype WSClassifier which exhibits the high performance of
consequence reasoning. The experiments show that for classifying large
and highly cyclic ALCHI(D) ontologies, WSClassifier’s performance is
significantly faster than tableau-based reasoners.

1 Introduction

Ontology classification is the foundation of many ontology reasoning tasks. Re-
cently, consequence-based techniques have been developed to provide efficient
classification for sublanguages of OWL 2 DL profile, e.g. EL++ [2,3,8], Horn-
SHIQ [7], EL⊥(D) [9], ALCH [13]. There have been some approaches to use
existing consequence-based reasoners to classify more expressive ontologies, like
MORe [1]. In this paper, we propose an approach to use a consequence-based
ALCH reasoner to classify an ALCHI(D) ontology by transforming it into an
ALCH ontology with soundness and completeness preserved. The purpose of
the approach is to extend the expressiveness of the existing consequence-based
reasoner without changing its complex inference rules and implementation. All
proofs and further technical details can be found in our technical report [15].

Ontology transformation is often accomplished by approximating non-Horn
ontologies/theories by Horn replacements [12,11,16]. These approximations can
be used to optimize reasoning by exploiting more efficient inference for Horn
ontologies/theories. The approximation O′ in Ren et al. [11] is a lower bound of
the original ontology O, i.e. O′ entails no more subsumptions than O does. In
contrast, approximation in Zhou et al. [16] provides an upper bound. Kautz et
al. [12] computes both upper and lower bounds of propositional logic theories.
Another approach preserves both soundness and completeness of classification
results such as the elimination of transitive roles in Kazakov [7]. Our work of this
paper is of the second kind. We classify an ALCHI(D) ontology O in two stages:
(1) transform O into an ALCHI ontology O−D s.t. O |= A v B iff O−D |= A v B;

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

39 of 139

2 Weihong Song, Bruce Spencer, and Weichang Du

(2) transform O−D into an ALCH ontology O−ID s.t. O−ID |= A v B iff O−D |= A v
B. We use these approaches to implement a reasoner called WSClassifier which
transforms an ALCHI(D) ontology into an ALCH ontology and classifies it with
a fast consequence ALCH reasoner ConDOR [13]. WSClassifier is significantly
faster than tableau-based reasoners on large and highly cyclic ontologies.

In our previous work [14] we approximated an ALCHOI ontology by an
ALCH ontology which was then classified by a hybrid of consequence- and
tableau-based reasoners. Unlike [14], in this paper we claim completeness for I’s
transformation. Calvanese et al. [4] introduces a general approach to eliminate
inverse roles and functional restrictions from ALCFI to ALC. For eliminating
I, the approach needs to add one axiom for each inverse role and each concept.
So the number of axioms added can be very large. Ding et al. [6] introduces a
new mapping from ALCI to ALC and further extends it to a mapping from
SHI to SH in [5]. The approach allows tableau-based decision procedures to
use some caching techniques and improve the reasoning performance in practice.
Both approaches in [4,5] preserve the soundness and completeness of inference
after elimination of I. Our approach is similar to the one in [6,5]. However, the
NNF normalized form in [6,5] in which > appears in the left side of all axioms
will dramatically degrade the performance of our consequence-based ALCH rea-
soner. Thus we eliminate the inverse role based on our own normalized form and
our approach is more suitable for consequence-based reasoners.

2 Preliminary

Due to space limitation, we only list the most necessary syntax and semantics of
ALCHI(D) in the paper, the complete illustration can be found in our Technical
Report [15]. The syntax of ALCHI(D) uses atomic concepts NC , atomic roles
NR and features NF . We use A,B for atomic concepts, C,D for concepts, r, s for
atomic roles, R,S for roles, F,G for features. The parameter D defines a datatype
map D = (NDT , NLS , NFS , ·D), where: (1) NDT is a set of datatype names; (2)
NLS is a function assigning to each d ∈ NDT a set of constants NLS(d); (3) NFS

is a function assigning to each d ∈ NDT a set of facets NFS(d), each f ∈ NFS(d)
has the form (pf , v); (4) ·D is a function assigning a datatype interpretation dD

to each d ∈ NDT called the value space of d, a data value vD ∈ dD for each
v ∈ NLS(d), and a facet interpretation fD for each f ∈

⋃
d∈NDT

NFS(d). Since
one facet may be shared by multiple datatypes, we define its interpretation as
containing subsets of all the relevant datatypes. >D, d, d[f] or {v} are basic
forms of data ranges, which we call atomic data ranges. A data range dr is
defined recursively using u, t, and ¬. A role R is either an atomic role r or
inverse role r−. Semantics of ALCHI(D) is defined via an interpretation I =
(∆I , ∆D, ·I , ·D). ∆I and ∆D are disjoint non-empty sets called object domain
and data domain. dD ⊆ ∆D for each d ∈ NDT . ·I assigns a set AI ⊆ ∆I to each
A ∈ NC , a relation rI ⊆ ∆I ×∆I to each r ∈ NR and a relation F I ⊆ ∆I ×∆D
to each F ∈ NF . F I(x) = {v | (x, v) ∈ F I}. ·D interprets data ranges and
concepts, as shown in Table 1. We write NDT (O) and ADR(O) for all datatypes
and atomic data ranges in O. And ADRd(O) denotes the subset of ADR(O) in
datatype d, i.e. of the form d, d[f] or {v} where v ∈ NLS(d).

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

40 of 139

ALCHI(D) Ontology Classification 3

Table 1. Part of Model Theoretic Semantics of ALCHI(D)

Semantics of Data Ranges

(>D)D = ∆D {v}D = {vD} (dr1 u dr2)D = drD1 ∩ drD2
(d[f])D = dD ∩ fD (¬dr)D = ∆D \ drD (dr1 t dr2)D = drD1 ∪ drD2

Semantics of Concepts, Roles and Axioms

F v G⇒ F I ⊆ GI (∃F.dr)I = {x | F I(x) ∩ drD 6= ∅} (∀F.dr)I = {x | F I(x) ⊆ drD}

3 Transformation for Datatypes

In this section we introduce how we transform an ALCHI(D) ontology O into
an ALCHI ontology O−D such that O |= A v B iff O−D |= A v B. We assume all
the datatypes in D are disjoint, as do Motik et al [10]. We apply our approach to
some commonly used datatypes: (1) real with facets rational, decimal, integer,
>a, ≥a, <a and ≤a; (2) strings with equal value; (3) boolean values.

Our basic idea to produce O−D from O is to encode features into roles and
data ranges into concepts, and then add extra axioms to preserve the subsump-
tions between atomic concepts in NC(O). Table 2 gives the definition of encoding
function ϕ over atomic elements in O, where Ad, Af , Av are fresh concepts and
RF is a fresh role. ϕ over complex data ranges, roles, concepts and axioms are
defined recursively using corresponding constructors. It is easy to prove that
classification of ϕ(O) = {ϕ(α) | α ∈ O} is sound w.r.t. O (proof see [15]). In
order to preserve classification completeness, extra axioms need to be added to
ϕ(O) to get O−D. Algorithm 1 shows how O−D is computed. In the procedure

Table 2. Encoding ϕ for atomic concepts/roles/features/data ranges

ϕ(>D) = > ϕ(d[f]) = Ad uAf ϕ(>) = > ϕ(A) = A

ϕ(d) = Ad ϕ({v}) = Av ϕ(R) = R ϕ(F) = RF

we use two functions normalized and getAxiomsd for each datatype d ∈ NDT (O).
normalized rewrites data ranges d[f] into normalized forms to reduce the kinds
of facets used. getAxiomsd produces a set of ALCHI axioms O+

d to be included
into O−D. Details will be explained later for the datatypes and facets supported.
In order to preserve classification completeness w.r.t. O, getAxiomsd must gener-
ate axioms explicitly showing the relationships implicit among data ranges before
encoding, i.e., the data-range-relationship-preserving property: for any

ar1, . . . , arn, ar
′
1, . . . , ar

′
m ∈ ADRd(O), if

(
(
dn

i=1 ari)u (
dm

j=1 ¬ar′j)
)D

= ∅, then

(
dn

i=1 ϕ(ari))u(
dm

j=1 ¬ϕ(ar′j)) is unsatisfiable inO+
d = getAxiomsd(ADRd(O), ϕ).

We prove this condition is sufficient for completeness in [15].
For boolean type, we do not have any facets, so normalized does nothing. Since

the only atomic data ranges are xsd : boolean, {true} and {false}, getAxiomsd
only needs to return two axioms ϕ(xsd : boolean) ≡ ϕ({true}) t ϕ({false})
and ϕ({true}) u ϕ({false}) v ⊥. For string type, currently we do not sup-
port any facets, so normalized does nothing either. Atomic data ranges are ei-

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

41 of 139

4 Weihong Song, Bruce Spencer, and Weichang Du

Algorithm 1: Datatype Transformation

Input: An ALCHI(D) ontology O
Output: An ALCHI ontology O−D with the same classification result as O

1 foreach d ∈ NDT (O) do
2 foreach adr ∈ ADRd(O) do
3 Replace adr with normalized(adr) in O;

4 Create an encoding ϕ for O and initialize O−D with ϕ(O);

5 foreach d1, d2 ∈ NDT (O), d1 6= d2 do O−D ← O−D ∪ {ϕ(d1) u ϕ(d2) v ⊥};
6 foreach d ∈ NDT (O) do O−D ← O−D ∪ getAxiomsd(ADRd(O), ϕ);

7 return O−D;

ther xsd : string or of the form {c}, where c is a constant. We need to add
ϕ({c}) v ϕ(xsd : string) for each {c} ∈ ADRR(O), as well as pairwise disjoin-
t axioms for all such ϕ({c}). Numeric datatypes are the most commonly used
datatypes in ontologies. Here we discuss the implementation for owl :real, which
we denote by R. owl : rational, xsd : decimal and xsd : integer are treated
as facets rat, dec and int of R, respectively. Comparison facets of the form-
s >a, <a, ≥a, ≤a are supported. For normalized with input ar, we need: (1)
if adr = R[f], transform it to equivalent data ranges using only facets of the
form >a, e.g. R[<a] = R u ¬(R[>a] t {a}); (2) replace any constant a used
in ar with a normal form, so that any constants having the same interpreta-
tion becomes the same after normalization, e.g. integer constants +3 and 3 are
both interpreted as real number 3, so they are normalized into the same form
"3"ˆˆxsd : integer. Algorithm 2 gives the details of getAxiomsR for real num-
bers. For boolean and string, it is obvious that the corresponding getAxiomsd
has data-range-relationship-preserving property. For getAxiomsR, we prove this
property in [15]. So if O |= A v B, then O−D |= A v B.

4 Transformation for Inverse Roles

In this section, we discuss how we transform an ALCHI ontology O−D into an
ALCH ontology O−ID, such that O−D |= A v B iff O−ID |= A v B(proof see
[15]). Algorithm 3 shows the details of transformation for inverse roles. In the
procedure Invr contains the set of atomic roles which are inverses of r. Line 1
initializes O−ID with ALCH axioms in O−D. Lines 2 to 6 initializes Invr and put
all r where Invr 6= ∅ into RolesToBeProcessed. Lines 7 to 16 processes each role
in RolesToBeProcessed and adds axioms into O−ID to address the effect of inverse
role axioms. Detail explanations of Algorithm 3 are in our technical report [15].

5 Experiment and Conclusion

In experiments we compare the runtime of our WSClassifier with all other avail-
able ALCHI(D) reasoners HermiT, Fact++ and Pellet, which all happen to be
tableau-based reasoners. We use all large and highly cyclic ontologies we can

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

42 of 139

ALCHI(D) Ontology Classification 5

Algorithm 2: getAxiomsR for R
Input: A set of atomic data ranges ADRR(O) of type R, encoding function ϕ
Output: A set of axioms O+

R
1 O+

R ← ∅;
2 foreach {v} ∈ ADRR(O) do
3 if R[int] ∈ ADRR(O) and vD ∈ (R[int])D then add ϕ({v}) v ϕ(int) to O+

R ;

4 if R[dec] ∈ ADRR(O) and vD ∈ (R[dec])D then add ϕ({v}) v ϕ(dec) toO+
R ;

5 if R[rat] ∈ ADRR(O) and vD ∈ (R[rat])D then add ϕ({v}) v ϕ(rat) to O+
R ;

6 if R[int],R[dec] ∈ ADRR(O) then add ϕ(int) v ϕ(dec) to O+
R ;

7 if R[int],R[rat] ∈ ADRR(O) then add ϕ(int) v ϕ(rat) to O+
R ;

8 if R[dec],R[rat] ∈ ADRR(O) then add ϕ(dec) v ϕ(rat) to O+
R ;

9 Put all R[>a] ∈ ADRR(O) in fArray with ascending order of a;
10 foreach pair of adjacent elements R[>a] and R[>b] (a < b) in fArray do
11 add ϕ(>b) v ϕ(>a) to O+

R ;
12 if R[int] ∈ ADRR(O) then
13 M ← {{ai}}ni=1, where a1, . . . , an are all integer constants in (a, b];
14 if M ⊆ ADRR(O) then
15 add ϕ(int) u ϕ(>a) u ¬ϕ(>b) u (

dn
i=1 ¬ϕ({ai})) v ⊥ to O+

R ;

16 Let N be all v such that {v} ∈ ADRR(O) and vD ∈ (a, b];

17 foreach v ∈ N do add ϕ({v}) v ϕ(>a), ϕ({v}) u ϕ(>b) v ⊥ to O+
R ;

18 foreach v1, v2 ∈ N, v1 6= v2 do add ϕ({v1}) u ϕ({v2}) v ⊥ to O+
R ;

19 return O+
R ;

access to. FMA-constitutionalPartForNS(FMA-C) is the only large and highly
cyclic ontology that contains ALCHI(D) constructors. We remove seven axioms
using xsd : float. For Full-Galen which language is ALEHIF+ without “D”,
we introduce some new data type axioms by converting some axioms using roles
hasNumber and hasMagnitude into axioms with new features hasNumberDT and
hasMagnitudeDT. Some concepts which should be modeled as data ranges are also
converted to data ranges. Wine is a small but cyclic ontology. We also include two
commonly used ontologies ACGT and OBI which are not highly cyclic. For Wine,
ACGT and OBI, we change xsd:int, xsd:positiveInteger, xsd:nonNegativeInteger
to xsd:integer, xsd:float to owl:rational, and remove xsd:dateTime if applicable.
For all the ontologies, we reduce their language to ALCHI(D). The ontologies
are available from our website.1.The experiments were conducted on a laptop
with Intel Core i7-2670QM 2.20GHz quad core CPU and 16GB RAM. We set
the Java heap space to 12GB and the time limit to 24 hours.

Table 3 summarizes the result. HermiT is set to configuration with simple
core blocking and individual reuse. WSClassifier is significantly faster than the
tableau-based reasoners on the three highly cyclic large ontologies Galen-Heart,
Full-Galen and FMA-C. ACGT is not highly cyclic, but WSClassifier is still
faster. For the other two ontologies where WSClassifier is not the fastest, Wine
is cyclic but small, OBI is not highly cyclic. The classification time for them on

1 http://isel.cs.unb.ca/~wsong/ORE2013WSClassifierOntologies.zip

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

43 of 139

http://isel.cs.unb.ca/~wsong/ORE2013WSClassifierOntologies.zip

6 Weihong Song, Bruce Spencer, and Weichang Du

Algorithm 3: Transformation for inverse roles

Input: Normalized ontology ALCHI ontology O−D
Output: An ALCH ontology O−ID having the same classification result as O−D

1 Initialize O−ID with all ALCH axioms in O−D, excluding inverse role axioms;
2 foreach r ∈ NR(O) do Invr ← ∅ ;
3 RolesToBeProcessed← ∅;
4 foreach r′ = r− ∈ O−D do
5 Invr ← Invr ∪ {r′}; Invr′ ← Invr′ ∪ {r};
6 RolesToBeProcessed← RolesToBeProcessed ∪ {r, r′};
7 while RolesToBeProcessed 6= ∅ do
8 remove a role r from RolesToBeProcessed and pick a role r′ from Invr;

9 foreach r∗ ∈ Invr where r∗ is not r′ do add r′ ≡ r∗ to O−ID;

10 foreach r v s ∈ O−D do
11 if Invs = ∅ then
12 add a fresh atomic role s′ to Invs;
13 RolesToBeProcessed← RolesToBeProcessed ∪ {s};
14 pick a role s′ from Invs and add r′ v s′ to O−ID;

15 foreach ∃r.A v B ∈ O−D do add A v ∀r′.B to O−ID;

16 foreach A v ∀r.B ∈ O−D do add ∃r′.A v B to O−ID;

17 return O−ID

all reasoners are significantly shorter comparing with the time on large highly
cyclic ontologies. Then WSClassifier took a larger percentage of time on the
overhead to transmit the ontology to and from ConDOR.

Table 3. Comparison of classification performance of ALCHI(D) ontologies

HermiT Pellet FaCT++ WSClassifier

Wine 1.160 sec 0.430 sec 0.005 sec 0.400 sec

ACGT 9.603 sec 2.955 sec * 1.945 sec

OBI 3.166 sec 45.261 sec * 8.835 sec

Galen-Heart 123.628 sec – – 2.779 sec

Full-Galen – – – 16.774 sec

FMA-C – – – 32.74 sec

Note: “–”: out of time or memory “*”: some datatypes are not supported

We have transformed some commonly used OWL 2 datatypes and facets and
inverse role axioms in an ALCHI(D) ontology to ALCH and classified it on
an ALCH reasoner with soundness and completeness of classification preserved.
WSClassifier greatly outperforms tableau-based reasoners when the ontologies
are large and highly cyclic. Future work includes extension to other data types
and facets, and further optimization, e.g. adapting the idea of Magka et al. [9]
to WSClassifier to distinguish positive and negative occurrences of data ranges,
in order to reduce the number of axioms to be added.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

44 of 139

ALCHI(D) Ontology Classification 7

References

1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular combination
of OWL reasoners for ontology classification. In: Proc. of ISWC. pp. 1–16 (2012)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI. pp. 364–369
(2005)

3. Baader, F., Lutz, C.: Pushing the EL envelope further. In: Proc. of OWLED (2008)
4. Calvanese, D., De Giacomo, G., Rosati, R.: A note on encoding inverse roles and

functional restrictions in alc knowledge bases. In: Proc. of the 5th Int. Description
Logic Workshop. DL. vol. 98, pp. 11–20 (1998)

5. Ding, Y.: Tableau-based reasoning for description logics with inverse roles and
number restrictions. http://users.encs.concordia.ca/~haarslev/students/

Yu_Ding.pdf (2008)
6. Ding, Y., Haarslev, V., Wu, J.: A new mapping from alci to alc. In: Proc. DL-2007.

CEUR Workshop Proceedings. vol. 250. Citeseer (2007)
7. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: Proc.

of IJCAI. pp. 2040–2045 (2009)
8. Kazakov, Y., Krötzsch, M., Simanc̆́ık, F.: Concurrent classification of EL ontolo-

gies. In: Proc. of ISWC. pp. 305–320 (2011)
9. Magka, D., Kazakov, Y., Horrocks, I.: Tractable extensions of the description logic
EL with numerical datatypes. J. Automated Reasoning 47(4), 427–450 (2011)

10. Motik, B., Horrocks, I.: Owl datatypes: Design and implementation. In: Interna-
tional Semantic Web Conference. pp. 307–322 (2008)

11. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox rea-
soning. In: Proc. of AAAI (2010)

12. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM
43(2), 193–224 (1996)

13. Simanc̆́ık, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn
ontologies. In: Proc. of IJCAI. pp. 1093–1098 (2011)

14. Song, W., Spencer, B., Du, W.: WSReasoner: A prototype hybrid reasoner for
ALCHOI ontology classification using a weakening and strengthening approach.
In: Proc. of the 1st Int. OWL Reasoner Evaluation Workshop (2012)

15. Song, W., Spencer, B., Du, W.: Technical report of a transformation approach for
classifying ALCHI(D) ontologies with a consequence-based ALCH reasoner. Tech.
rep. (2013), http://www.cs.unb.ca/tech-reports/documents/TR13-225.pdf

16. Zhou, Y., Cuenca Grau, B., Horrocks, I.: Efficient upper bound computation of
query answers in expressive description logics. In: Proc. of DL (2012)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

45 of 139

 http://users.encs.concordia.ca/~haarslev/students/Yu_Ding.pdf
 http://users.encs.concordia.ca/~haarslev/students/Yu_Ding.pdf
http://www.cs.unb.ca/tech-reports/documents/TR13-225.pdf

Android goes Semantic: DL Reasoners on
Smartphones

Roberto Yus, Carlos Bobed, Guillermo Esteban, Fernando Bobillo, and
Eduardo Mena

University of Zaragoza
Maria de Luna 1, Zaragoza, Spain

{ryus,cbobed,gesteban,fbobillo,emena}@unizar.es

Abstract. The massive spread of mobile computing in our daily lives
has attracted a huge community of mobile apps developers. These devel-
opers can take advantage of the benefits of semantic technologies (such as
knowledge sharing and reusing, knowledge decoupling, etc.) to enhance
their applications. Moreover, the use of semantic reasoners would enable
them to create more intelligent applications capable of inferring logical
consequences from the knowledge considered. However, using semantic
APIs and reasoners on current Android-based devices is not problem-free
and, currently, there are no remarkable efforts to enable mobile devices
with semantic reasoning capabilities.
In this paper, we analyze whether the most popular current available DL
reasoners can be used on Android-based devices. We evaluate the efforts
needed to port them to the Android platform, taking into account its
limitations, and present some tests to show the performance of these
reasoners on current smartphones/tablets.

1 Introduction

In the last few years, we have witnessed a massive spread of mobile computing
in our daily lives. The progress and popularity of the different mobile devices
(smartphones, tablets, etc.) has attracted a huge community of developers that
are continually releasing new applications via the different app stores. For ex-
ample, 136 millions of Android-based devices were sold in third quarter of 2012
(which represented 75% of the market)1 and the Google Play2 market contained
almost 700,000 available applications in April 2013.

Due to the current device capabilities, we think that we could also start
to enhance all these applications with semantic technologies [16]. Using these
techniques, developers can enhance their applications based on the principles
of knowledge sharing and reusing [3], making explicit domain assumptions and
thus decoupling the knowledge from the application, etc. For example, the use

1 IDC studies, http://www.idc.com/getdoc.jsp?containerId=prUS23771812, last ac-
cessed 18th April 2013

2 http://play.google.com

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

46 of 139

of ontologies and semantic reasoners would enable them to create more intelli-
gent applications capable of inferring logical consequences from the knowledge
considered [6]. However, the use of semantic technologies on mobile apps has
not (yet) spread due, in part, to the fact that there are currently no remarkable
efforts to enable mobile devices with semantic reasoning capabilities. Moreover,
having local reasoners on the devices of the users would enable developers and
mobile apps to manage knowledge even when network disconnections make im-
possible to rely on third-party devices/computers to carry out the reasoning.
While authors in [11] have implemented a mobile reasoner from scratch which
supports the Description Logic (DL) ALCN (they state that “. . . current Seman-
tic Web reasoners cannot be ported without a significant re-write effort.”); we
have adopted another approach and we have started a survey to analyze if this
re-writing effort is worth enough and how we can handle semantics in mobile
applications by adapting existing DL reasoners.

In this paper, we evaluate whether the most popular among the current DL
reasoners can be used directly in mobile devices, the efforts needed if they do
not, and their performance with five well-know ontologies once we were able to
make them work. We have focused on Android-based devices due to their spread,
their openness, and the fact that it has a native virtual machine that is really
close to Java (Dalvik). The existence of this Java-like virtual machine is really
appealing in order to have important APIs working on the mobile devices, and
thus allows reusing a lot of already developed code in new applications.

2 Reasoning on Android

Most of current popular semantic reasoners are implemented using Java (e.g.,
Pellet and HermiT) and are usually used along with semantic APIs (e.g., OWL
API and Jena). Android, which is a Linux-based operating system whose mid-
dleware, libraries, and APIs are written in C, supports Java code as it uses
a Java-like virtual machine called Dalvik [9]. In fact, Dalvik runs “dex-code”
(Dalvik Executable), and Java bytecodes can be converted to Dalvik-compatible
.dex files to be executed on Android. However, Dalvik does not align to Java
SE and so it does not support Java ME classes, AWT or Swing. Thus, running
semantic APIs and reasoners on Android could require some rewriting efforts.

2.1 Running Semantic APIs on Android

In the following we explain how to use two useful semantic APIs on Android.

OWL API [5] is an ontology API to manage OWL 2 ontologies in Java ap-
plications and provides a high-level way to interact with DL reasoners. It can
be considered as a de facto standard, as the most recent versions of the DL
reasoners use OWL API to load and process the ontologies.

We considered the last available version of the OWL API 3.4.33 which could
be converted to Dalvik without any modifications and so, imported into an

3 http://owlapi.sourceforge.net

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

47 of 139

Android project directly. However, we tried the OWL API 2.2.0 (automatically
imported by Pellet along with the OWL API 3.2.4) but it uses Java classes that
are not supported by Dalvik. Nevertheless, as new developers are expected to use
the OWL API 3 they would not find any problems when importing the library.

Jena is an ontology API to manage OWL ontologies and handle RDF data in
Java applications, but support for OWL 2 is not available yet. Jena reasoners
are based on answering queries over RDF graphs.

Although Jena cannot be directly imported into an Android project, there
exist a project called Androjena4 to port it to the Android platform. The last
version of Androjena 0.5, which was used in our tests, contains all the original
code of Jena 2.6.2.

2.2 Running Reasoners on Android

In the following we present how to run some popular reasoners on Android
(ordered incrementally according to the effort needed).

JFact is a port of FaCT++ to Java. FaCT++ reasoner [15], successor of Fact
reasoner, is implemented in C++ and supports full OWL 2 with reasoning based
on a tableaux algorithm.

We used JFact 0.9.15, which does not import any external libraries (except
for the OWLAPI), and its code can be converted directly to Dalvik. In this way,
we can develop an Android app that uses this reasoner by simply importing the
JFact 0.9.1 and OWLAPI 3.4.3 .jar files in our Android project.

CB [7] reasoner is implemented in OCaml and supports a fragment of OWL 2
(Horn-SHIF). Reasoning is based on a consequence-based procedure.

Android does not support the OCaml language natively but there exist some
projects to develop OCaml interpreters for the platform. However, to run the
reasoner on Android, we chose another approach: compiling CB build 66 to native
Android code. The resulting native code can be executed on Android using the
command line tool Android Debug Bridge (adb). To import this native code into
an Android project we could use the Java Native Interface (JNI) and Android
NDK (however, for the purpose of this paper we tested the native code directly).

HermiT [12] reasoner is implemented in Java and supports full OWL 2 and
DL safe rules with reasoning based on a hypertableaux algorithm. It was the
first DL reasoner that could classify some large ontologies thanks to a novel and
efficient classification algorithm.

HermiT 1.3.67 cannot be converted directly to Dalvik as it references unsup-
ported Java classes (both in its source code and in the external library JAu-
tomata). Specifically, all the references to java.awt.point from both HermiT and

4 https://code.google.com/p/androjena
5 http://jfact.sourceforge.net
6 https://code.google.com/p/cb-reasoner
7 http://www.hermit-reasoner.com

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

48 of 139

JAutomata need to be changed or eliminated (they are used mainly for de-
bugging, and Android does not support Java AWT as it has its own graphical
libraries). In this way, we firstly eliminated the debug package of HermiT and
its references, and reimplemented the methods of JAutomata that used these
classes. However, in runtime, that version threw an error when loading ontologies
with data properties due to a failure of Dalvik when unmarshalling the objects
that the external library dk.brics.automaton serializes. To solve this problem, we
reimplemented the marshalling/unmarshalling methods of these objects.

Pellet [13] reasoner is implemented in Java and supports full OWL 2 and DL
safe rules with reasoning based on a tableaux algorithm. It was the first DL
reasoner fully supporting OWL DL.

Pellet 2.3.08 (the last version available at the moment) cannot be converted
directly to Dalvik. In this case, the reasoner uses three libraries that reference
unsupported Java classes: Jena (which can be replaced by Androjena), OWL
API 2.2.0 (which can be removed from the final compiled version), and JAXB
(which uses the javax.xml.bind and the Xerces parser libraries not contained on
Android). This problem can be solved by removing the JAXB .jar file and adding
the source code of both javax.xml.bind and Xerces to our Android project. How-
ever, Dalvik has a limit of 65536 methods references per .dex file and it gets ex-
ceeded when applying this solution. To solve this, we removed the JAXB library
and copied only the nine classes that Pellet needs from both the java.xml.bind
package and the Xerces library to our Android project.

Other Reasoners. We also tried to load other reasoners on Android with-
out success, namely RacerPro [4], KAON2 [8], QUEST [10], TrOWL [14], and
fuzzyDL [2]. None of them can be directly converted to Dalvik because of their
references to unsupported Java classes (similarly to what happened in HermiT
and Pellet), and their source code was not publicly available. We identified
that these reasoners use some problematic libraries that cannot be run on An-
droid: Jena (QUEST, TrOWL), Java RMI (KAON2), Xerces (QUEST), Gurobi
(fuzzyDL), etc. Both Jena and RMI could be replaced by projects that port these
libraries to the Android platform (such as LipeRMI9 or the aforementioned An-
drojena), and Xerces could be addressed as explained for Pellet. Finally, we have
not found a replacement for Gurobi.

3 Experimental Evaluation

The main goal of this paper is to analyze whether current available DL reasoners
can be used on Android. Hence, we considered also interesting to test their
behavior on current devices. In this way, we tested the analyzed reasoners with
five well-known ontologies (see Table 1): Pizza10 and Wine11, which are two

8 http://clarkparsia.com/pellet
9 http://lipermi.sourceforge.net

10 http://www.co-ode.org/ontologies/pizza/pizza.owl
11 http://www.w3.org/TR/owl-guide/wine.rdf

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

49 of 139

expressive ontologies; DBpedia 3.812 (T-BOX), which can be useful for mobile
apps developers to access the structured content of DBPedia (a semantic entry
point to Wikipedia) [1]; and the Gene Ontology (GO) and the US National
Cancer Institute (NCI), which contain a high number of concepts.

Table 1. Selected ontologies for the tests.

DL Expressivity Horn |NLA| |NR| |NC | |NI |
Pizza SHOIN × 714 8 100 5

Wine SHOIN (D) × 950 17 138 206

DBpedia ALF(D) X 3542 1894 436 0

GO ALE+ X 28897 1 20465 0

NCI ALE X 46940 70 27652 0
Horn (X): the ontology does not contain “non-deterministic” constructors.
|NLA|: number of logical axioms; |NR|: number of roles; |NC |: number of concepts; |NI |: number of
individuals

For each ontology we tested the classification performance (i.e., time needed
to compute the class subsumption hierarchy) of each reasoner on two devices with
different Android versions. We also performed the tests on a PC to determine
how slow is reasoning on Android compared to this baseline (taking into account
that the PC hardware overperforms Android devices and their virtual machines
are optimized for different purposes). The results obtained after performing 10
tests for each reasoner and device are shown in Table 2.

First, we want to highlight that the Galaxy Nexus with Android 4.2.1 (An-
droid2) overperformed the Samsung Galaxy Tab with Android 2.3.3 (Android1)
by 30% in all the tests. All the reasoners running on the Android 4.2.1 device
were able to classify all the ontologies except DBpedia (which contains unsup-
ported temporal data type properties for JFact –gY ear–), and NCI (where
JFact and Pellet ran out of memory). Notice that most of the reasoners running
on the Android 2.3.3 device (JFact, HermiT, and Pellet) were unable to classify
GO and NCI because of a memory constraint. Android 2.3 and earlier ver-
sions usually provide a maximum heap size limit per application of 64MB while
later versions usually provide a maximum heap size of 256MB by using the an-
droid:largeHeap=“true” attribute for the manifest of the application (the actual
maximum size limit depends on the specific device). CB was able to classify all
the ontologies but the reasoning for Pizza and Wine was incomplete because
they are not Horn. The reasoning of CB on DBpedia was complete even when
the profile of the ontology is not fully supported by the reasoner. In addition,
CB does not face the same memory restriction than other reasoners as it was
compiled from C code and runs outside Dalvik.

In summary, the major issue that reasoning on Android faces currently is the
limited memory of smartphones/tablets (especially for apps running on Dalvik).
This limitation affects especially when using large ontologies. Finally, as ex-

12 http://dbpedia.org/Ontology

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

50 of 139

Table 2. Comparison of classification time for PC and Android in seconds.

JFact CB HermiT Pellet

Pizza
PC 0.37 0♦ 0.57 0.97

Android1 4.90 0♦ 14.88 33.22

Android2 3.42 0♦ 10.43 20.77

Wine
PC 10.39 0♦ 6.54 2.22

Android1 2196.05 0♦ 511.97 194.12

Android2 1609.32 0♦ 361.38 131.80

DBpedia
PC UDT! 0 0.10 1.39

Android1 UDT! 0 8.87 115.30

Android2 UDT! 0 5.13 63.15

GO
PC 7.77 0.11 1.56 1.96

Android1 OOM! 1.95 OOM! OOM!

Android2 435.60 1.47 487.98 83.97

NCI
PC 2.61 0.24 2.23 4.24

Android1 OOM! 3.31 OOM! OOM!

Android2 OOM! 2.69 2020.48 OOM!
PC: Windows 64-bits, i5-2320 3.00GHz, 16GB RAM; Android1: Samsung Galaxy Tab, 1.0GHz,
512MB RAM, Android 2.3.3; Android2: Galaxy Nexus, 1.2GHz dual-core, 1GB RAM, Android 4.2.1
0: time below 0.005s; ♦: incomplete reasoning; OOM!: Out of Memory; UDT!: Unsupported Data
Type

pected, we observe that reasoning on Android is slower than reasoning on a PC
but nevertheless the results show that this is feasible.

4 Conclusions and Future Work

The emergence of mobile computing in our daily lives allows to consider new
applications where semantic technologies could be useful. However, some efforts
are needed to enable developers to use ontologies and ontology reasoning in their
mobile apps. In this paper, we shown that current Android devices could be able
to use most of the semantic reasoners although they need some manual work
due to unsupported Java libraries and classes for the virtual machine of Android
(Dalvik). Once this issue has been addressed, the main limitation that reasoners
will face on current smartphones/tablets concerns memory usage and process-
ing requirements. However, we noticed an increment of 30% on the performance
of the reasoners between two Android devices (a Samsung Galaxy Tab and a
Google Galaxy Nexus –introduced on 2010 and 2011, respectively–) which could
show the future trend. As future work we plan to further test current semantic
reasoners on Android measuring other important aspects for mobile computing
such as memory and battery usage.

Acknowledgments: This research work has been supported by the CICYT project
TIN2010-21387-C02 and DGA-FSE.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

51 of 139

References

1. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - A crystallization point for the Web of Data. Web Semantics:
Science, Services and Agents on the World Wide Web, 7(3):154–165, 2009.

2. F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description logic reasoner.
In Proceedings of the International Conference on Fuzzy Systems (FUZZ-IEEE
2008), 2008.

3. T. R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

4. V. Haarslev and R. Möller. RACER system description. In Proceedings of the First
International Joint Conference on Automated Reasoning (IJCAR 2001), 2001.

5. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies.
Semantic Web Journal, 2(1):11–21, 2011.

6. S. Ilarri, A. lllarramendi, E. Mena, and A. Sheth. Semantics in location-based
services – guest editors’ introduction for special issue. IEEE Internet Computing,
15(6):10–14, 2011.

7. Y. Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In Pro-
ceedings of the 21st International Joint Conference on Artificial intelligence (IJCAI
2009), 2009.

8. B. Motik and R. Studer. KAON2–a scalable reasoning tool for the semantic web. In
Proceedings of the 2nd European Semantic Web Conference (ESWC 2005), 2005.

9. H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon. Evaluation of Android Dalvik
virtual machine. In Proceedings of the 10th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems (JTRES 2012), 2012.

10. M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL reasoner for ontology-
based data access. In Proceedings of the 9th International Workshop on OWL:
Experiences and Directions (OWLED 2012), 2012.

11. M. Ruta, F. Scioscia, G. Loseto, F. Gramegna, and E. D. Sciascio. A mobile
reasoner for semantic-based matchmaking. In Proceedings of the 6th International
Conference on Web Reasoning and Rule Systems (RR 2012), 2012.

12. R. Shearer, B. Motik, and I. Horrocks. HermiT: A Highly-Efficient OWL Rea-
soner. In Proceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2008), 2008.

13. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51–53, 2007.

14. E. Thomas, J. Z. Pan, and Y. Ren. TrOWL: Tractable OWL 2 reasoning infras-
tructure. In Proceedings of the 7th Extended Semantic Web Conference (ESWC
2010), 2010.

15. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: system descrip-
tion. In Proceedings of the Third International Joint Conference on Automated
Reasoning (IJCAR 2006), 2006.

16. R. Yus, E. Mena, S. Ilarri, and A. Illarramendi. SHERLOCK: A system for
location-based services in wireless environments using semantics. In 22nd Interna-
tional World Wide Web Conference (WWW 2013), 2013.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

52 of 139

FRaQuE: A Framework for Rapid Query

Processing Evaluation

Jean-Rémi Bourguet and Luca Pulina

POLCOMING, Università di Sassari, Italy
Viale Mancini 5 – 07100, Sassari – Italy
boremi@uniss.it - lpulina@uniss.it

Abstract. In this paper we present FRaQuE (Framework for Rapid
Query Processing Evaluation). The main purpose of FRaQuE is to
offer to a non-expert user a “push-button” solution aimed to help her to
evaluate query processors for Ontology Based Data Access, focusing only
on input and output data, without take into account both theoretical and
technical issues.

1 Introduction

The choice of W3C to make ontologies the main tool to attach semantic in-
formation to web contents, and, consequently, the potential applications in the
Semantic Web [2], has attracted a lot of interest inside the Automated Reasoning
community, particularly in the past decade. It is well-established that reasoning
with ontologies is one of the core task of research in description logics – see,
e.g., [1] – and it is also witnessed by the large amount of reasoners currently
available1.

One of the reasoning tasks that can be accomplished by reasoning tools is
query answering. In particular, in order to match the competing requirements of
KR&R-style data handling with DB-style data size, research on ontology-based
data access (OBDA) emerged at the crossroads of the two fields. According to [7],
the keyword OBDA characterizes scenarios where access to data is mediated by
an ontology, and data is either physically stored in a traditional DB, or comes
in sizes which are typical of DB applications anyway. To this purpose, there are
actually several OWL reasoners with the ability to support the SPARQL query
language [18] – the W3C standard for querying semantic-enabled data stores.

Given the wide range of possible practical applications in which OBDA can
be used, e.g., Decision Support Systems [8, 5, 3], practitioners aimed to lever-
age OBDA in their applications have to answer the question “Which query
processor should I use?”. In order to answer to this question, recently sev-
eral events and projects have been implemented, e.g., the Joint Workshop on
Scalable and High-Performance Semantic Web Systems [11] and the SEALS
project http://www.seals-project.eu. More, the OWL Reasoner Evaluation

1 See, e.g., http://www.w3.org/2007/OWL/wiki/Implementations or http://www.cs.
man.ac.uk/~sattler/reasoners.html for a list

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

53 of 139

workshops organizes since 2012 a competitive event, in the same spirit of other
Automated Reasoning communities, e.g., the CADE ATP System Competition
(CASC) [24] for theorem provers in first order logic, the QBF Evaluation [17] for
quantified Boolean formulas solvers, and the ASP Competition [6] for Answer
Set Programming solvers. Also if in such kind of events reasoners are evaluated
using transparent and fair methods, in a practical application context a prac-
titioner could be interested to understand the current state of the art related
to a particular problem or another for which data could not be available to the
research community. This can lead a non-expert user to deal with several issues,
both technical and theoretical.

In this paper we present FRaQuE (Framework for Rapid Query Processing
Evaluation), a framework aimed to offer to a non-expert user the possibility to
evaluate query processors for OBDA.The main purpose of FRaQuE is to offer
to the user a “push-button” solution aimed to help the user to answer to the
question above, focusing only on input data and queries at the user execution
stage, and showing data in order to evaluate both correctness and performance
at the user validation stage. Currently we include in FRaQuE research pro-
totypes that can be considered active OBDA projects as soon as systems like
Pellet [23], a full-fledged commercial description logic reasoner and ARQ [21],
the built-in query processor of the Jena library. An important element in the
selection is the ability to support the SPARQL query language [18]. However,
the FRaQuE architecture is modular, allowing the extension to other reasoners
in an easy way, as we will describe in Section 2, where we will detail both design
and implementation of FRaQuE. About the rest of the paper, in Section 3 we
discuss about some open points coming from the usage of the query processors,
and we conclude in Section 4 with some final remarks.

2 Design and implementation of FRaQuE

Figure 1 presents the architecture of FRaQuE2. Because of, given a knowledge
base K and a query α, the goal of FRaQuE is to run different systems on the
task of query answering, we also refer to the OBDA systems as query processors.
Looking at the figure, we can see that FRaQuE is composed of the four modules
described in the following.

INTERFACE manages both the input received by the user and the output of the
whole system. It also dispatches the input data to both QUERY MANAGER

and ONTOLOGY MANAGER, as denoted by the outgoing arrows. In particular,
INTERFACE collects (i) the name of the query processor to fire; (ii) the TBox
file name in RDF/XML or OWL/XML format; (iii) the ABox file name
in RDF/XML or OWL/XML format; and (iv) a text file containing the
query in SPARQL 1.0. Finally, INTERFACE manages the output received from
REASONER MANAGER, in order to present it to the user. Actually, FRaQuE

2 FRaQuE is available for download at http://sites.google.com/site/

ore2013fraque.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

54 of 139

Fig. 1: The architecture of FRaQuE. The dotted box denotes the whole system and,
inside it, each solid box represents its modules, while each dashed box represents a
sub-module. Arrows denote functional connections between modules.

outputs the ontology loading CPU time, the query answering CPU time, and
a text file containing the query result.

QUERY MANAGER is devoted to process the query input file received by INTERFACE.
It checks the compliance of the query with the SPARQL 1.0 syntax, and,
considering the query processor passed by INTERFACE, it applies syntactic
modification to the input query file or returns to INTERFACE an error message
if the input query is not supported by the selected query processor (see
Section 3 for details).

ONTOLOGY MANAGER is devoted to manage both TBox and ABox input file, by
means of sub-modules TBOX MANAGER and ABOX MANAGER, respectively.

REASONER MANAGER manages the interaction with the reasoners. It receives from
INTERFACE information about the engine to fire, while it receives from ONTOLOGY

MANAGER and QUERY MANAGER information about the ontology file and the
query to process, respectively. At the end of the query processing, REASONER
MANAGER returns to INTERFACE the result.

Concerning the modules described above, we can consider REASONER MANAGER

as the core of FRaQuE, because it interacts with different query processors in
a transparent way to the user. In particular, SPARQL expression semantics
can change according to different entailment regimes. In our case, there are
two entailment regimes which are relevant, namely the RDFS entailment and

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

55 of 139

the OWL-DL entailment. Under the second regime, we focus on the notion of
entailment for the semantics of OWL 2 QL. In particular, the OWL 2 QL profile
is described in the official W3C’s recommendation as “[the sub-language of OWL
2] aimed at applications that use very large volumes of instance data, and where
query answering is the most important reasoning task.”. Given our intended
applications, we consider knowledge bases encoded using OWL 2 QL.

In details, the query processors actually included in FRaQuE are the fol-
lowing.

– ARQ [21] (version 2.9.4) is the built-in query processor of the Jena library.
It processes queries according to the RDFS regime.

– HermiT [22] (version 1.3.6) is a DL reasoner based on hypertableau cal-
culus [15]. It can be used to answer sparql1.0 queries by means of the
sparql1.0 wrapper owl-bgp [10, 13]. For the sake of simplicity, in the fol-
lowing we will mention the composition between the reasoner and the wrap-
per simply as “HermiT”.

– kaon2 [12, 14] (version 2008-06-29) implements reasoning algorithms aimed
to reduce a knowledge base to a disjunctive datalog program, allowing the us-
age of deductive database techniques. So, with respect to other DL reasoners
like HermiT, Pellet and TrOWL, it does not implement a tableau-like
calculus. Queries can be formulated using a specific subset of sparql1.0

syntax – see http://kaon2.semanticweb.org/ for details.
– Pellet [23] (version 2.3.0) is a description logic reasoner accepting sparql1.0

queries. As such, it supports OWL-DL regime and it could be used to per-
form logically-aware queries also on full-fledged OWL 2 knowledge bases.

– Quest [20] (version 1.7) is a reasoner that supports the OWL-DL entailment
regime restricted to OWL 2 QL. Quest converts queries over the knowledge
base into equivalent SQL queries over an internal relational database. In par-
ticular, Quest uses h2 (version 1.3)3 and while the schema used internally
to store triples is similar to the standard 〈S, P,O〉 schema, it is optimized
to generate very small SQL queries even if there are big hierarchies in the
ontology, as described in [19].

– TrOWL [25] (version 1.1) is an infrastructure aimed to reasoning, and
querying OWL 2 ontologies by means of several techniques, e.g., quality
guaranteed approximations and forgetting. In general, considering OWL 2
ontologies, TrOWL could not give complete answers, but it should not be
the case considering OWL 2 QL ontologies, as in our case (see [25] for de-
tails). In FRaQuE we include TrOWL with the Jena library.

Finally, in Figure 2, we present the class diagram of FRaQuE. In the di-
agram, we denote Java classes with boxes, “part of” relationship with hollow
diamond shape arrows, while the inheritance relationship is denoted using ordi-
nary arrows. The upper part of boxes holds the name of the class, the middle
part contains the attributes and the bottom part contains methods, “+”, “-”
and “#” are respectively public, private and protected attributes or methods.

3 H2 Database Engine http://www.h2database.com/html/main.html.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

56 of 139

Fig. 2: Class diagram of FRaQuE.

3 Discussion

The main purpose of FRaQuE is to offer to a non-expert user a simple platform
to evaluate both correctness and reasoning times of OBDA query processors.
With this aim, about the evaluation of correctness of the answer, a text file
containing the answer to the input query is produced by FRaQuE at the end
of query processing – as mentioned in the description of the INTERFACE module.
Concerning the reasoning time, we consider values that could be easily evaluated
by a non-expert user aimed to roughly compare the CPU time needed to answer
a query, avoiding technical details concerning different strategies implemented
in a reasoner.

Considering query processors currently included in FRaQuE, we list in the
following some technical issues. We report that queries containing some key-
words, e.g., FILTER and OPTIONAL, are actually not supported by both kaon2

and Quest. About the query processors mentioned above, we also report that
they do not allow the usage of variables after a rdf:type predicate. Some other
features in the sparql syntax can lead to a failure during the query loading. In
Quest, comment lines (starting with #) have to be removed, while in kaon2

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

57 of 139

absence of a white space between an object and the final dot is not allowed,
while it is allowed between object and semi-colon4.

The modular architecture of FRaQuE allows the user to easily extend the
pool of query processors. Looking at Figure 2, we can see that all query processors
currently available in FRaQuE are wrapped in a Java class derived from the
abstract class REASONER. Such abstract class provides a common interface
to manage input (ontology and query) and output (the query answer) files.
Once implemented the derived class related to a new query processor – see the
source code available at http://sites.google.com/site/ore2013fraque for
an example – it is sufficient to update the code of FRaQuE* files.

Finally, we report that a preliminary version of FRaQuE has been used for
the experimental evaluation in [4].

4 Conclusions and Future Works

In this paper, we presented the design and the implementation of FRaQuE.
Our modular framework can allow to a non-expert user a rapid evaluation of the
state of the art concerning query processors for OBDA.

Currently, we are working to extend FRaQuE in several directions. Firstly,
we are extending the architecture in order to integrate query processors using
rewriting-based techniques, e.g., clipper [9] and requiem [16]. Secondly, we
are considering the usage of SPARQL 1.1 as input query format. This is mainly
motivated by the fact that our tool aims to simplify practitioner’s work, and
the usage of operators like COUNT, MIN, MAX, or SUM could simplify the
query formulation. Actually, ARQ is the only system supporting SPARQL 1.1
natively, so we are working on QUERY MANAGER in order to add a translator able
to convert the input query to SPARQL 1.0 and use some JAVA code to replicate
the behaviour of the operators above. Finally, we are designing a GUI version of
INTERFACE.

Acknowledgments The authors are grateful to the reviewers for their valuable
comments and suggestions for improving the paper. The authors would like to
thank Giuseppe Cicala and Armando Tacchella for fruitful discussion, and Mar-
iano Rodriguez-Muro for his help in using Quest.

This work is supported by Regione Autonoma della Sardegna e Autorità
Portuale di Cagliari con L.R. 7/2007, Tender 16 2011, CRP-49656 “Metodi in-
novativi per il supporto alle decisioni riguardanti lottimizzazione delle attività
in un terminal container”

4 Notice that the usage of white spaces aiming to separate two terminals is a W3C
recommendation [18].

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

58 of 139

References

1. F. Baader. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

2. Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

3. Eva Blomqvist. The use of semantic web technologies for decision support – a
survey. Semantic Web, 2012.

4. Jean-Remi Bourguet, Giuseppe Cicala, Luca Pulina, and Armando Tacchella. An
experimental evaluation of tools for ontology-based data access. In Proceedings
of the 20th RCRA International Workshop on Experimental Evaluation of Algo-
rithms for solving problems with combinatorial explosion, 2013. Avalaible on-line
from https://docs.google.com/file/d/0B8dEUbPKR1laYjFnMUJLcks0ZnM/edit?

usp=sharing.

5. Jean-Remi Bourguet, Giuseppe Cicala, Luca Pulina, and Armando Tacchella.
Obda and intermodal logistics: Active projects and applications. In Web Reason-
ing and Rule Systems (RR) 2013, volume 7994 of LNCS, pages 210–215. Springer
Verlag, 2013.

6. Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Anna-
maria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Feb-
braro, Nicola Leone, et al. The third answer set programming competition: Pre-
liminary report of the system competition track. In Logic Programming and Non-
monotonic Reasoning, pages 388–403. Springer, 2011.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, and R. Rosati. Ontologies and Databases: The DL-Lite approach. Reasoning
Web. Semantic Technologies for Information Systems, pages 255–356, 2009.

8. Matteo Casu, Giuseppe Cicala, and Armando Tacchella. Ontology-based data
access: An application to intermodal logistics. Information Systems Frontiers,
2012.

9. Thomas Eiter, Magdalena Ortiz, M Simkus, Trung-Kien Tran, and Guohui Xiao.
Towards practical query answering for horn-shiq. Description Logics, 846, 2012.

10. Birte Glimm et al. OWL-BGP – A framework for parsing SPARQL basic graph
patterns (BGPs) into an OWL object representation. http://code.google.com/

p/owl-bgp.

11. Achille Fokoue, Thorsten Liebig, Eric Goodman, Jesse Weaver, Jacopo Urbani,
and David Mizell. Joint workshop on scalable and high-performance semantic web
systems (ssws+ hpcsw 2012). 2012.

12. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing shiq- description logic
to disjunctive datalog programs. Proc. KR, 4:152–162, 2004.

13. Ilianna Kollia, Birte Glimm, and Ian Horrocks. Sparql query answering over owl
ontologies. In The Semantic Web: Research and Applications, pages 382–396.
Springer, 2011.

14. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with
rules. Web Semantics: Science, Services and Agents on the World Wide Web,
3(1):41–60, 2005.

15. Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in description
logics using hypertableaux. Automated Deduction–CADE-21, pages 67–83, 2007.

16. Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient query answering
for owl 2. In The Semantic Web-ISWC 2009, pages 489–504. Springer, 2009.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

59 of 139

17. Claudia Peschiera, Luca Pulina, Armando Tacchella, Uwe Bubeck, Oliver Kull-
mann, and Inês Lynce. The seventh qbf solvers evaluation (qbfeval10). In Theory
and Applications of Satisfiability Testing–SAT 2010, pages 237–250. Springer, 2010.

18. E. Prud’Hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
working draft, 4(January), 2008.

19. M. Rodriguez-Muro and D. Calvanese. High Performance Query Answering over
DL-Lite Ontologies. In Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012), pages 308–318, 2012.

20. M. Rodrıguez-Muro and D. Calvanese. Quest, an OWL 2 QL Reasoner for
Ontology-based Data Access. OWLED 2012, 2012.

21. A. Seaborne. ARQ – A SPARQL Processor for Jena, 2010. http://jena.

sourceforge.net/ARQ/ – [accessed 1/5/2010].
22. Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient owl rea-

soner. In Proceedings of the 5th International Workshop on OWL: Experiences and
Directions (OWLED 2008), pages 26–27, 2008.

23. E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Web Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007. Available on-line from http://pellet.owldl.com/.

24. Geoff Sutcliffe. The cade-23 automated theorem proving system competition–casc-
23. AI Communications, 25(1):49–63, 2012.

25. Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2 Rea-
soning Infrastructure. In the Proc. of the Extended Semantic Web Conference
(ESWC2010), 2010.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

60 of 139

MORe: a Modular OWL Reasoner
for Ontology Classification

Ana Armas Romero, Bernardo Cuenca Grau,
Ian Horrocks, Ernesto Jiménez-Ruiz

Department of Computer Science, University of Oxford

Abstract. MORe exploits module extraction techniques to divide the
workload of ontology classification between two reasoners: a reasoner for
the lightweight profile EL of OWL 2, and a fully fledged OWL 2 reasoner.
This division is carried out in such a way that the bulk of the workload
is assigned, as much as possible, to the OWL 2 EL reasoner, in order to
exploit the more efficient classification techniques specific to this profile.

1 Introduction

MORe [1] is an OWL 2 reasoning system dedicated to ontology classification
that integrates a general purpose OWL 2 reasoner (OWL reasoner for short)
and a reasoner specific for the OWL 2 EL1 profile (EL reasoner for short). The
current implementation of MORe uses ELK [8] as its EL reasoner, and offers the
possibility to choose between two OWL reasoners: HermiT 1.3.7 [4] and Pellet
2.3.0 [12]. The EL and OWL reasoners are, however, integrated in a “black-box”
way: our implementation of MORe provides the required infrastructure to bundle
any other OWL and/or EL reasoner.

Given an input ontology O, MORe identifies a part of the classification of
O that can be computed using the EL reasoner and limits the use of the OWL
reasoner to a fragment of O as restricted as possible. The main advantage of
MORe lies in its “pay-as-you-go” behaviour when an OWL 2 EL ontology is
extended with axioms in a more expressive logic: the use of an efficient EL
reasoner is not necessarily precluded by the extension; in fact, it is to be expected
that the EL reasoner will still perform most of the computational work.

MORe performs only terminological reasoning and ignores any assertional
axioms that the input ontology might contain. Therefore, completeness is only
guaranteed for ontologies that contain no ABox assertions.

MORe2 is implemented in Java using the OWL API3 [6]. It can therefore
process ontologies in any format handled by the OWL API, such as RDF/XML,
OWL Functional Syntax, or OBO. It is available both as a Java library and a
Protégé4 plugin, and it can also be used via a commmand line interface.

1 http://www.w3.org/TR/owl2-profiles/#OWL 2 EL
2 https://code.google.com/p/more-reasoner/
3 http://owlapi.sourceforge.net/
4 http://protege.stanford.edu/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

61 of 139

2 The Technique

The main idea behind the technique implemented in MORe is to identify, given
an ontology O with signature Sig(O), two subsets M1, M2 of O such that

• M1 is as small as possible;
• the output of classifying M2 with the EL reasoner is complete for Sig(M2)

w.r.t. O (i.e. it contains all subsumption relations A v B entailed by O such
that A ∈ Sig(M2));
• the output of classifyingM1 with the OWL reasoner is complete for Sig(M1)

w.r.t. O; and
• Sig(M1) ∪ Sig(M2) = Sig(O).

Our implementation of MORe relies on ELK, which does not yet implement
the whole of OWL 2 EL. The unsupported constructs are documented and hence
we can identify the fragment LELK of OWL 2 EL implemented by ELK.

They key to identifying M1 and M2 is in computing an LELK-signature: a
signature ΣELK ⊆ Sig(O) such that the ⊥-module for ΣELK in O is an ontology
in the language LELK for which ELK is complete.

The ⊥-module for O and Σ,M[O,Σ], is the smallest subset of O such that all
axioms in O \M[O,Σ] are ⊥-local w.r.t. Σ ∪ Sig(M[O,Σ]). Intuitively, an axiom
α is ⊥-local w.r.t. Σ if replacing by ⊥ all occurrences in α of symbols not in Σ
would turn α into a syntactically recognisable tautology; e.g., the axiom A v B
is ⊥-local w.r.t. Σ = {B}. Cuenca Grau et al. [2] offer a deeper insight into the
notions of ⊥-module, ⊥-locality, and modularity in a more general sense. For
the scope of this system description, we only remark the following properties:

1. For any class A in Sig(M[O,Σ]):
(a) if A is unsatisfiable in O then it is also unsatisfiable in M[O,Σ]

(b) if another class B in Sig(O) is a superclass of A in O, then it is so in
M[O,Σ] as well —and so B is in Sig(M[O,Σ]) too.

2. If Σ1 ⊆ Σ2, then if some axiom α is ⊥-local w.r.t. Σ2, it is also ⊥-local w.r.t.
Σ1, and therefore M[O,Σ1] ⊆M[O,Σ2].

3. both checking ⊥-locality and extracting a ⊥-module can be done in polyno-
mial time.

Property 1(b), in particular, is not shared by other kinds of modules, and makes
⊥-modules especially well suited for classification purposes.

2.1 Modular Combination of Reasoners

The integration of the two reasoners is performed as follows. Given an OWL 2
ontology O, MORe first tries to compute a nonempty LELK-signature ΣELK for O
(details of how this is done are given in Section 2.2). If it suceeds, then ELK is
used to classify M[O,ΣELK], and HermiT or Pellet to classify M[O,Sig(O)\ΣELK];
finally, both partial hierarchies are unified into a single one. If MORe fails to find
a nonempty LELK-signature, then it delegates the whole classification to either
HermiT or Pellet. Details about the correctness (soundness and completeness)
of this technique can be found in Armas Romero et al. [1].

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

62 of 139

2.2 Computing an LELK-signature

To find a suitable LELK-signature ΣELK for a given ontology O, MORe first identi-
fies the set S of axioms that ELK cannot process, and —if possible— a subset Σ
of Sig(O) such that all the axioms in S are ⊥-local w.r.t. Σ. This alone, however,
does not guarantee that M[O,Σ] ∩ S = ∅.

Example 1. Consider the ontology Oex consisting of the following axioms:

A ≡ B t C B ≡ D u ∃R.E F v ∃R.G

All the axioms in Oex are in LELK except for α = A ≡ B t C. Now, we have that
α is ⊥-local w.r.t. a signature Σ iff Σ ∩ {A,B,C} = ∅, therefore, α is ⊥-local
w.r.t. Σ = Sig(Oex) \ {A,B,C}. However, β = B ≡ Du ∃R.E is not ⊥-local w.r.t.
Σ, so β ∈ M[O,Σ] and B ∈ Sig(M[O,Σ]), and therefore α is not ⊥-local w.r.t.
Σ ∪ Sig(M[O,Σ]) and needs to be in M[O,Σ]. ♦

All we need to do is progressively reduce Σ until Sig(M[O,Σ]) ⊆ Σ. This can
be done as follows:

1. Let S0 be the set of axioms in O that are not in LELK and let Σ0 = Sig(O).
2. Reduce Σ0 to some Σ1 ⊂ Σ0 such that S0 is ⊥-local w.r.t. Σ1. If this is not

possible, then make Σ1 = ∅.
3. Compute the set S1 of axioms in M[O,Σ1] containing symbols outside Σ1.
4. Repeat Steps 2–3 until Si = ∅ (i.e. until Sig(M[O,Σi]) ⊆ Σi) or Σi = ∅.

It is important to note that, in some cases, there may be several different ways
of obtaining Σi+1 from Σi.

Example 2. As shown in the previous example, taking Σ = Sig(Oex)\{A,B,C} is
not enough to keep A ≡ BtC outsideM[O,Σ]. We need to remove more symbols
from Σ to keep B ≡ D u ∃R.E outside M[O,Σ] too. One possibility would be to
remove D from Σ, but we could also choose to remove R or E instead. It turns
out that choosing one option over another can change things substantially.

If we chose to take Σ1 = Sig(Oex)\{A,B,C,R} then, because F v ∃R.G is not
⊥-local w.r.t. Σ1 and contains the symbol R, we would need to further reduce
Σ1 to some Σ2 ⊂ Σ1.

However, if we tookΣ1 = Sig(Oex)\{A,B,C,D} orΣ1 = Sig(Oex)\{A,B,C,E},
then we would already have Sig(M[Oex,Σ1]) = Σ1, and we would be done. ♦

The ⊥-module M[O,Sig(O)\ΣELK] that the OWL reasoner needs to classify is
likely to be smaller the larger ΣELK is. Therefore, it is desirable to find heuristics
to choose each Σi in a way that leads to an LELK-signature as large as possible.
Below we describe the main heuristics that we have implemented in MORe.

Keeping Properties As far as possible, we try not to remove properties from
Σi. The reason for this is that most ontologies contain fewer properties than
classes, and each property usually appears in more axioms than any class. Thus,
removing a property from Σi is more likely to bring more axioms into the next
Si+1 and lead to a smaller LELK-signature.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

63 of 139

Global Symbols We perform a preprocessing stage to identify a (possibly
empty) set Γ of global symbols in Sig(O), such that either Γ ⊆ ΣELK or ΣELK = ∅.
For this, we first find the set G of all global axioms in O, i.e. those that cannot
possibly be made ⊥-local, (e.g. axioms of the form > v C) and take Γ = Sig(G).
We then keep adding to Γ the signatures of all the axioms in O that would only
be ⊥-local w.r.t. ΣELK if some symbol in Γ was left outside ΣELK, until no more
symbols need to be added to Γ .

Then, we will only ever consider sets Σi such that Γ ⊆ Σi. As the following
example shows, this can sometimes mark the difference between finding a non-
empty LELK-signature or not.

Example 3. Consider the ontology O′
ex = Oex ∪ {> v ∃R.E}. In the previous

example we saw how both Sig(Oex)\{A,B,C,D} and Sig(Oex)\{A,B,C,E} were
equally good choices when choosing a suitable Σ1 for Oex . This is not the case
any more with O′

ex, as after choosing Sig(O′
ex) \ {A,B,C,E} we would need to

try to keep > v ∃R.E outsideM[O′
ex,Σ

ELK] too; but this is not possible, so in the
end we would have ΣELK = ∅. ♦

Reducing Nondeterminism In each iteration of the algorithm, instead of
considering the set Si as a whole, we split it into two subsets: Snondeti , containing
those axioms in S for which there are several ways in which Σi can be reduced
to make them ⊥-local, and Sdeti , those for which there is only one way.

Whenever Sdeti 6= ∅, we obtain Σi+1 by removing from Σi the symbols re-
quired by each axiom in Sdeti , and ignore Snondeti . When Sdeti = ∅, we deal with
the axioms in Snondeti taking a greedy approach —finding the optimal solution
is often too expensive.

The intuition behind this heuristic is that, by postponing making any nonde-
terministic decisions as much as possible, we might eliminate the need to make
them altogether.

Note that, using this heuristic, we are not guaranteed to handle all the non
LELK-axioms in the first iteration any more, therefore we also have to consider
in each Si those non-LELK axioms that are still not ⊥-local w.r.t. Σi.

Example 4. Consider the ontology O′′
ex consisting of all the axioms in Oex, plus

the following additional axioms:

E v C H v ∃R.E I ≡ (E u F) t (G u H)

We first get Snondet0 = {I ≡ (E u F) t (G u H)} and Sdet0 = {A ≡ B t C}. The
new non-LELK axiom, I ≡ (E u F) t (G u H), goes into Snondet0 because it could
be handled by removing any of the following sets of symbols: {I,E,G}, {I,F,G},
{I,E,H} or {I,F,H}. For now we only deal with Sdet0 = {A ≡ B t C}, and we do
so by taking Σ0 = Sig(O′′

ex) \ {A,B,C}.
Then we obtain the sets Snondet1 = {B ≡ D u ∃R.E, I ≡ (E u F) t (G u H)} and

Sdet1 = {E v C} and we deal with E v C by taking Σ1 = Sig(O′′
ex) \ {A,B,C,E}.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

64 of 139

Table 1. Ontology metrics

Ontology

Metrics
Expressivity |Sig(O)| |O| |O \ OLELK | |MOWL2|

Gazetteer ALE+ 517,039 652,361 0 0%

Cardiac Electrophys. SHF(D) 81,020 124,248 22 1%

Protein S 35,205 46,114 15 22%

Biomodels SRIF 187,577 439,248 22,104 45%

Cell Cycle v0.95 SRI 144,619 511,354 1 <0.1%

Cell Cycle v2.01 SRI 106,517 624,702 9 98%

NCI v09.12d SH(D) 77,571 109,013 4,682 58%

NCI v13.03d SH(D) 97,652 136,902 158 57%

SNOMED15t ALCR 291,216 291,185 15 3%

SNOMED+LUCADA ALCRIQ(D) 309,405 550,453 122 0.1%

In the next iteration, we get Snondet2 = {I ≡ (E u F) t (G u H)} —note that
axiom B ≡ D u ∃R.E has been taken care of indirectly— and Sdet2 = {H v ∃R.E},
and we handle H v ∃R.E by taking Σ2 = Sig(O′′

ex) \ {A,B,C,E,H}.
After that, we find Snondet2 = ∅ and Sdet2 = {I ≡ (E u F) t (G u H)}, and take

Σ3 = Sig(O′′
ex) \ {A,B,C,E,H, I}, which finally gives S3 = ∅. Thus, we have

computed ΣELK = Σ3 without making any nondeterministic decisions.

3 Evaluation

We have tested MORe using an Ubuntu 12.04 64-bit machine with 7.8 GiB of
RAM (fully assigned to the JVM) and an Intel Core i7-3770 CPU @ 3.40GHz x
8 processor. Our test ontology suite includes six BioPortal ontologies5 [3] —for
Biomodels we consider only its TBox—, two different versions of NCI6 [5], and
two extensions of SNOMED7 [9]: SNOMED15t was built from a 2012 version
of SNOMED, following the suggestions of domain experts, by adding 15 axioms
containing disjunctions; SNOMED+LUCADA was obtained by mapping a 2011
version of SNOMED to the terminological part of the LUCADA ontology8 [10,
11] using the ontology matching system LogMap [7]. Table 1 gives an overview
of the general features of these ontologies, including the number of non-LELK

axioms they contain and the size of the module extacted by MORe for the OWL
reasoner, M[O,Sig(O)\ΣELK], referred to as MOWL2 in Table 1.

5 http://bioportal.bioontology.org/ontologies/1397
6 http://evs.nci.nih.gov/ftp1/NCI Thesaurus/archive
7 http://www.ihtsdo.org/snomed-ct/
8 The LUCADA ontology (ALCHI(D)) contains 476 entities and can be classified by

both HermiT and Pellet in less than 2 seconds

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

65 of 139

Table 2. Classification times in seconds

Ontology

Reasoner MOReHermiT
HermiT

MORePellet
Pellet

HermiT total Pellet total

Gazetteer 0 20.6 651 0 20.3 1,414

Cardiac Electrophys. 0.3 6.3 22.7 0.3 5.5 11.0

Protein 2.0 4.8 10.0 2.0 4.7 2,920

Biomodels 377 487 582 373 483 1,915

Cell Cycle v0.95 <0.1 9.9 mem <0.1 10.4 3,433

Cell Cycle v2.01 mem mem mem mem mem 3,435

NCI v09.12d 244 252 261 256 266 93.6

NCI v13.03d 45.1 62.7 68.4 45.7 62.9 191

SNOMED15t 4.5 25.4 1,395 4.4 22.9 4,314

SNOMED+LUCADA 1.1 28.8 1,302 1.2 29.2 mem

We analyse our results by comparing the performance of MORe using HermiT
vs. HermiT alone, and of MORe using Pellet vs. Pellet alone. A summary of all
results can be found in Table 2. mem indicates an out of memory error.

When integrating HermiT, MORe is always able to improve, or at least main-
tain its performance. We remark the case of Cell Cycle v0.95, where the perfor-
mance is improved from an out of memory error to termination in under 10s.

Integrating Pellet, however, sometimes has an unexpected effect. In the cases
of NCI v09.12d and Cell Cycle v2.01, Pellet takes longer to classifyMOWL2 when
integrated in MORe than to classify the whole ontology on its own. This however,
does not happen when Pellet is used to classifyMOWL2 independently of MORe.
We are still unsure about the causes of this phenomenon. Apart from these two
cases, MORe is still often able to improve on the performance of Pellet.

It is worth mentioning that the reason why, in the case of Cell Cycle v2.01,
the portion of the ontology that the OWL reasoner has to process is so close
to the whole ontology (98%) is because the 9 non LELK axioms are symmetric
property axioms, which force their 9 respective properties out of ΣELK, reducing
it to a very small set.

4 Conclusions and Future Directions

We are continuing to develop MORe, exploring new ways of further reducing
the workload assigned to a general purpose OWL 2 classification algorithm.
We are looking into the possibility of alternative modularity notions specific
for this application, and also into exploiting computational properties of other
lightweight ontology languages to combine our modular approach with one based
on finding lower and upper bounds for the classification.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

66 of 139

Acknowledgements

This work was supported by the Royal Society, the Seventh Framework Program
(FP7) of the European Commission under Grant Agreement 318338, ”Optique”,
and the EPSRC projects Score!, ExODA and MaSI3.

References

1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular Combination
of OWL Reasoners for Ontology Classification. In: International Semantic Web
Conference (ISWC). pp. 1–16 (2012)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. Artificial Intelligence Research 31, 273–318 (2008)

3. Fridman Noy, N., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jon-
quet, C., Rubin, D.L., Storey, M.A.D., Chute, C.G., Musen, M.A.: BioPortal:
ontologies and integrated data resources at the click of a mouse. Nucleic Acids
Research 37(Web-Server-Issue), 170–173 (2009)

4. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to
ontology classification. J. of Web Semantics 10(1) (2011)

5. Golbeck, J., Fragoso, G., Hartel, F.W., Hendler, J.A., Oberthaler, J., Parsia, B.:
The National Cancer Institute’s Thésaurus and Ontology. J. Web Semantics 1(1),
75–80 (2003)

6. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

7. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive
ontology matching: Algorithms and implementation. In: European Conference on
Artificial Intelligence (ECAI). pp. 444–449 (2012)

8. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of EL ontolo-
gies. In: International Semantic Web Conference (ISWC). pp. 305–320 (2011)

9. Schulz, S., Cornet, R., Spackman, K.A.: Consolidating SNOMED CT’s ontological
commitment. Applied Ontology 6(1), 1–11 (2011)

10. Sesen, M.B., Bañares-Alcántara, R., Fox, J., Kadir, T., Brady, J.M.: Lung Cancer
Assistant: An Ontology-Driven, Online Decision Support Prototype for Lung Can-
cer Treatment Selection. In: OWL: Experiences and Directions Workshop (2012)

11. Sesen, M.B., Jiménez-Ruiz, E., Bañares-Alcántara, R., Brady, J.M.: Evaluating
OWL 2 Reasoners in the context of Clinical Decision Support in Lung Cancer
Treatment Selection. In: OWL Reasoner Evaluation (ORE) Workshop (2013)

12. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL DL reasoner. J. of Web Semantics 5(2), 51–53 (2007)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

67 of 139

Experimenting with ELK Reasoner on Android

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel.klinov}@uni-ulm.de

Abstract. This paper presents results of a preliminary evaluation of the OWL
EL reasoner ELK running on a Google Nexus 4 cell phone under Android 4.2
OS. The results show that economic and well-engineered ontology reasoners can
demonstrate acceptable performance when classifying ontologies with thousands
of axioms and take advantage of multi-core CPUs of modern mobile devices. The
paper emphasizes the engineering aspects of ELK’s design and implementation
which make this performance possible.

1 Introduction and Motivation

Mobile computing has been on the rise for the last decade and the Semantic Web ap-
plications are no exception. Increasingly many mobile applications can benefit from se-
mantic technologies, especially when it comes to context-aware information processing
[1]. Specifically, it is desirable to be able to combine data obtained by various mobile IO
devices (sensors), such as GPS devices, Wifi or cellular networks, etc., with background
information supplied by ontologies. For example, an intelligent application can use an
ontology representing various kinds of businesses, e.g., restaurants, grocery stores, etc.,
with facts determining the user’s location to suggest places to go. Or a medical appli-
cation can use a medical ontology in conjunction with private user’s medical data to
provide counselling or other services. Such applications require reasoning to make use
of implicit knowledge and sometimes may require reasoning to happen on the device
itself (rather than on a remote server or in the cloud) for reasons such as privacy [2].

Recently there has been interest in ontology reasoners designed specifically for mo-
bile platforms. Some researchers claim that mobile devices, being resource-constrained,
require reasoner developers design their reasoning engines specifically for mobile com-
puting environments [3]. Few such reasoner implementation and evaluation reports are
available, for example, Delta reasoner [3] and Pocket KR Hyper [2]. At the same time
we are not aware of any experience of porting existing reasoners to mobile platforms.
This is a little surprising since modern devices boast substantial computational power.
Having the same reasoning core working for both desktop/server and mobile devices
with minimal changes would be attractive from the maintainability point of view.

This paper is a step in that direction. It presents an evaluation of ELK, a concurrent
reasoner for OWL EL profile [4] implemented in Java, on Google’s Nexus 4 phone un-
der Android 4.2 operating system. The results demonstrate that ELK is able to provide
acceptable classification performance on mid-to-large sized ontologies (up to tens of
thousands of axioms) and is even able to classify SNOMED CT, one of the largest med-
ical ontologies, which remains a challenge for many OWL reasoners even on desktops.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

68 of 139

R0
C v C

: C occurs in O

R>
C v > : C and > occur in O

Rv
C v D

C v E
: D v E ∈ O

R−u
C v D1 uD2

C v D1 C v D2

R+
u

C v D1 C v D2

C v D1 uD2
: D1 uD2 occurs in O

R∃
E v ∃R.C C v D

E v ∃S.D :
∃S.D occurs in O
R v∗O S

R◦
E v ∃R1.C C v ∃R2.D

E v ∃S.D :
S1 ◦ S2 v S ∈ O
R1 v∗O S1

R2 v∗O S2

Fig. 1. The inference rules for reasoning in EL+

Importantly, the changes between the standard and mobile versions of ELK are negli-
gible. This work is preliminary, in particular, it does not aim at comparing performance
of ELK on a mobile device to that of other existing OWL reasoners (or across different
mobile devices).

2 Preliminaries

In this paper, we will focus on the DL EL+ [5], which can be seen as EL++ [6] without
nominals, datatypes, and the bottom concept ⊥. EL+ concepts are defined using the
grammar C ::= A | > | C1 u C2 | ∃R.C, where A is an atomic concept, R an
atomic role, and C, C1, C2 ∈ C. EL+ axiom is either a concept inclusion C1 v C2

for C1, C2 ∈ C, a role inclusion R v S, or a role composition R1 ◦ R2 v S, where
R, R1, R2, S are role names. EL+ ontology O is a finite set of EL+ axioms. Given an
ontology O, we write v∗O for the smallest reflexive transitive binary relation over roles
such that R v∗O S holds for all R v S ∈ O.

Entailment of axioms by an ontology is defined in a usual way; a formal definition
can be found, e.g., in [5]. A concept C is subsumed by D w.r.t. O if O |= C v D.
In this case, we call C v D an entailed subsumption. The ontology classification task
requires to compute all entailed subsumptions between atomic concepts occurring inO.

The EL+ reasoning procedure implemented in ELK works by applying inference
rules to derive subsumptions between concepts. Figure 1 shows the rules from EL++

[6] restricted to EL+, but presents them in a way that does not require the normaliza-
tion stage [4]. Some rules have side conditions given after the colon that restrict the
expressions to which the rules are applicable. For example, rule R+

u applies to each
C,D1, D2, such that D1 uD2 occurs inO with premises {C v D1, C v D2}, and the
conclusion C v D1 uD2. Note that the axioms in the ontologyO are only used in side
conditions of the rules and never used as premises of the rules.

The rules in Figure 1 are complete for deriving subsumptions between the concepts
occurring in the ontology. That is, if O |= C v D for C and D occurring in O, then
C v D can be derived using the rules in Figure 1 [6]. Therefore, in order to classify
the ontology, it is sufficient to compute the closure under the rules and take the derived
subsumptions between atomic concepts.

Computing the closure under inference rules, such as in Figure 1, can be performed
using a well-known forward chaining procedure presented in Algorithm 1 in an abstract

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

69 of 139

Algorithm 1: Abstract rule-based classification procedure
input : C: the set of named concepts from O, R: a set of inference rules
output : Closure: a set of inferences closed under R

1 Closure, Todo← ∅;
2 for A ∈ C do /* initialize */
3 Todo← Todo ∪ apply(R0[A]) ∪ apply(R>[A]);

4 while (exp← Todo.poll()6= null) do /* compute closure */
5 if exp /∈ Closure then
6 Closure← Closure ∪ exp;
7 for r ∈ R[exp,Closure] do
8 Todo← Todo ∪ apply(r);

9 return Closure;

way. The algorithm works with expressions of the form C v D or C v ∃R.D, where
C and D are concepts and R is a role. It derives expressions by applying rules R in
Figure 1. It collects those expressions to which all rules have been applied in a set
Closure and the remaining ones in a queue Todo. The algorithm first initializes Todo
with conclusions of the initialization rule R0, see lines 2–3. Then it repeatedly takes
the next expression exp ∈ Todo, inserts it into Closure if it does not occur there, and
applies all applicable rules to it (lines 4–8). Informally, we use R[. . .] to denote selection
of rules for specific premises and/or side conditions. The conclusions derived by the
applied rules are then inserted in Todo.

ELK implements a concurrent version of Algorithm 1 which maintains a context
for each concept that occurs on the left hand-side of an axiom in O. Contexts maintain
their own Todo queues and are processed in parallel threads of execution (referred to as
workers). Details can be found in [4].

3 Evaluation on Google Nexus 4

This section present the results of a preliminary evaluation of ELK’s classification per-
formance on a Google Nexus 4 cell phone. The device runs under Android 4 OS and
features a Qualcomm SnapdragonTM S4 Pro CPU (4 cores, 1.7 GHz) and 2 GB RAM,
of which 500 MB was allocated to JVM. To put the results into a perspective, we also
ran ELK on a PC with Intel Core i5-2520M 2.50GHz CPU with 8 GB RAM (JVM was
allocated the same 500 MB).

Five EL ontologies often used for benchmarking EL reasoners have been selected
for the experiments (the number of logical axioms given in parenthesis): Chemical Enti-
ties of Biological Interest (ChEBI, 67,182), the e-Mouse Atlas Project (EMAP, 13,730),
and the Fly Anatomy (19,137) are some of large OBO Foundry1 and Ontobee2 ontolo-
gies that also include some non-atomic concepts. GO (28,896) is the older version of the

1http://www.obofoundry.org/
2http://www.ontobee.org/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

70 of 139

Gene Ontology published in 2006. EL-GALEN (36,547) is an EL+-restricted version
of the GALEN ontology. All ontologies are freely available from the ELK website.3

Each ontology was classified with different, from 1 to 6, number of workers and
the results are presented in Table 1. The most obvious experimental outcome is that
classification on the cell phone is about two orders of magnitude slower than on a PC,
i.e., the difference appears larger than in the mere computational power of the two
systems (at least, if the latter is compared in terms of just CPU rate and the amount of
RAM). Comparison of the “LI Ratio” columns reveals that the relative difference during
the classification stage (CPU-bound processing) is larger than during the loading and
indexing stage (mostly IO-bound). One possible explanation is that CPU caches, for
which ELK’s data structures are optimized (see the next section), are more effective on
PC than on this cell phone. Difference in the RAM speed may have also played a role.

It can be noted that ELK’s concurrent classification algorithm brings benefits on the
cell phone just as well as on PC. The difference is especially visible between 1 worker
and 2 (or more) workers. It is only visible for the classification stage because during
indexing most time is spent on loading axioms from external memory and parsing.

Finally, we attempted to classify the official January 2013 release of SNOMED CT,
one of the largest medical ontologies (296,529 axioms).4 The intent was to push ELK
(and the phone) to its limits. Tad surprisingly, ELK still managed to complete classifi-
cation in 1h and 20m, out of which nearly 10m was spent on loading/indexing and the
rest on reasoning. It has used nearly all (475 MB) memory available to JVM. For refer-
ence, it takes about 10s to classify SNOMED CT on a laptop with Intel Core i5-2520M
2.50GHz CPU and 4GB of RAM available to JVM.

4 Implementation Notes

This section provides some engineering details on implementation of ELK. The meth-
ods listed below are not specific to a particular computational platform. However, they
are particularly relevant to mobile devices since they seek to reduce the memory foot-
print of the reasoner.

Entity filtering: In large ontologies it is often the case that some OWL entities
(concept (sub)expressions or roles) appear in many axioms. ELK’s internal entity filter
guarantees that each entity is represented by precisely one Java object. This has two
advantages: First, it reduces memory consumption and thus reduces the number of GC
cycles. Second, it allows for fast equality checking by comparing references (basically,
memory pointers). The latter is especially important for searching for an object in col-
lections, e.g., sets or arrays.

Economic data structures: The ELK’s classification algorithm operates with many
collections of objects representing OWL entities, such as subsumers for a given con-
cept, conjuncts in a given conjunctive concept expression, etc. The important thing is
that most of those collections are small, i.e. usually up to hundred elements. ELK pro-
vides a custom array-based, cache-friendly hashtable implementation with linear prob-

3https://code.google.com/p/elk-reasoner/wiki/TestOntologies
4We did not include it in the main experiment since it would take too much time to vary the

number of workers for it.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

71 of 139

Table 1. Time (in ms) and memory usage (in MB) results for loading/indexing and classification
on a Google Nexus 4 and a PC. The LI Ratio column shows the proportion of total time (in %)
spent for loading and indexing the ontology.

Google Nexus 4 PC
Ontology Workers Load./Index. Classif. LI Ratio Memory Load./Index. Classif. LI Ratio
ChEBI 1 31,370 207,020 13 67 351 1,055 25
ChEBI 2 29,423 160,334 16 72 323 715 31
ChEBI 3 32,213 148,369 18 72 337 611 36
ChEBI 4 32,443 147,868 18 68 324 646 33
ChEBI 5 32,900 114,054 22 65 362 570 39
ChEBI 6 29,997 107,033 22 72 341 597 36
EMAP 1 20,667 6,970 75 23 366 93 80
EMAP 2 19,580 4,337 82 24 389 83 82
EMAP 3 20,311 3,750 84 25 413 72 85
EMAP 4 19,081 3,508 84 24 396 68 85
EMAP 5 19,921 3,467 85 23 383 73 84
EMAP 6 19,949 3,390 95 25 360 86 81
Fly Anatomy 1 7,882 31,478 20 22 195 276 39
Fly Anatomy 2 8,231 18,953 30 23 248 252 52
Fly Anatomy 3 9,143 16,951 35 24 256 223 51
Fly Anatomy 4 8,483 16,041 35 24 225 275 45
Fly Anatomy 5 7,743 15,439 33 26 278 253 52
Fly Anatomy 6 8,462 15,992 34 25 283 250 53
GO 1 30,745 33,441 48 38 518 214 71
GO 2 33,856 20,503 62 38 651 217 75
GO 3 31,395 15,752 67 38 639 236 73
GO 4 31,348 15,516 67 38 581 217 73
GO 5 31,419 18,721 63 39 713 222 76
GO 6 30,464 17,055 64 38 714 232 75
EL-GALEN 1 21,319 211,839 9 76 403 1,582 20
EL-GALEN 2 21,053 145,657 12 76 389 979 28
EL-GALEN 3 21,230 129,322 14 76 394 922 30
EL-GALEN 4 21,702 176,283 11 76 444 841 35
EL-GALEN 5 21,996 157,872 12 80 385 867 31
EL-GALEN 6 22,259 114,014 16 85 409 897 31

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

72 of 139

ing which is fine-tuned for small sets and supports very fast lookup and iteration (as,
consequently, intersection) operations.

Optimized class taxonomy: ELK’s implementation of taxonomy is specifically op-
timized for ontology class hierarchies, which are mostly shallow trees (or DAGs) with a
possible large branching factor. For example, the bottom node which represents unsat-
isfiable concepts (⊥ and others) does not store references to its parent nodes (satisfiable
concepts with no subsumees) and neither do its parents store a reference to⊥. Also, the
taxonomy supports concurrent updates and can be built incrementally, i.e., new nodes
can be added as soon as all subsumers for a given concept have been inferred.

Indexing: ELK does not explicitly store axioms after the ontology has been loaded.
Instead, it creates instances of the rules in Figure 1 as it loads the axioms and stores
them in the objects which represent entities occurring in the axiom. This is done to,
first, avoid the cost of storing potentially a large number of complex axioms, second,
enable a fast implementation of the R[. . .] operator for finding applicable rules, and
finally, group together different rules applicable to the same premises. For example, if
O contains axioms A v B, A v C, and A v D, they can be grouped into a threefold
instance of Rv : A 7→ {B,C,D}, which derives X v B, X v C, and X v D in one
go when applying to X v A (for some concept X). In addition, such indexing ensures
that if some construct, e.g., role composition axioms, never occurs in the ontology, then
the corresponding rule, e.g., Ro, will never even be considered for selection. Finally, the
rule instances can be quickly updated if some axioms are added or deleted without the
need to reload the ontology from external memory.

5 Conclusion

ELK has not been designed for mobile platforms. However, it has been heavily engi-
neered to minimize memory consumption and take advantage of multi-core CPUs. This
paper provides some insight into what happens when such a reasoner is run on a mobile
device. Our experimental results are preliminary but they suggest that well-engineered
reasoners can provide acceptable performance on modern cell phones, and can even
classify some of the largest available ontologies. It is worth mentioning that ELK does
not depend on external libraries (other than for logging) and thus runs nearly out-of-the-
box under the Android’s JVM. Therefore, mobile users can immediately benefit from
all improvements being made in the main ELK’s development branch.

In the future it would make sense to perform a more detailed evaluation on multiple
devices, including a comparison between existing reasoners (at least those which can
work on multiple platforms out-of-the-box). Also, more fine-grained experiments and
thorough profiling are required to understand the reasons why reasoning is that much
slower on a cell phone. This may lead not only to faster mobile reasoning but also
improve performance on desktops and servers.

References

1. Specht, G., Weithöner, T.: Context-aware processing of ontologies in mobile environments.
In: Mobile Data Management Conference. (2006) 86–89

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

73 of 139

2. Kleemann, T.: Towards mobile reasoning. In Parsia, B., Sattler, U., Toman, D., eds.: Proc. 19th
Int. Workshop on Description Logics (DL’06). Volume 189 of CEUR Workshop Proceedings.,
CEUR-WS.org (2006)

3. Motik, B., Horrocks, I., Kim, S.M.: Delta-reasoner: a semantic web reasoner for an intelligent
mobile platform. In: World Wide Web Conference (Companion Volume). (2012) 63–72

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontologies. In
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.,
eds.: Proc. 10th Int. Semantic Web Conf. (ISWC’11). Volume 7032 of LNCS., Springer (2011)
305–320

5. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In Parsia, B., Sattler,
U., Toman, D., eds.: Proc. 19th Int. Workshop on Description Logics (DL’06). Volume 189 of
CEUR Workshop Proceedings., CEUR-WS.org (2006)

6. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In Kaelbling, L., Saffiotti, A., eds.:
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). (2005) 364–369

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

74 of 139

Extending Datatype Support for Tractable Reasoning
with OWL 2 EL Ontologies

Pospishnyi Oleksandr1,

1 National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kiev, Ukraine
 pospishniy@kpi.in.ua

Abstract. It was mentioned on multiple occasions that datatype expressions are
a necessary component of any production quality knowledge base and will
surely play a major role in the upcoming Semantic Web. This paper briefly
summarizes the work on improving the support for tractable reasoning with
datatype expressions in ELK - a highly efficient ࣦࣟ reasoner. Tests have shown
an exceptional speed of ontology classification of great size which opens up
new perspectives for applying ontologies with datatype expressions in practice.

Keywords: ontology, dataypes, reasoning, EL++, ELK

1 Background

In Description Logics, datatypes (also called concrete domains) can be used to
define new concepts by referring to particular values, such as strings or integers. For
example the following axioms from computer hardware ontology provide definitions
for the notions of dual-, quad-, and many-core processors:

܃۾۱܍ܚܗ۱ܔ܉ܝ۲ ≡ ܃۾۱ ⊓ .ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺൌ, ሻ	
܃۾۱܍ܚܗ۱܌܉ܝۿ ≡ ܃۾۱ ⊓ .ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺൌ, ሻ	
܃۾۱܍ܚܗ۱ܑܜܔܝۻ ≡ ܃۾۱ ⊓ .ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺ, ሻ

In mentioned example, ሺ, ሻ refers to the domain of natural numbers and the
relation is used to constrain possible values to those larger than 1. Restriction ሺൌ, ሻ
uses the relation ൌ to constrain the value to element 2, and similarly for ሺൌ, ሻ.

Any ontology reasoner, with a support of datatype expressions, as presented above,
should be able to derive new axioms such as:

܃۾۱܍ܚܗ۱ܔ܉ܝ۲ ⊑ 		܃۾۱܍ܚܗ۱ܑܜܔܝۻ
܃۾۱܍ܚܗ۱܌܉ܝۿ ⊑ ܃۾۱܍ܚܗ۱ܑܜܔܝۻ

In order to ensure that reasoning remains polynomial, logic ࣦࣟାା allows only for
datatype restrictions that cannot implicitly express concept disjunction, which is a
well-known cause of intractability. Consider, for example, the axioms:

܃۾۱ ⊑ .ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺ, ሻ	
܃۾۱܍ܚܗ۱܍ܔܖܑ܁ ≡ ܃۾۱ ⊓ .ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺൌ, ሻ	
܃۾۱܍ܚܗ۱ܑܜܔܝۻ ≡ ܃۾۱ ⊓ .ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺ, ሻ

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

75 of 139

It could be seen, that these axioms imply the disjunction:

܃۾۱ ⊑ ܃۾۱܍ܚܗ۱܍ܔܖܑ܁ ܃۾۱܍ܚܗ܋ܑܜܔܝۻ⊔

To prevent such situations, the EL Profile of OWL 2, which is based on ࣦࣟାା,
admits only equality ሺൌሻ in datatype restrictions. Unfortunately, it would be almost
impossible to adequately model knowledge about real world domains using
ontologies with such severe limitations on allowed datatype expressions.

It was recently demonstrated by D. Magka, Y. Kazakov and I. Horrocks [1] that the
mentioned restrictions could be significantly relaxed without losing tractability. This
paper introduced a notion of “safety” for datatype restrictions and classified all safe
combinations of datatype restrictions for the domain of natural numbers, integers,
rational and real numbers. Conducted theoretical work opened up an opportunity to
implement datatype support for ࣦࣟ reasoners that would be both, safe and practically
useful.

But more work still needs to be done. Namely, a large amount of ontologies relies
on other common datatypes, such as date/time, strings, binary data, URIs, etc:

E30-1280 ⊑ ܖܗ܍܆ ⊓ .܍ܜ܉۲܍ܛ܉܍ܔ܍ܚ∃ ሺൌ ,	2011-06-03)
E30-1280 .ܗۼܜܚ܉۾ܛ܉ܐ∃	≡ ሺൌ, "BX80623E31280"ሻ

E30-1280 .۷۲܃۾۱ܛ܉ܐ∃	≡ ሺൌ, ۲ૠܐሻ,

restrictions on them:
.ܗۼܜܚ܉۾ܛ܉ܐ∃ ሺܖܚ܍ܜܜ܉ܘ,'CM806230*'ሻ ⊑ ܖܗ܍܆

܃۾۱ܔ܍ܜܖ۷ ⊑ .ܗۼܜܚ܉۾ܛ܉ܐ∃ ሺࢎ࢚ࢍࢋୀ,15ሻ,

and interval relations, such as:
.܍ܜ܉۲܍ܛ܉܍ܔ܍ܚ∃ ሺ 2011-01-01, ≤ 2011-12-31)

.ܛ܍ܚܗ۱ܛ܉ܐ∃ ሺ , ൏ ૡሻ.

Thus, a goal was set to use the approach, presented in [1], and extend it to include
all datatypes from the OWL 2 EL profile, as well as complex datatype restrictions, all
without compromising the tractability.

Recent studies [2] showed that the abovementioned datatype expressions are already
widely used in different ontologies all over the Internet, despite their poor support by
most reasoners. It also has been often mentioned that datatype assertions would be a
major part of the Semantic Web and lack of their support would greatly hamper its
development.

Newly developed reasoning procedures were implemented and tested in ELK – a
state of the art tractable ࣦࣟ reasoner [3].

2 Technical approach

According to Web Ontology Language specification, OWL 2 EL profile provides
for 19 various datatypes, most of which are defined in XML Schema Definition
Language (XSD) specification. Figure 1 provides a summary of all datatypes, allowed
by the OWL 2 EL profile and displays their inheritance and a set of allowed facet
restrictions.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

76 of 139

Fig. 1. Datatypes allowed by the OWL 2 EL profile

It is worth mentioning, that OWL 2 EL profile does not allow the following
datatypes: xsd:double, xsd:float, xsd:nonPositiveInteger, xsd:positiveInteger,
xsd:negativeInteger, xsd:long, xsd:int, xsd:short, xsd:byte, xsd:unsignedLong,
xsd:unsignedInt, xsd:unsignedShort, xsd:unsignedByte, xsd:language and
xsd:boolean. The set of supported datatypes has been designed such that the
intersection of the value spaces of any set of these datatypes is either empty or
infinite, which is necessary to obtain the desired computational properties.

In order to support reasoning with abovementioned allowed datatypes, a set of new
inference rules was implemented for the ELK reasoner:

	C ⊑ ∃R. rା
C ⊑ D

						∃R. rି ⊑ D ∈ ࣩ,			rା ⊆ rି

																			
C ⊑	٣

								C ⊑ ∃R. rା ∈ ࣩ,			rା ൌ ∅

where ࣩ is an ontology, C	and	D are the concepts, R is a datatype property and
∃R. rേ	denotes an existential datatype expression created with constraining facets.
Symbols + and ̶ indicate that an expression is occurring right or left of ⊑ respectively.

With rା ⊆ rି we represent a fact that a value space constrained by the datatype
restriction rା is a subset of a value space constrained by the rି datatype restriction, or
in other words rି includes rା. With rା ൌ ∅ we represent an empty value space
produced by the datatype restriction rା.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

77 of 139

In the proposed implementation, all datatype expressions are parsed with respect to
their lexical form and then transformed to internal representation that reflects the
nature of their respective value space. All possible value spaces, created by the
datatype restrictions, could be conventionally divided into 3 categories:

• Values: binary value, date/time value, literal value and numeric value.
• Intervals: numeric interval, date/time interval and length restriction
• Other: empty value space, entire value space and pattern
During the computation of all conclusions under the inference rules, for each

encountered ∃R. rା expression a search is conducted for all ∃R. rି expressions in the
ontology where rା ⊆ rି. To increase the efficiency of reasoning, a special datatype
index is used to optimize the search for all such ∃R. rି expressions.

Table 1 summarizes all possible rା ⊆ rି scenarios where ܣ represents rି datatype
restriction, and ܤ	represents rା datatype restriction.

My means of Bୈ ⊆ Aୈ expression we state that the datatype of a restriction ܤ is
equal to or inherited from the datatype of a restriction ܣ, for example xsd: integer ⊆
owl: real. Expression A୪୭୵ and A୦୧୦ denote a minimum and maximum value implied
by the restriction ܣ, while B୪ୣ୬ denotes a length of a corresponding value. Finally, by

B →

	∉ ∅ expression we represent a fact that literal value ܣ matches a corresponding

pattern restriction ܤ.

3 Evaluation

The evaluation of proposed modifications was conducted using a large OWL 2 EL
ontology that was generated by the Grid-DL Semantic Grid information service [4].

Two test ontologies were considered. The full ontology consisted of 1,087,124
axioms, 65 classes, 33 object properties, 109 datatype properties and 131,637
individual assertions. Truncated version of the ontology connsisted of only 230,670
axioms and 36,191 individual assertions.

Three classes were added to act as a “query” to the knowledge base:

UK_Site ≡ Site and hasLocation some

 (Location and hasName some string[pattern ".*, UK"])

Idle_CE ≡ ComputingElement and hasState some

 (CEState and hasRunningJobs value 0 and hasWaitingJobs value 0

and hasFreeJobSlots some integer[>0])

and hasState some (CEState and hasStatus value Production)

x64_Cluster ≡ SubCluster and (describedBy some

(hasPlatformType value "x86_64"^^string) and

(describedBy some (hasRAMSize some integer[>= 4096, <= 8192])))

Table 2 presents the test results. For comparison the Pellet [5] and HermiT [6]
reasoners were included, both capable of reasoning on OWL 2 EL ontologies with
datatype expressions. The following test setup was used: Intel Core 2 Duo T9300 @
2.50GHz, 4 Gb RAM, OpenSUSE 12.1 (Linux 3.1.10), Java 1.7.0_05 (-Xmx3200M -
Xms3200M), Pellet 2.2.0, HermiT 1.3.6. All tests were conducted three times and
then averaged.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

78 of 139

 Table 2. Datatype restrictions subsumption matrix 12
 В

 A
Empty

ValueSp.
Entire

ValueSp.
Binary
Value

DateTime
Value

Literal
Value

Numeric
Value

DateTime
Interval

Length
Restriction

Numeric
Interval

Pattern

Empty
ValueSp - - - - - - - - - -
Entire

ValueSp Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ Bୈ ⊆ Aୈ

Binary
 Value - -

Bୈ ൌ Aୈ
A ൌ B - - - - - - -

DateTime
Value - - - A ൌଵ B - - - - - -
Literal
 Value - - - - A ൌଶ B - - - - -

Numeric
Value - - - - - A ൌଷ B - - - -

DateTime
Interval - - -

Bୈ ⊆ Aୈ
A୪୭୵ B
A୦୧୦ B

- -
Bୈ ⊆ Aୈ

A୪୭୵ B୪୭୵
A୦୧୦ B୦୧୦

 - - -

Length
Restrict. - -

Bୈ ⊆ Aୈ
A୪୭୵ B୪ୣ୬
A୦୧୦ B୪ୣ୬

-
Bୈ ⊆ Aୈ

A୪୭୵ B୪ୣ୬
A୦୧୦ B୪ୣ୬

 - -
Bୈ ⊆ Aୈ

A୪୭୵ B୪୭୵
A୦୧୦ B୦୧୦

 -
Bୈ ⊆ Aୈ
B ⊆ସ A

Numeric
Interval - - - - -

Bୈ ⊆ Aୈ
A୪୭୵ ଷ B
A୦୧୦ ଷ B

 - -

Bୈ ⊆ Aୈ
A୪୭୵ ଷ B୪୭୵
A୦୧୦ ଷ B୦୧୦

 -

 Pattern
 - - - -

Bୈ ⊆ Aୈ

B →

∉ ∅

 - -
Bୈ ⊆ Aୈ
B ⊆ସ A

 -
Bୈ ⊆ Aୈ
B ⊆ସ A

34

1 Equality evaluation takes into account a position of А and В on the timeline with respect to specified time zones. If time zone is specified only for one parameter,

a ± 14:00 offset is used in evaluation.
2 Literals are considered to be equal when all characters of their lexical form are equal to each other, both missing a language tag and/or datatype tag or (if present) they

are equal for both literals.
3 During comparison all numbers are cast to common, most specific datatype.
4 Verify that every interpretation of regular expression (restriction) В will satisfy a regular expression (restriction) А. All restrictions are viewed as regular expressions.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

79 of 139

Table 2. Evaluation results

Reasoner Truncated ontology
classification time, ms

Full ontology
classification time, ms

ELK 7366 54912

ELK5 5598 12567

Pellet 165419 out of mem

HermiT timeout timeout

Unfortunately, HermiT reasoner could not classify the ontology within a 1 hour
timeout constraint and Pellet ran out of memory while processing the full ontology.
Evidently, ELK greatly outperformed abovementioned reasoners due to its efficient
reasoning procedures.

The profiling analysis showed that it is possible to considerably speed up the
reasoning procedures by using only one type of literals in the ontology, for example
xsd:string. If such requirements are met, simplified literal handling algorithm could
yield a considerable performance boost.

Currently the work is focused on designing and implementing an ontology analysis
tool that would be capable of detecting unsafe datatype expressions in the processed
ontology. It would ensure that ontology being reasoned upon does not contain
conflicting datatype expressions that might cause incomplete results. In case if
implicit disjunction is detected, a warning would be issued to the user, informing him
about the source of the problem.

The source code of modified version of ELK with the support of tractable datatype
reasoning can be found in elk-parent-datatypes branch in the official ELK
repository: https://code.google.com/p/elk-reasoner.

4 References

1. D. Magka, Y. Kazakov, I. Horrocks. Tractable Extensions of the Description Logic ࣦࣟ
with Numerical Datatypes. Journal of Automated Reasoning 47(4), Pp. 427–450, Springer,
2011.

2. B. Glimm, A. Hogan, M. Krötzsch, A. Polleres. OWL: Yet to Arrive on the Web of Data?.
arXiv preprint, 2012.

3. Y. Kazakov, M. Krötzsch, F. Simančík. Concurrent Classification of EL Ontologies. In:
Proc. of the 10th International Semantic Web Conference (ISWC-11). LNCS 7032,
Springer, 2011.

4. O. Pospishniy, S. Stirenko. GRID-DL: Semantic GRID Information Service. In Proc. 9th
OWL Experiences and Directions Workshop (OWLED). Heraklion, Crete, 2012.

5. B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. In Proc. ISWC 2004, Hiroshima,
Japan. 2004.

6. R. Shearer, B. Motik, and I. Horrocks. HermiT: a Highly-Efficient OWL Reasoner. In
Proc. 5th OWL Experiences and Directions Workshop (OWLED). Karlsruhe, Germany,
2008. Pp. 26-27

5 Simplified literal reasoning algorithm

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

80 of 139

DRAOn: A Distributed Reasoner for Aligned Ontologies

Chan Le Duc1, Myriam Lamolle1, Antoine Zimmermann2, and Olivier Curé3

1 LIASD Université Paris 8 - IUT de Montreuil, France
{chan.leduc, myriam.lamolle}@iut.univ-paris8.fr

2 École Nationale Supérieure des Mines, FAYOL-ENSMSE, LSTI, F-42023 Saint-Étienne,
France antoine.zimmermann@emse.fr

3 LIGM Université Paris-Est, France
ocure@univ-mlv.fr

Abstract. DRAOn is a distributed reasoner which offers inference services for
a network of OWL ontologies correlated by alignments. Reasoning with such
networks of ontologies depends on the semantics we define for alignments with
respect to ontologies. DRAOn supports two semantics for a network of ontolo-
gies: the standard Description Logics (DL) semantics for non-distributed reason-
ing, and the Integrated Distributed Description Logics (IDDL) semantics for dis-
tributed reasoning. Unlike the DL semantics where alignments are considered as
inter-ontology axioms, the IDDL semantics interprets alignments as correspon-
dences enabling to propagate non-emptiness (always satisfiable) and unsatisfia-
bility of atomic concepts from an ontology to another one. Consequently, this
makes distributed reasoning for a network of ontologies possible since consis-
tency of the whole network can be decided from consistency of each ontology
with axioms built from alignments such that these axioms ensure just necessary
propagations of knowledge.

1 Introduction

We present DRAOn, a reasoner for a distributed network of aligned ontologies. The goal
of DRAOn is to be able to reason on a set of independently developed ontologies that
may overlap in concepts but are following different modelling perspectives, granularity,
coverage, etc. To be able to do that, we assume that there exists explicit correspondences
between different ontologies, that have been built by automatic ontology matchers, by
humans, or partly by both. Therefore, the structure that DRAOn is reasoning with is not
a monolithical theory, but a network of aligned ontologies. Moreover, DRAOn is able
to make use of existing reasoners as black boxes for some of its tasks.

The issues faced when reasoning with heterogeneous, distributed ontologies, even
when they have been already matched, are twofold: (a) the semantics of cross-ontology
correspondences can be tricky to define when ontologies have different modelling per-
spectives because a correspondence of terms from different ontologies does not neces-
sarily translates directly to an axiom in the ontology language (or languages); and (b)
the distribution of ontologies, and possibly of reasoning services associated with them
may influence the design of the global reasoner.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

81 of 139

2 Background and related work

In this paper, we assume that ontologies are all Description Logic theories and we as-
sume some familiarity with DLs. We simply repeat that DL ontologies are interpreted
according to an interpretation function ·I over a domain ∆I , and interpretations that
satisfy all the axioms of an ontology are called models of the ontology. There are a
number of existing OWL DL reasoners such as HermiT [1], Pellet [2] or FacT++ [3].

In order to use several ontologies for reasoning, we assume the existence of cor-
respondences between ontologies of the form (ei, ej , r), where ei is a term from one
ontology, ej a term from another ontology, and r denotes a fixed binary relation such as
equality, subsumption, disjointness, etc. In this paper, only correspondences where r is
= (equality of individuals), ∈ (class membership) or v (subsumption) will be consid-
ered. A set of correspondences between a pair of ontologies is an ontology alignment
(or alignment for short). A set of ontologies together with their pairwise alignments is
called a network of aligned ontologies (NAO). We will use bold face to denote sets, and
therefore, the notation for an NAO will generally be 〈O,A〉.

Reasoning with NAOs strongly depends on the semantics of alignments. We say
that a certain semantics of alignments defines a distributed logic (sometimes called
“contextual logic“ or even “modular ontology language”). In a distributed logic L, cor-
respondences map to formula of the logic in question, so we will use a function τL to
denote the logical formula associated to the correspondence. For instance, the simplest
form of distributed logic is normal DL. An NAO can be interpreted as a DL ontology
by mapping (ei, ej ,v) (resp. (ei, ej ,=), (ei, ej ,∈)) to τDL(ei, ej ,v) = ei v ej (resp.
ei = ej , ej(ei)). Reasoning over an NAO is then the same as reasoning with an ontology
formed by the union of all the ontologies in the NAO, and the axioms corresponding to
the correspondences.

A number of authors, including ourselves, have argued that this is not satisfying
when dealing with heterogeneous ontologies. Therefore, several other distributed log-
ics were proposed. Here we focus on the ones that are adopting a Local Model Se-
mantics (LMS [4]), among which we find Distributed Description Logics (DDL [5]),
E-connections [6], and IDDL [7]. LMS states that ontologies in an NAO have to be
interpreted separately (i.e., an interpretation of an NAO has a set of DL interpretations)
and the NAO is satisfied if each ontology is locally satisfied, and some extra knowledge,
such as alignments, can constrain further that satisfying models of the NAO. In DDL, a
correspondence is interpreted as a bridge rule τDDL(ei, ej ,v) = i:ei

v−→ j:ej which
intuitively states that, from the view point of ej’s ontology, the term ei is a subclass of
the term ej . In E-connections, correspondences can take many more forms but can be
translated into axioms using links, that are terms similar to DL roles, but which denote
binary relations between elements of different interpretations domains. More precisely,
τEconn(ei, ej ,v) = ei v ∃〈L〉ej , where L is a link, says that the elements of ei in the
first ontology are in relationship with the elements of ej in the second ontology, via link
L. Such a link axiom would be part of ontology ei, which means that it represents a fact
from ei’s ontology point of view.

As opposed to E-connections and DDL, which treats correspondences as subjec-
tive views of an ontology wrt another ontology’s terms, we proposed Integrated Dis-
tributed Description Logics (IDDL) as a distributed logic that assumes local ontologies

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

82 of 139

are agnostic to each others, and correspondences express knowledge of a mediation
view that ties together the ontologies. In IDDL, τDDL(ei, ej ,v) = i:ei

v←→ j:ej is
simply called a correspondence. An IDDL interpretation of an NAO 〈O,A〉 is a struc-
ture 〈I, ε〉 such that I = {Io}o∈O is a set of DL interpretations of the ontologies, and
ε = {εo : ∆Io → ∆}o∈O is a set of functions (so called equalising functions) from
local domains of interpretations to a set called the global domain. The composition of
a local interpretation function ·Ii with its corresponding equalising function εi defines
the global interpretations of local terms. A correspondence i:ei

v←→ j:ej is satisfied iff
εi(e

Ii
i) ⊆ εj(e

Ij

j).4

There are implementations of DDL (Drago, a tableau-based peer-to-peer reasoner [8])
and E-connections (embedded in an earlier version of Pellet. DRAOn, the reasoner de-
scribed here, implements both the classical DL semantics of NAOs, and the IDDL se-
mantics, according to our algorithm described in [9].

3 Implementation and Architecture

DRAOn implements the algorithm in [9] in Java, and provides a Java API. We first
present an overview of the algorithm before giving more implementation details.

3.1 Algorithm

Let 〈O,A〉 be an NAO where O is a set of DL decidable ontologies, and A is a set of
alignments between these ontologies. We assume that each ontology o ∈ O is attached
to a reasoner that can be queried with a set X of DL axioms and answer whether o∪X
is consistent. Then, checking the consistency of an NAO amounts to querying the lo-
cal reasoners multiple times with a well chosen set of axioms. The main idea is that,
when correspondences are restricted to cross-ontology subsumption, equality or mem-
bership, alignments can only influence the vacuity (unsatisfiability) and non-vacuity
(non-emptiness) of concepts or roles appearing in the alignments.

The main steps of the algorithm are the following:

1. build an alignment ontology, noted A, which corresponds to the translation of cor-
respondences into OWL axioms (using τDL mentioned in Sect. 2);

2. if A is inconsistent then the NAO is inconsistent;
3. choose a subset S (resp. P) of the concepts (resp. roles) appearing in A to build a

global configuration Ω consisting of axioms Ci(x) (non-emptiness) with x a fresh
individual name for each Ci ∈ S and Cj v ⊥ (unsatisfiability) for each Cj 6∈ S
(resp., Ri(x, y) for R ∈ P and > v ∀Rj .⊥ instead);

4. for a given ontology o, define a local configuration wrt o as the subset of Ω which
involves only terms from o, noted ωo;

5. if A ∪Ω is inconsistent, then go back to step 3;
6. for each o ∈ O, query the local reasoner attached to o using the axioms in ωo; if

all local reasoners answer positively, then the network is consistent. Otherwise, go
back to step 3 until there are no more configuration available.

4 For a set S, ε(S) has to be understood as the set {ε(x) | x ∈ S}.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

83 of 139

3.2 Architecture

In terms of system architecture, DRAOn consists of a global OWL reasoner and several
local OWL reasoners. The global reasoner is in charge of (i) computing global config-
urations Ω, (ii) checking consistency of A ∪ Ω for each global configuration Ω and
(iii) sending a local configuration to each local reasoner. Each local reasoner checks
consistency of o ∪Ω.

The distributed behavior of the algorithm results from a feature of IDDL which does
not enforce a strong relationship between alignments and ontologies. Instead of merging
ontologies and alignments into a unique ontology, DRAOn distributes reasoning tasks
over ontologies to different local reasoners. In addition to early improvements, we im-
plement optimizations for reducing the number of configurations to be considered and
for improving communication protocol between global and local reasoners. The main
ideas are:

– Global configurations are built in an incremental way, and results obtained from
checking previous configurations are reused. For each configuration, we check en-
tailment rather than consistency. This allows for putting forward eventual back-
tracking points. For example, if Oi |= Ci v ⊥ (resp. Oi |= Ci(x)) then we do not
need to check the configurations that contain Oi |= Ci(x) (resp. Ci v ⊥).

– If there is a set of concepts (or roles) which are equivalent, we need to check only
configurations which contain one representative concept (or role) from this set.

– Configurations consisting of non-emptiness axioms Ci(x) are checked prior to
those consisting of unsatisfiability axioms Cj v ⊥. This idea is based on the fact
that concepts are commonly satisfiable in ontologies.

– The communication protocol between global and local reasoners is parallelized,
that means, configurations are sent to local reasoners in a broadcasting way rather
than a sequential one. The global reasoner uses Java threads to manage communica-
tion with the local reasoners. We have to use sockets to establish the communication
between global and local reasoners instead of OWLLink5. This is due to efficiency
question and an intrinsic characteristic of IDDL.

Apart from checking consistency of an NAO, the current version of DRAOn im-
plements entailment services under the IDDL semantics for some kinds of entailment
concept axioms. Therefore, DRAOn offers the following inference services:

– Checking consistency of an NAO under the DL semantics in a non-distributed way.
In this setting, DRAOn creates a unique OWL ontology, namely global ontology,
that is obtained by merging the axioms of all ontologies and the correspondences
of alignments. Reasoning on the global ontology is performed in a non-distributed
way, that means, a OWL reasoner is used for checking consistency of the global
ontology. The network is consistent if and only if the global ontology is consistent

– Checking entailment of an OWL axiom by an NAO under the DL semantics in a
non-distributed way;

5 http://www.owllink.org/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

84 of 139

– Checking consistency of an NAO based on the IDDL semantics in a non-distributed
way, that is, all reasoning over ontologies and alignments is sequentially performed
at one site on a computer.

– Checking consistency of an NAO based on the IDDL semantics in a distributed
way.

– Checking entailment of some kinds of OWL axioms by a network of aligned on-
tologies based on the IDDL semantics in a distributed way.

4 Experiments

DRAOn uses the OWL API6 to manipulate ontologies, the Alignment API [10] to deal
with alignments, and the HermiT (version 1.3.6) 7 reasoner to check locally consistency
of ontologies and alignments. We have performed some experiments with well-known
ontologies and alignment methods. The following table presents empirical results ob-
tained from the current version of DRAOn8. These experiments have run on a MAC
with 4Gb RAM, 2.4 GHz Intel Core i5. The result for the distributed IDDL reasoning
was obtained with a computer network consisting of the MAC and a DELL with 2Gb
RAM, 1.06GHz Intel i2.

Ontology 1 Ontology 2 Alignment DL non-distr. IDDL distr. IDDL
Small NCI Small FMA Alcomo Map. 7,5s 46s 30s

(10,000 axioms, (3,800 axioms, (2,800 corr.)
6,500 entities) 3,700 entities)

Human Mouse Ref. Map. 6s 4.5s 4s
(5,500 axioms, (4,500 axioms, (1516 corr.)
3,300 entities) 2,750 entities)

IDDL reasoning performances depend on the two services OWLReasoner.getTy-
pes(.) and OWLReasoner.getUnsatisfiableClasses() which are called
for checking unsatisfiability and non-emptiness of concepts involved in alignments.
These services check for unsatisfiability and non-emptiness every concept name oc-
curring in an ontology while the algorithm for IDDL consistency requires to check for
unsatisfiability and non-emptiness only concepts involved in alignments. Consequently,
HermiT raises an “OutOfMemoryError ” when it is called for getTypes(.) on the
ontology “Small SNOMED”.

Theoretically, response time of inference services under the DL and IDDL seman-
tics increases, respectively, double exponentially and exponentially in the number of
ontologies (and the size of alignments). To make this difference occur, we might need
a very large network of aligned ontologies. In addition, it might be required to perform
further experiments to establish relationships between kinds of aligned ontologies and
IDDL reasoning performance.

6 http://owlapi.sourceforge.net/
7 http://www.hermit-reasoner.com/
8 http://iddl.gforge.inria.fr/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

85 of 139

5 Conclusion

We have presented an OWL-based distributed reasoner, called DRAOn, which offers
inference services for a network of aligned OWL ontologies. The distributed behavior
of DRAOn is based on a feature of the IDDL semantics which allows a reasoner to dis-
tribute reasoning tasks over ontologies to different reasoners. In terms of performance,
DRAOn is considerably penalized by unavailability of specific services of an OWL
reasoner, for instance, returning all unsatisfiable concepts which belong to a given set
of concepts; or returning all non-empty concepts which belong to a given set of con-
cepts. Availability of such services in a future release of OWL reasoners may improve
dramatically the performance of DRAOn.

We intend to extend DRAOn to reasoning on a network with disjointness corre-
spondences in alignments. This may require us to develop new optimizations since the
current algorithm for such a network is highly intractable.

References

1. Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient OWL Reasoner. In: Proc.
of the OWLED 2008. (2008)

2. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a pratical OWL-DL reasoner.
Journal of Web Semantics 5(2) (2007) 51–53

3. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Proc.
of IJCAR 2006. Volume 4130., Springer (2006) 292–297

4. Ghidini, Giunchiglia: Local Models Semantics, or contextual reason-
ing=Locality+Compatibility. ai 127(2) (2001) 221–259

5. Borgida, A., Serafini, L.: Distributed description logics : Assimilating information from peer
sources. Journal Of Data Semantics (1) (2003) 153–184

6. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract description
systems. Artif. Intell. 156(1) (2004) 1–73

7. Zimmermann, A.: Integrated distributed description logics. In: Proceedings of the Interna-
tional Workshop on Description Logics. (2007)

8. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In:
Proceedings of the Europeen Semantic Web Conference. (2005) 361–376

9. Zimmermann, A., Le Duc, C.: Reasoning with a network of aligned ontologies. In: RR.
(2008) 43–57

10. David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The Alignment API 4.0. In: Semantic
web journal. Volume 2(1). (2011) 3–10

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

86 of 139

The ELepHant Reasoner
System Description

Barış Sertkaya

sertkaya.baris@googlemail.com

Abstract. We intoduce the ELepHant reasoner, a consequence-based
reasoner for the EL+ fragment of DLs. We present optimizations, im-
plementation details and experimental results for classification of several
large bio-medical knowledge bases.

1 Introduction

In [6, 5] Brandt has shown that the tractability result in [1] for subsumption w.r.t.
cyclic EL TBoxes can be extended to the DL ELH, which in addition to EL allows
for general concept inclusion axioms and role hierarchies. Later in [2], Baader et.
al. have shown that the tractability result can even be further extended to the
DL EL++ which in addition to ELH allows for the bottom concept, nominals,
role inclusion axioms, and a restricted form of concrete domains. In addition
to these promising theoretical results, it turned out that despite their relatively
low expressivity, these fragments are still expressive enough for the well-known
bio-medical knowledge bases SNOMED [8] and (large parts of) Galen [19], and
the Gene Ontology GO [7]. In [3, 4, 21] the practical usability of these fragments
on large knowledge bases has been investigated. The CEL Reasoner [18] was
as a result of these studies the first reasoner that could classify the mentioned
knowledge bases from the life sciences domain in reasonable times.

Successful applications of the EL family increased investment in further work
in this direction. The EL family now provides the basis for the profile OWL2
EL1. Moreover, there are now several other reasoners specifically tailored for
the EL family, like Snorocket [16], TrOWL [22], CB [11] (which extends the
EL++ algorithm to Horn SHIQ), JCEL [17] (which is a Java implementation
of CEL) and ELK [12, 14, 13, 15] (which is currently the only reasoner that can
classify large ontologies from real-life applications within only a few seconds). A
comprehensive study comparing the performace of several reasoners on large bio-
medical knowledge bases has been presented in [9]. A more recent comparison
can be found in the experimental results section of [15].

In the present paper we introduce the ELepHant reasoner,2 a consequence-
based reasoner for the EL+ fragment of DLs. It is the successor of our prototype
reasoner cheetah [20]. Our motivation to develop ELepHant is on the one hand

1 http://www.w3.org/TR/owl2-profiles/#OWL 2 EL
2 http://code.google.com/p/elephant-reasoner

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

87 of 139

push the performance of OWL EL reasoning further by investigating different
optimizations, and on the other hand provide a reasoner with a small footprint
that can be used on platforms with limited memory and computing capabilities
for applications like embedded reasoning [10].

The paper is organized as follows: After describing the implementation de-
tails, we present the results of our experiments for classification of large ontolo-
gies from the biomedical domain. Although there is still room for improvements
like multithreading, the experimental results show that the performance is still
promising.

2 Implementation Details

The ELepHant reasoner is the successor of the cheetah prototype [20]. The
motivation for the cheetah prototype was to improve the worst-case complexity
of the EL+ classification algorithm by using the linear-closure algorithm from
databases. There we used a modified version of the linear-closure algorithm for
computing the closure of atomic concepts under the axioms of the knowledge
base, i.e., for saturating the knowledge base. For each concept name, we kept a
counter that is used to check whether it already satisfies the left-hand side of an
axiom. The experimental results there showed that the overhead of this method
was too big compared to the performance gain.

The ELepHant reasoner does not use this method. Instead, it implements
the consequence-based algorithm used in ELK [12, 15] with some small modifi-
cations. It differs from ELK in the implementation of the inference rules, and in
scheduling of the input and derived axioms.

As also pointed out in [15], the most time consuming phase of consequence-
based classificiation is the phase where the inference rules are applied for satu-
rating the knowledge base. Therefore it is important to optimize this phase for
getting a good performance. The original saturation algorithm uses a queue for
keeping the scheduled axioms. Our experiments showed that the queue opera-
tions take a considerable amount of time since these operations are executed
millions of times for classifying large knowledge bases like SNOMED CT. Re-
moval from the front and addition at the back are indeed costly operations
compared to adding and removing on only one side since in the former case the
links to the next queue element have to be maintained properly. In order to
avoid this overhead, in ELepHant we keep the scheduled axioms in a stack. Our
experiments show that for some of the ontologies this results in a larger number
of derivations, but the overall performance becomes better. The performance
difference between queue and stack processing is shown in Table 2.

One other optimization that ELepHant implements is that it uses the told
subsumer information as input axioms for initializing the stack. For each concept
name A, instead of using axioms of type A v A as input, it uses A v B, where
B is a told subsumer of A.

Apart from these basic optimizations, ELepHant also implements some of
the optimization techniques introduced in [15]. It implements the optimization

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

88 of 139

of rules for decomposing conjunctions and existential restrictions. More precisely,
it does not decompose a conjunction if it has been previously derived by con-
junction introduction. Similarly, if an existential restriction has previously been
derived via the existential introduction rule, it does not decompose this exis-
tential restriction. Unlike ELK, when an existential restriction is decomposed,
ELepHant does not schedule a so-called init axiom, it directly schedules an
axiom with the filler of the existential on both sides. ELepHant does not yet
support concurrent reasoning, but it is planned for future versions.

During saturation, we often need to do a lookup to check if a concept is
subsumed by another, or if an axiom has already been processed before, etc. For
such operations, we need an efficient data structure. Besides doing a lookup, we
also often need to insert new elements to these data structures, like adding a
new subsumer to the subsumers list, marking an axiom as processed, etc. But
we never delete elements from these data structures. We also sometimes need
to iterate over the elements of these data structures. For these operations, the
most appropriate data structure is a an associative array. As associative array
implementation, we used the Judy array library3 for C. The library is optimized
to avoid CPU cache misses as often as possible. Its memory consumption scales
smoothly with number of entries, even when the keys are sparsely distributed.

For some of the data structures that are traversed often during saturation,
ELepHant keeps double indexes. For instance, the list of subsumers of a concept
is stored once as a conventional array and once as Judy array. If during saturation
we need to check whether a concept is subsumed by another, we do a lookup
in the Judy array. But if we need to traverse the subsumer list, for instance in
existential introduction rule, we use the conventional array.

Just like its predecessor, the ELepHant reasoner is implemented in the C

programming language. The reason why cheetah was implemented in C is the
large amount of memory required by the algorithm that it implements. Due to the
large number of concept names and axioms in real-life ontologies, this algorithm
requires a large amount of memory and an efficient memory management. This
is why we chose C as the implementation language. Although the ELepHant
reasoner does not use this algorithm, large part of its code is based on the code
of the cheetah prototype.

3 Experimental Results

In order to test the performance of ELepHant, we performed a series of experi-
ments on large biomedical knowledge bases from real-life applications. We used
the January 2013 international release of SNOMED CT by converting it to OWL
functional syntax by the converter provided. Additionally, we used 6 ontologies,
namely GO1, FMA, ChEBI, EMAP, Molecule Role and Galen 7 provided in the
test ontology suite on the ELK web page.4 We did not use the Galen8, GO2 and
Fly Anatomy ontologies provided there since they contain disjointness axioms,

3 http://judy.sourceforge.net
4 http://code.google.com/p/elk-reasoner

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

89 of 139

A r C v D C ≡ D r v s r1 ◦ r2 v s Trans(r)

GO1 19468 1 28869 0 0 0 1
FMA 80469 14 126544 0 3 0 1
SNOMED CT 296518 57 228954 67563 12 1 0
ChEBI 31160 9 67182 0 0 0 2
EMAP 13731 1 13730 0 0 0 0
Molecule Role 9217 2 9627 0 0 0 2
Galen7 28482 964 27820 19326 1357 385 0

Table 1. Number of concepts, roles and different types of axioms.

which is not yet supported by ELepHant. The metrics of the used ontologies are
shown in Table 1.

In order to measure the effects of optimizations described in Section 2, we
have run a series of experiments. The experiments were run on a computer with
Intel Core i3 processor with 2.1 GHz clock speed, 8 GB of main memory and
Linux operating system with 3.2.0 kernel. The results were obtained as average
of 5 runs per setting per ontology. We tested the performance gain obtained
by using a stack instead of a queue and performance gain obtained by initial-
izing the stack with told subsumer information. Runtimes in miliseconds, and
also total and unique number of derivations obtained from these experiments
are presented in Table 2. Test results for the setting where a queue is used are
marked with ’queue’, results for the setting where a stack is used with ’stack’ and
the results for setting where a stack is used and the stack is initialized with told
subsumer information is marked with ’stack+told’. The results show that except
for the EMAP and Molecule Role ontologies, using a stack improves the runtime
performance even if the number of total or unique derivations does not change.
This is due to the overhead of enqueue and dequeue operations compared to the
push and pop operations. It is also seen in the table that using the told sub-
sumer information for preparing the input axioms always improves the runtime
performance and reduces both the number of total and unique derivations.

We have also run a series of tests for comparing the loading and classification
performances of ELepHant to that of ELK. We have run ELK 5 times for each
ontology with the -XX:+AggressiveHeap parameter and taken the average of
these runtimes. The results presented in Table 3 show that ELK classifies the
SNOMED CT ontology faster, but needs more time to load it compared to
ELepHant. For all smaller ontologies, both classification and loading times of
ELepHant are slightly shorter. We conjecture that this is due to the overhead
of starting the Java virtual machine. In terms of memory usage the performance
of ELepHant is quite good as well. For classifying SNOMED CT, the maximum
memory usage is around 420MB as the Linux top command shows. For ELK, it
is around 1.6GB with the aggressive heap option and around 1GB without this
option.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

90 of 139

classification time total derivations unique derivations

GO1
queue 94 261302 206205
stack 65 261302 206205
stack+told 61 241834 186737
FMA
queue 637 1314973 1312745
stack 373 1314973 1312745
stack+told 359 1234504 1232276
SNOMED CT
queue 24013 23299190 12576268
stack 16396 21373957 12576268
stack+told 16170 20956134 12346881
ChEBI
queue 661 1250852 1022277
stack 482 1250852 1022277
stack+told 471 1219692 991117
EMAP
queue 8 27461 27461
stack 40 27461 27461
stack+told 6 13730 13730
Molecule Role
queue 10 32857 32391
stack 23 32857 32391
stack+told 11 23640 23174
Galen7
queue 1598 1658475 1068115
stack 1246 1715446 1068115
stack+told 1197 1658677 1055492

Table 2. Performance gain obtained by optimizations. Runtimes are in miliseconds.

GO1 FMA Molecule Role ChEBI EMAP SNOMED CT Galen7

classification
ELK 989 1564 657 1275 693 10674 2676
ELepHant 61 359 11 471 6 16170 1197

loading + classification
ELK 3338 7522 2695 3215 2368 23169 4883
ELepHant 284 1144 222 746 106 20032 1554

Table 3. Loading and classification times in miliseconds.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

91 of 139

4 Concluding Remarks and Future Work

We have introduced the consequence-based EL+ reasoner ELepHant, described
implementation details and presented experimental results.

Currently the ELepHant reasoner is still under heavy construction, and there
is a number of improvements that we plan to do as future work. First of all, we
are going to investigate the role of ordering derived axioms for reducing the
number of derivations. We are going to check whether this can be implemented
with a feasible overhead. We are going to implement concurrent reasoning in
order to further improve the performance. We are going to extend the supported
expressivity by allowing disjointness axioms. Last but not least, we are going
to implement an OWL API wrapper using the Java native interface in order to
make it compatible with ontology editors and other practical applications.

References

1. F. Baader. Terminological cycles in a description logic with existential restrictions.
In G. Gottlob and T. Walsh, editors, Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), pages 325–330. Morgan Kauf-
mann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L. P. Kaelbling and
A. Saffiotti, editors, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, (IJCAI 05), pages 364–369. Professional Book Center,
2005.

3. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Proceedings of the Methods for
Modalities Workshop (M4M-05), 2005.

4. F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Journal of Logic, Language and
Information, Special Issue on Method for Modality (M4M), 2007. To appear.

5. S. Brandt. On subsumption and instance problem in ELH w.r.t. general tboxes. In
V. Haarslev and R. Möller, editors, Proceedings of the 2004 International Workshop
on Description Logics, (DL2004), volume 104 of CEUR Workshop Proceedings.
CEUR-WS.org, 2004.

6. S. Brandt. Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and - what else? In R. L. de Mántaras and L. Saitta,
editors, Proceedings of the 16th Eureopean Conference on Artificial Intelligence,
(ECAI 2004), pages 298–302. IOS Press, 2004.

7. T. G. O. Consortium. Gene ontology: Tool for the unification of biology. Nature
Genetics, 25:25–29, 2000.

8. R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, International,
Northfield, IL: College of American Pathologists, 1993.

9. K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners
for large ontologies in the OWL 2 EL profile. Semantic Web Journal, 2011. To
appear.

10. S. Grimm, M. Watzke, T. Hubauer, and F. Cescolini. Embedded EL + reasoning on
programmable logic controllers. In Proceedings of the 11th International Semantic

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

92 of 139

Web Conference (ISWC 2012), volume 7650 of Lecture Notes in Computer Science,
pages 66–81. Springer-Verlag, 2012.

11. Y. Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In
C. Boutilier, editor, Proceedings of the 21st International Joint Conference on Ar-
tificial Intelligence, (IJCAI 2009), pages 2040–2045, 2009.

12. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. Concurrent classification of EL ontolo-
gies. In L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy, and
E. Blomqvist, editors, Proceedings of the 10th International Semantic Web Con-
ference (ISWC’11), volume 7032 of Lecture Notes in Computer Science. Springer-
Verlag, 2011.

13. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK: a reasoner for OWL EL
ontologies. System description, University of Oxford, 2012. available from
http://code.google.com/p/elk-reasoner/wiki/Publications.

14. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. ELK reasoner: Architecture and evalu-
ation. In Proceedings of the OWL Reasoner Evaluation Workshop 2012 (ORE’12),
volume 858 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

15. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. The incredible ELK. 2013. available
from http://code.google.com/p/elk-reasoner/wiki/Publications.

16. M. Lawley and C. Bousque. Fast classification in Protege: Snorocket as an OWL2
EL reasoner. In Proceedings of Australasian Ontology Workshop, 2010.

17. J. Mendex. jcel: A modular rule-based reasoner. In Proceedings of the 1st Interna-
tional Workshop on OWL Reasoner Evaluation (ORE 2012), volume 858 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

18. J. Mendez and B. Suntisrivaraporn. Reintroducing CEL as an OWL 2 EL reasoner.
In B. C. Grau, I. Horrocks, B. Motik, and U. Sattler, editors, Proceedings of the
22nd International Workshop on Description Logics (DL 2009), volume 477 of
CEUR Workshop Proceedings. CEUR-WS.org, 2009.

19. A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings of
the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97).
AAAI Press, 1997.

20. B. Sertkaya. In the search of improvements to the EL+ classification algorithm. In
Proceedings of the 24th International Workshop on Description Logics (DL 2011),
volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

21. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. dissertation, Institute for
Theoretical Computer Science, TU Dresden, Germany, 2009.

22. E. Thomas, J. Z. Pan, and Y. Ren. TrOWL: Tractable owl 2 reasoning infrastruc-
ture. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, and T. Tudorache, editors, The Semantic Web: Research and Appli-
cations, 7th Extended Semantic Web Conference, (ESWC 2010), volume 6089 of
Lecture Notes in Computer Science, pages 431–435. Springer-Verlag, 2010.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

93 of 139

Evaluating SPARQL-to-SQL translation
in ontop

Mariano Rodriguez-Muro, Martin Rezk, Josef Hardi, Mindaugas Slusnys
Timea Bagosi and Diego Calvanese

KRDB Research Centre, Free University of Bozen-Bolzano
{rodriguez,mrezk, josef.hardi, mindaugas.slusnys,

timea.bagosi, calvanese}@inf.unibz.it

Abstract. In this paper we evaluate the performance of the SQL queries gen-
erated by ontop, a system that uses a formal approach to translate and optimize
SPARQL queries and R2RML mappings. We show that the performance of on-
top’s SQL queries is superior to that of the performance of well known systems
that rely on SQL to execute SPARQL, and superior to to that of well-known triple
stores. We highlight some of the techniques and factors that allow for this.

1 Introduction

The integration of SPARQL and RDF with RDBMs is crucial for the adoption Semantic
Technologies in industry. This importance is reflected in the creation of the R2RML [3]
standard for mapping RDBMs into RDF, and in all the research focused towards trans-
lating SPARQL queries into efficient SQL over RDBs by means of mappings. This last
topic is specially relevant since such techniques allow to use SPARQL and the RDF
data model without costly ETL (i.e., of Extract Transform and Load from RDBs to
RDF) processes, and may also allow to profit from the features of industrial strength
RDBMS that are not available in triples stores, e.g., redundancy, robust transaction sup-
port, security, etc.

Execution of SPARQL with SQL is common. However, previous techniques often
suffered from problems that limited their use in practice. Some techniques assume a
fixed relational schema and do not support general mapping languages like R2RML,
others generate complex SQL queries that do not perform well, last, some generate
efficient SQL but use techniques that are not grounded formally and have limited scope.
In this paper we evaluate ontop1 [5,4], a system that tackles these issues.

ontop allows to query virtual RDF graphs defined by a relational DB and an R2RML
mapping. The core of the query answering technique implemented ontop is depicted in
Figure 1. In a first step (R2RML) mappings and SPARQL query are translated into a
set of Datalog rules that capture the semantics of the execution of the SPARQL query
over the original database. Second, the program is optimized using query containment
based techniques and Semantic Query Optimization, in particular we:

1 available at ontop.inf.unibz.it for Protege 4, OWLAPI, Sesame and stand-alone endpoint

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

94 of 139

ontop.inf.unibz.it

SPARQL query q

R2RML

Datalog Relational Algebra

SQL queryRelational DB

+

translation
+

Optimization

DB Metadata

Fig. 1. Query answering with mappings in ontop

– use SLD-resolution to compute a partial evaluation of the program in which
FILTER expressions and JOIN conditions are expressed in terms of the original
database columns and not over the RDF terms constructed from these (e.g., con-
sider that URI templates in R2RML mappings generate URI’s on the fly). This will
allows the DBMS to exploit any indexes defined on the original tables;

– optimize the query(ies) using Semantic Query Optimization (SQO) with respect to
w.r.t. Primary Keys to avoid redundant self-joins.

Last, the optimized program is translated into an equivalent relational algebra expres-
sion, the SQL query is generated and executed by the DBMS. This rule based tech-
nique for SPARQL, R2RML and SQL provides a formal framework that gives clear
guarantees w.r.t. to the semantics of the technique and which is extendible with more
advanced optimizations (e.g., to other forms of constraints like Foreign Keys or Check
constraints, etc.) and functionality, including OWL 2 entailment regimes (OWL 2 QL
is already available in ontop and not discussed in here).

In this paper we show that the performance of the SQL queries generated by ontop
using these techniques is superior to that of other systems that also perform SPARQL
through SQL, and superior to that of well known triple stores.

2 Evaluation

This evaluation provides an overview of the performance of DB2 and MySQL while
executing SQL queries generate by ontop. We use two benchmarks scenarios with a
total of 36 queries and over 350 million triples. We considered two systems that offer
similar functionality to ontop (i.e., SPARQL trough SQL and mappings): Virtuoso RDF
Views 6.1 (open source edition) and D2RQ 0.8.1 Server over MySQL. We also compare
performance with 3 well known triple stores, i.e., OWLIM 5.3, Stardog 1.2 and Virtuoso
RDF 6.1 (Open Source). For ontop we used two different DB engines as backend, i.e.,
MySQL and DB2. The benchmarks used are:

BSBM The Berlin SPARQL Benchmark (BSBM) [2] evaluates the performance of
query engines using use cases from e-commerce domain. The benchmark comes
with a suite of tools for data generation and query execution. The benchmark also
includes a relational version of the data, for which mappings can be created (D2RQ
mappings are included).

2

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

95 of 139

FishMark The FishMark benchmark [1] is a benchmark for RDB-to-RDF systems
that is based on an extract of the FishBase DB, a publicly available database about
fish species. The benchmark comes with an extract of the database (approx. 16 M
triples in RDF and SQL version), and 22 SPARQL queries obtained from the logs
of FishBase. The queries are substantially larger (max 25 atoms, mean 10) than
those in BSBM. Also, they make extensive use of OPTIONAL graph patterns.

The basic setup for the experiment is as follows: In the case of BSBM, out of the
12 query templates of BSBM (i.e., queries with place holders for constant values) a
predefined sequence of 25 of these templates constitutes a Query Mix; then a BSBM
run is the instantiation of a query mix with random constants and execution of the
resulting queries. Performance is then measured in Query Mixes per Hour (QMpH),
to compute QMpH we ran 150 query mixes, out of which 50 are considered warm up
runs and their statistics are discarded. The collected statistics for QMpH over BSBM
instances with 25, 100 and 200 million triples (or the equivalent in relational form).
In the case of FishMark, the 22 queries are already instantiated and they constitute the
query mix. We ran 150 query mixes, discarding the initial 50. In both cases, we tested
with 1, 4, 8, 16 and 64 simultaneous clients.

In order to only get the performance of SQL queries generated by ontop we ex-
ploited ontop’s simple SQL caching mechanism which stores SQL queries generated
for any SPARQL query that has been rewritten previously. This allows to avoid the
rewritten process completely and hence, the cost of query execution of a cached query
is only the cost of evaluating the SQL query over the DBMS. To force the use of this
cache, we re-ran the BSBM benchmark 5 more times (and averaged the results). For
FishMark, this was not necessary since the queries are always the same. All experi-
ments were conducted on a HP Proliant server with 24 Intel Xeon CPUs (144 cores
@3.47GHz), 106GB of RAM and a 1TB 15K RPM HD. The OS is Ubuntu 12.04 64-bit
edition. All the systems run as SPARQL end-points. All configuration files are available
online2. The results are summarized in Figure 2.

Discussion. First we note that the D2RQ server always ran out of memory, timed
out in some queries or crashed. This is why it doesn’t appear in our summary table.
D2RQ’s SPARQL-to-SQL technique is not well documented, however, by monitoring
the queries being sent by D2RQ to MySQL, it appears that D2RQ doesn’t translate the
SPARQL query into a single SQL query, instead it computes multiple queries and re-
trieves part of the data from the database. We conjecture that D2RQ then uses this data
to compute the results. Such approach is, in general, limited in scalability and prone to
large memory consumption, being the last point the reason for the observed behavior.
Also, Virtuoso Views is not included in the FishMark benchmark because it provided
wrong results, we reported this to the developers which confirmed the issue. Also, we
did not run ontop with DB2 for FishMark due to errors during data loading.

Next, we can see is that for BSBM in almost every case, the performance obtained
with ontop’s SQL queries executed by MySQL or DB2 outperforms all other systems
by a large margin. The only cases in which this doesn’t hold are when the number of

2 https://babbage.inf.unibz.it/trac/obdapublic/wiki/BSBMFISH13aBench

3

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

96 of 139

https://babbage.inf.unibz.it/trac/obdapublic/wiki/BSBMFISH13aBench

1 4 8 16 64
0

0.5

1

1.5

2
·105 BSBM-25

1 4 8 16 64
0

0.5

1

·105 BSBM-100

1 4 8 16 64
0

2

4

6

8
·104 BSBM-200

1 4 8 16 64

0

2

4

·104 FishMark

ontop-MySQL ontop-DB2 OWLIM Stardog Virtuoso RDF Virtuoso View

Fig. 2. Query performance comparison summary. X axis = parallel clients, Y axis =

Query Mixes per Hour (QMpH, higher is better)

clients is less than 16 and the dataset is small (BSBM 25). This can be explained as
follows.

Note that in ontop performance can be divided in three parts, (i) the cost of generat-
ing the SQL query , (ii) the cost of execution over the RDBMs and (iii) cost of fetching
and transforming the SQL results into RDF terms. When the queries are cached, (i) is
absent, and if the scenario includes little data (i.e., BSBM 25), the cost of (ii), both for
MySQL and DB2, is very low and hence (iii) dominates. We attribute the performance
difference to a poor implementation of (iii) in ontop, and the fact triple stores do not
need to perform this step.

From 16 parallel clients however, executing ontop’s SQL queries with MySQL
or DB2 outperforms other systems by a large margin. We attribute this to DB2’s and
MySQL’s better handling of parallel execution (i.e., better transaction handling, table
locking, I/O, caching, etc.).

When the datasets are larger, e.g., BSBM 100 and 200, for ontop (i) stays the same.
From (ii) and (iii) we have that the former dominates since in both benchmarks queries
return few results. Then, again, we have that MySQL’s an DB2’s advantage over triple
stores can be attributed to similar reasons as before, better I/O, planning, caching, etc.

4

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

97 of 139

This is witnessed by the fact that DB2 and MySQL with ontop’s SQL outperform the
rest already at 1 single client for BSBM 100 and BSBM 200.

These experiments do not allow to fully see the benefit of the optimizations on SQL
that is performed by ontop; this would require to be able to enable and disable them, and
in ontop this is not possible at the moment. However, some observations are possible,
in particular we can see the strong effect of SELF JOIN elimination by Primary Keys.
Consider the FishMark benchmark that has little data, only 16M triples, but in which in
almost all queries ontop’s SQL executed over MySQL (we didn’t run DB2 in this case)
outperforms the rest almost in every case even from 1 single client. In this setting, 1
client and little data, the cost of (ii) falls in the cost of planning and executing JOINs
and LEFT JOINs by the DBMS or triple store. At the same time, in FishMark, the
original tables are structured in such a way that many of the SPARQL JOINs can be
simplified dramatically when expressed as optimized SQL. For example, consider the
FishMark query:

SELECT ?order ?family ?genus ?species ?occ ?name ?gameref ?game
WHERE {
?ID fd:cComName ?name; fd:coC_Code ?ccode; fd:cSpecCode ?x.
?x fd:sGenus ?genus; fd:sSpecies ?species; fd:sGameFish ?game;

fd:sGameRef ?gameref; fd:sFamCode ?f .
?f fd:fFamily ?family; fd:fOrder ?order .
?c fd:cSpecCode ?x; fd:cStatus ?occ; fd:cC_Code ?cf;

fd:cGame 1 . ?cf fd:cPAESE "Indonesia" . }

This query expresses a total of 16 Join operations. When translated into SQL, ontop is
able to generate the following query:

SELECT V3.FamilyOrder AS order, V3.Family AS family,
V1.Genus AS genus, V1.Species AS species, V4.Status AS occ,
V1.ComName AS name, V1.GameRef AS gameref, V1.GameFish AS game
FROM species V1, comnames V2, families V3, country V4, countref V5
WHERE V1.SpecCode = V2.SpecCode AND V4.Game = 1 AND V5.PAESE =
’Indonesia’ AND V4.C_Code = V5.C_Code AND V1.Genus = V8.Genus

A simple and flat SQL query (easy to execute) with a total of 3 Joins. Note that
the use of a large number of JOIN operations is intrinsic to SPARQL since the RDF
data model is ternary. However, if the data is stored in a n-ary schema (as usual in
RDBMs), ontop can use semantic query optimization w.r.t. primary keys to construct
the optimal query over the n-ary tables. Triple stores has no means to do this since data
is de-normalized once it is transformed into RDF.

In BSBM this optimization is weaker since queries are smaller and have fewer joins,
however a trend pointing to this same observation can be seen. Consider the results for
Q2, Q3 and Q4 in Table 2 Q2, Q3 and Q4.

Conclusions. In this evaluation we confirmed that in BSBM and FishMark, the SQL
queries generated by ontop (executed by 2 representative RDBMS) can provide much
better performance than that of executing SPARQL queries executed over similar SQL-
based systems (D2RQ, Virtuoso Views) and well known triple stores. This is a strong

5

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

98 of 139

ontop-MySQL ontop-DB2 OWLIM Stardog V. RDF V. Views

Q1 3,22k 1,28 k 1,43k 1,42 23 45
Q2 1,40k 928 276 790 123 315
Q3 1,92k 1,12k 111 543 155 341
Q4 1,53k 955 295 669 140 265
Q5 27 72 2 29 14 48
Q6 - - - - - -
Q7 9,78k 1,59k 541 400 101 316
Q8 13,99k 1,68k 3,22k 648 96 180
Q9 13,62k 1,01k 3,7k 1,99k 59 188
Q10 20,22k 2,04k 3,9k 610 228 305
Q11 20,75k 2,04k 3,52k 1,89k 1,66k 1,13k
Q12 11,34k 1,64k 5,99k 1,4k 1,25k 1,19k
QueryMix 44,19k 76,96k 2,91k 35,79k 9,21k 25,11k

Fig. 3. Summary of results (per query) for BSBM-200 with 64 clients. Individual
queries are in queries per second, totals are in query mixes per hour

pointer that on-the-fly SPARQL-to-SQL translation might be a much better option than
the ETL approach in some use cases, e.g., when the data is already stored in a relational
schema and the SPARQL queries do not use advanced SPARQL features (i.e., regular
paths).

Several points were neither discussed nor evaluated in this paper. For example, the
cost of generating the SQL queries is at the moment very high in ontop; in our experi-
ments we observed a dramatic performance drop when considering the SQL generation
process, often putting ontop at the same level of performance than the worst of the other
systems. This observation calls for several points of action. First, we need to understand
how much of this cost can be attributed to poor implementation (ontop is an academic
system after all). Second, the template based queries involved in BSBM and FishMark
can be considered a common use case, e.g., applications often repeat the same queries
over and over, only variating some constants. With this in mind, a prepared-statement
like approach or a more intelligent caching mechanism for query rewritings could be
devised so that the cost of SQL generation is removed.

Last, we note the choice of the optimizations and techniques implemented in ontop
is not arbitrary, they are guided by empirical experiences on what constitute efficient
SQL on a wide range of modern RDBMs engines. The evaluation presented here shows
that those choices, as a whole, seem to be on the right track; however, it doesn’t provide
a deep understanding of the individual benefit of each of these choices and optimiza-
tions and further work in this direction is required.

References

1. Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark van Harmelen,
Rafael S. GonÃSalves, and Cristina Garilao. FishMark: A linked data application benchmark.
In Proc. of the Joint Workshop on Scalable and High-Performance Semantic Web Systems

6

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

99 of 139

(SSWS+HPCSW 2012), volume 943, pages 1–15. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2012.

2. Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. Int. Journal On
Semantic Web and Information Systems, 5(2):1–24, 2009.

3. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF mapping
language. http://www.w3.org/TR/r2rml/, September 2012.

4. Mariano Rodriguez-Muro and Diego Calvanese. Quest, an owl 2 ql reasoner for ontology-
based data access. In Proc. of the 9th Int. Workshop on OWL: Experiences and Directions
(OWLED 2012), volume 849 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/,
2012.

5. Mariano Rodriguez-Muro, Josef Hardi, and Diego Calvanese. Quest: Effcient sparql-to-sql
for rdf and owl. In Proc. of the ISWC 2012 Posters Demonstrations Track (ISWC-PD 2012),
volume 914 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2012.

7

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

100 of 139

http://ceur-ws.org/

OBDA with Ontop

Mariano Rodŕıguez-Muro1, Roman Kontchakov2 and Michael Zakharyaschev2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
2 Dept. of Computer Science and Inf. Syst., Birkbeck, University of London, U.K.

Abstract. We evaluate the performance of the OBDA system Ontop
and compare it with other systems. Our experiments show that (i) the
Ontop tree-witness query rewriter is fast and outperforms the competi-
tors, and (ii) query evaluation in Ontop using the semantic index is as
efficient as in materialisation-based systems (but without the materiali-
sation overhead).

1 Introduction

Ontop (ontop.inf.unibz.it) is an ontology-based data access (OBDA) system
implemented at the Free University of Bozen-Bolzano and available as a plugin
for Protégé 4, SPARQL end-point and OWLAPI and Sesame libraries. The ar-
chitecture of Ontop is as follows:

CQ q

ontology T

UCQ qtw

T -mappingmapping M

dependencies Σ

SQL

data D

ABox AD

H-complete ABox A

+

tw-rewriting Ê

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

ABox completion

+

composition Ë
SQO

Ì

SQ
O

Í

A user formulates a conjunctive query (CQ) q in the signature of an OWL 2 QL
ontology T . The ontology T is related to the data D by means of a GAV mapping
M, which is a collection of database queries defining the vocabulary of T . The
mapping M could be applied to the data D to obtain the so-called virtual ABox
AD [9]. Ontop does not materialise it. Instead, it constructs a T -mapping [9]
by taking the composition (Ë) of M with the taxonomy in T and simplifying it
using SQL features (disjunction and interval expressions) and Semantic Query
Optimisation (SQO Ì) with database integrity constraints (dependencies Σ).
By applying the resulting T -mapping to the data D, we could obtain another
virtual ABox, A, which is H-complete with respect to T in the sense that:

A(a) ∈ A if A′(a) ∈ A, T |= A′ v A or R(a, b) ∈ A, T |= ∃R v A,

P (a, b) ∈ A if R(a, b) ∈ A and T |= R v P.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

101 of 139

Ontop constructs the tree-witness rewriting qtw of q and T over H-complete
ABoxes [5], and then uses the T -mapping to unfold qtw to an SQL query, which
is then simplified with SQO (Í) and passed to a database system for evaluation.

In the remainder of the paper, we evaluate the performance of Ontop and
compare it with other OBDA systems (more details can be found at tinyurl.

com/ontop-benchmark and www.dcs.bbk.ac.uk/~roman/tw-rewriting). We begin
by analysing the structure of tree-witness rewritings over H-complete ABoxes
and show that dealing with concept/role hierarchies (taxonomies) is the most
critical component of any OBDA system. We then concentrate on a particular
shape of T -mappings, called the semantic index [9], which is most suitable for
triple stores or data in the form of universal tables in a database and which
allows Ontop to deal with taxonomies efficiently.

2 Tree Witnesses: The Topology of Ontop Rewritings

We have run the Ontop tree-witness rewriter on the usual set of CQs and on-
tologies: Adolena, StockExchange and the extension LUBM∃

20 [6] of LUBM [7]
tailored to stress query answering techniques for OWL 2 QL. Our aim was to
understand the size of the topological part of the rewritings reflecting matches
(tree witnesses) in the anonymous part of the canonical models (as opposed to
the taxonomical one). The tables below provide the statistics on the tree-witness
rewritings over H-complete ABoxes: the number of tree witnesses, the number
of CQs in the rewriting (which is a UCQ), the number of atoms in the original
query, and the number of atoms in each of the CQs in the rewriting.

Adolena StockExchange

s1 s2 s3 s4 s5 s′1 s′2 s′3 s′4 s′5

tree witnesses 1 1 0 1 0 0 0 0 0 0
CQs in qtw 2 2 1 2 1 1 1 1 1 1
atoms in q 2 3 5 3 5 1 3 5 5 7

atoms in qtw 2+2 1+3 5 2+3 5 1 1 3 2 4

For LUBM∃
20, r1–r5 are the queries from the Requiem evaluation [7], q1–q6 from

the combined approach evaluation [6], and q7–q9 from the Clipper evaluation [11]:

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

tree witnesses 0 0 0 0 0 1 1 0 1 0 0 0 3 1
CQs in qtw 1 1 1 1 1 2 2 1 2 1 1 1 1 1
atoms in q 2 3 6 3 4 8 4 6 8 5 8 13 13 34

atoms in qtw 2 1 4 1 2 4+6 3+4 5 5+8 4 6 12 6 33

Note first that these CQs and ontologies have very few tree witnesses. More
precisely, in 67% of the cases there are no tree witnesses at all, and in 29% we
have only one tree witness. Even for the specially designed q8, the structure of
tree witnesses is extremely simple (they do not even overlap). Note also that,
although q8 and q9 do have tree witnesses, the resulting UCQs contain only one
CQ because these tree witnesses are generated by other atoms of the queries.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

102 of 139

The size of each of the CQs in the rewritings does not exceed the size of the
input query; moreover, the domain/range optimisation simplifies the obtained
CQs further for r2–r5, q1, q3, q5–q8 and most of the StockExchange queries. To
illustrate, consider the following subquery of q8:

q0(x0) = Publication(x0), publicationAuthor(x0, x11), Subj1Professor(x11),

worksFor(x11, x12), Department(x12),

where x11, x12 do not occur in the remainder of q8. This CQ has a tree witness
with the last two atoms because of the LUBM∃

20 axiom Faculty v ∃worksFor.
However, Subj1Professor is a subconcept of Faculty, and so any of its instances
will anyway be connected to Department by worksFor (either in the ABox or
in the anonymous part). It follows that the last two atoms of q0 do not change
answers to the CQ and can be ignored. The first atom is also redundant because
the ontology contains the domain axiom ∃publicationAuthor v Publication. As
q0 represents a natural and common pattern for expressing queries—select a
Publication whose publicationAuthor is a Subj1Professor, etc.—any OBDA sys-
tem should be able to detect such redundancies automatically. Finally, we note
that all of the rewritings in our experiments contain at most two CQs.

For comparison, we computed the rewritings of the CQs over LUBM∃
20 us-

ing Requiem [7], Nyaya [4], IQAROS (v 0.2) [10], Clipper (v 0.1) [3] and Rapid
(v 0.3) [2]. The first 3 return UCQ rewritings, while the last 2 nonrecursive dat-
alog rewritings, with Rapid having an option to rewrite into UCQs, too. The
rewritings are over arbitrary ABoxes; to make them comparable with Ontop, in
the last 2 cases we omitted the taxonomical rules for completing the ABoxes.

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9
UCQ (number of CQs)

Requiem 2 1 23 2 10 DNF 2 DNF 14,880 690 DNF DNF DNF DNF

Nyaya 2 1 23 2 10 DNF 2 DNF DNF 690 DNF DNF 8 DNF

IQAROS 2 1 23 2 10 DNF 1 15,120 14,400 990 23,552 DNF DNF DNF

Rapid 2 1 23 2 10 3,887 2 15,120 14,880 690 23,552 DNF DNF 16

datalog (number of non-taxonomical rules)

Rapid 1 1 1 1 1 2 3 1 2 1 1 1 27 1
Clipper 1 1 1 1 1 8 7 1 5 1 1 1 512 16
tw-rewriter 1 1 1 1 1 2 2 1 2 1 1 1 1 1

The UCQs returned by Requiem, Nyaya, IQAROS and Rapid correspond to
our tree-witness rewritings with every concept/role replaced by all of its sub-
concept/subroles (IQAROS’s rewritings of q2 and possibly of q4, q5 are incor-
rect): for instance, q7 produces 216,000 (= 303×23) CQs, q3 produces 15,120
(=4×5×21×36) CQs and q1 produces 3,887 (= 23 + 2×4×21×23) CQs because
Student, Faculty and Professor have 23, 36 and 30 subconcepts, respectively,
worksFor has 2 subroles, etc. Evidently, these large UCQs are generated by the
taxonomies and none of the query subsumption algorithms can reduce the num-
ber of CQs in them. In fact, all four systems require substantial resources (in
particular, for query subsumption checks): e.g., Nyaya rewrites q8 in 91s and
runs out of memory on q1, q3, etc.; IQAROS rewrites q6 in 546s and runs out

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

103 of 139

of memory on q1, q7–q9; Rapid rewrites q6 in 247s, q9 in 90.2s and runs out of
memory on q7, q8 (but is quite fast in all other cases); Requiem takes 232s on
r3, 236s on q4, 64.7s on q5 and does not terminate in 600s on q1, q3, q6–q8.

On the other hand, Ontop and the datalog-based systems produce rewritings
very quickly: Rapid needs < 0.1s for all CQs except q8 (0.41s) and q9 (10.8s);
it was impossible to extract the rewriting time in Clipper, but each query was
processed in < 2s; Ontop computes the rewritings in < 0.025s (except the last
two that take < 0.055s). Clearly, the huge UCQs could be produced in fractions
of a second by simply unfolding a few CQs by means of the taxonomy. Interest-
ingly, Clipper and Rapid return single-CQ rewritings in the cases without tree
witnesses, but generate more CQs than Ontop (e.g., q8 and q9) otherwise.

3 T -mappings: Concept and Role Hierarchies

We compare the query execution time in Ontop, Stardog 1.2 [8] and OWLIM [1].
Both Stardog and OWLIM use internal data structures to store data in the
form of triples. Stardog is based on rewriting into UCQs (as we saw in Sec-
tion 2, such systems can run out of memory during the rewriting stage, even
before accessing data). OWLIM is based on materialising the inferences (for-
ward chaining); but the implemented algorithm is incomplete for OWL 2 QL [1].
In the presented experiments, Ontop uses DB2 and MySQL to store the data
as triples based on the semantic index technique, which chooses concept/role
IDs in such a way that the resulting T -mapping uses SQL interval expressions
(e.g., (ID>=1) AND (ID<=10)) rather than UNIONs to obtain all instances of a
concept including its subconcepts (and similarly for roles). It was impossible to
compare Ontop with other systems: Rapid and IQAROS are just query rewriting
algorithms; the publicly available Clipper v 0.1 supports only Datalog engines
that read queries and triples at the same time, which would be a serious disad-
vantage for large datasets. All experiments were run on an HP Proliant with 144
cores 3.47GHz in 24 Intel Xeon CPUs, 106GB RAM and a 1TB@15000rpm HD
under 64-bit Ubuntu 11.04 with Java 7, MySQL 5.6 and DB2 10.1.

We took LUBM∃
20 with the data created by the modified LUBM data gen-

erator [6] for 50, 100 and 200 universities (with 5% incompleteness) with 7m,
14m and 29m triples, respectively. OWLIM requires a considerable amount of
time for loading and materialising the inferences—14min, 33min and 1h 23min,
respectively—producing about 93% additional triples and resulting in 13m, 26m
and 52m triples (neither Stardog nor Ontop need an expensive loading stage).
The results of executing the queries from Section 2 are presented in Table 1. We
first note that Stardog runs out of memory on 50% of queries, with a likely cause
being the query rewriting algorithm, which is an improved version of Requiem
(cf. the results in Section 2). On the remaining queries, however, Stardog is fast,
which might be due to its optimised triple store. In contrast to Stardog, both
OWLIM and Ontop return answers to all queries (although the former is incom-
plete) and their performance is comparable: in fact, in 76% of the cases Ontop
with DB2 outperforms OWLIM (the lines ‘DB2 *’ give the execution times for

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

104 of 139

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9
50 universities

DB2 fetch 0 0.02 0.76 0.04 0 1.38 4.16 0 1.50 1.77 1.24 1.83 1.47 0
DB2 * 0 0.11 0.93 0.03 0 125.0 0.86 0 0.39 2.13 0.24 0.21 0.48 0

O
n
to
p

MySQL 0 1.53 12.40 1.57 0 681.6 6.91 0 1.76 5.52 1.26 8.88 2.69 0
OWLIM 0.00 1.85 2.81 0.58 0.16 20.64 2.83 0.24 0.34 6.16 0.87 0.26 0.27 0.04
Stardog 0.01 0.79 1.56 0.34 0.10 DNF 0.10 DNF DNF DNF DNF DNF DNF 0.04
result size – 102k 12k 34k – 1.1m – – – 302k – – – –

100 universities
DB2 fetch 0 0.02 0.81 0.05 0 1.78 5.06 0 2.15 3.41 1.36 1.85 2.11 0
DB2 * 0 0.28 1.38 0.29 0 131.0 5.15 0 2.24 3.98 1.09 1.26 2.10 0

O
n
to
p

MySQL 0 2.98 24.89 2.90 0 1445 12.63 0 3.37 11.08 2.52 17.71 5.19 0
OWLIM 0.00 3.72 5.51 1.20 0.38 41.12 5.82 0.49 0.67 12.92 1.83 0.51 0.55 0.04
Stardog 0.01 1.78 2.56 0.60 0.38 DNF 0.20 DNF DNF DNF DNF DNF DNF 0.03
result size – 205k 24k 69k – 2.4m – – – 607k – – – –

200 universities
DB2 fetch 0 0.02 0.97 0.05 0 2.05 6.37 0 3.97 6.84 1.47 1.86 5.97 0
DB2 * 0 0.34 1.79 0.37 0 157.0 6.26 0 3.79 7.94 1.20 1.26 5.83 0

O
n
to
p

MySQL 0 5.73 58.24 7.78 0 2888 27.68 0 6.66 20.96 4.35 36.21 11.16 0
OWLIM 0.00 8.49 11.85 2.73 0.64 95.87 11.37 1.03 17.64 29.61 3.60 1.01 1.00 0.04
Stardog 0.01 3.27 2.92 1.12 0.27 DNF 0.33 DNF DNF DNF DNF DNF DNF 0.06
result size – 410k 48k 137k – 4.7m – – – 1.2m – – – –

Table 1. Query execution time (in seconds) and the result size over LUBM∃
20.

queries that return the size of the result). Moreover, some of the slowest queries
return enormous results (e.g., 4.7m tuples for q1 over 200 universities). Such
queries are hardly typical for databases, and both DB2 and MySQL show a
significant degradation in performance. However, as can be seen from the lines
‘DB2 fetch’ that give the time required to plan the query and fetch the first 500
answers (which does not depend much on the size of the result), DB2 is very fast.
It is to be emphasised that Ontop can work with a variety of database engines
and that, as these experiments demonstrate, Ontop with MySQL is consider-
ably worse in executing queries than with DB2 (but is still competitive with
OWLIM). Finally, observe that some queries do not need evaluation because
Ontop simplifies them to empty queries: in fact, r1, r5, q3, q6 contain atoms that
have no instances in the generated data and only 5 out of the 14 CQs return any
answers (which probably reflects the artificial nature of the benchmark).

These experiments confirm once again that rewritings into UCQs over arbi-
trary ABoxes can be prohibitively large even for high-performance triple stores
such as Stardog. The materialisation approach should obviously cope with large
taxonomies. However, the semantic index used in Ontop is able to cope with this
problem as well as (and often better than) inference materialisation, but does
not incur its considerable extra costs.

We have also evaluated the performance of T -mappings when answering
queries over the Movie Ontology (MO, www.movieontology.org) and the data

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

105 of 139

from the SQL version of the Internet Movie Database (IMDb, www.imdb.com/

interfaces). The reader can find all the results at tinyurl.com/ontop-benchmark.
Those experiments demonstrate that on-the-fly inference over real databases by
means of the tree-witness rewriting and T -mappings is efficient enough to com-
pete (and often outperform) materialisation-based techniques. Moreover, the
usual problems associated with approaches based on query rewriting do not
affect Ontop: T -mappings efficiently deal with hierarchical reasoning, avoiding
the exponential blowup, which is usually associated with query rewriting, and
the SQO is able to improve performance of the produced SQL queries by taking
account of the structure and integrity constraints of the database.

4 Conclusions

To conclude, this paper shows that—despite the negative theoretical results on
the worst-case query rewriting and sometimes disappointing experiences of the
first OBDA systems—high-performance OBDA is achievable in practice when
applied to standard ontologies, queries and data stored in relational databases.
In such cases, query rewriting together with SQO and SQL optimisations is fast,
efficient and produces SQL queries of high quality whose performance makes
materialisation of inferences unnecessary in the OWL 2 QL setting.

Acknowledgements. We thank Giorgio Orsi for providing Nyaya, Guohui Xiao
for providing queries and the Ontop development team (Josef Hardi, Timea
Bagosi and Mindaugas Slusnys) for their help with the experiments.

References

1. B. Bishop and S. Bojanov. Implementing OWL 2 RL and OWL 2 QL rule-sets for
OWLIM. In Proc. of OWLED, 2011.

2. A. Chortaras, D. Trivela, and G. Stamou. Optimized query rewriting for OWL 2
QL. In Proc. of CADE-23, volume 6803 of LNCS, pages 192–206. Springer, 2011.

3. T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. Query rewriting for
Horn-SHIQ plus rules. In Proc. of AAAI 2012. AAAI Press, 2012.

4. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimiza-
tion. In Proc. of ICDE 2011, pages 2–13. IEEE Computer Society, 2011.

5. S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query answering
with OWL 2 QL. In Proc. of KR 2012. AAAI Press, 2012.

6. C. Lutz, İ. Seylan, D. Toman, and F. Wolter. The combined approach to OBDA:
Taming role hierarchies using filters. In Proc. of SSWS+HPCSW, 2012.

7. H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewriting
techniques for DL-lite. In Proc. of DL 2009, volume 477 of CEUR-WS, 2009.

8. H. Pérez-Urbina, E. Rodŕıguez-Dı́az, M. Grove, G. Konstantinidis, and E. Sirin.
Evaluation of query rewriting approaches for OWL 2. In SSWS+HPCSW, 2012.

9. M. Rodŕıguez-Muro and D. Calvanese. Dependencies: Making ontology based data
access work. In Proc. of AMW 2011, volume 749. CEUR-WS.org, 2011.

10. T. Venetis, G. Stoilos, and G. Stamou. Query extensions and incremental query
rewriting for OWL 2 QL ontologies. Journal on Data Semantics, 2013.

11. G. Xiao. Personal communication, 2013.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

106 of 139

Reasoning the FMA Ontologies with TrOWL

Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk, and Jhonatan Garcia

Department of Computing Science, University of Aberdeen,
Aberdeen, AB23 3UE, United Kingdom

Abstract. In this paper, we briefly introduce the TrOWL ontology rea-
soning infrastructure and share our experience of using TrOWL to reason
with various versions of the Foundational Model of Anatomy Ontology
(FMA), which are among the most challenging ontologies for Description
Logic reasoners.

1 TrOWL

TrOWL1 is a tractable reasoning infrastructure for the second version of the Web
Ontology Language, or simply OWL22, which comes with a family of ontology
languages, including:

– OWL2-DL, the most expressive decidable language in the OWL2 family, and
– three tractable sub-languages of OWL2-DL, i.e. OWL2-EL, OWL2-QL and

OWL2-RL.

There are at least three approaches to reasoning in OWL2:

1. Sound and complete reasoning in OWL2-DL. Until recently, no OWL2-DL
reasoners could classify the FMA ontology, due to the high worst case com-
plexity of OWL2-DL (2NEXP-TIME-complete). In 2010, Glimm et. al. [2]
proposed the core blocking optimisation, enabling HermiT3 to classify the
TBox of the FMA-Constitutional ontology in about 30 minutes [4].

2. Sound and complete reasoning in OWL2-EL, OWL2-QL and OWL2-RL.
Although these sub-languages are tractable, none of them are sufficiently
expressive to cover FMA.

3. Approximate reasoning for OWL2-DL. The idea here is to approximate
OWL2-DL ontologies to those in its tractable sub-languages, so as to ex-
ploit the efficient and scalable reasoner. In Sections 3 and 4 of the paper, we
will provide more details on the performance of our approximate reasoner in
TrOWL for the FMA ontologies.

TrOWL supports OWL2 by using the approaches 2 and 3 mentioned above.
On the tractable language level, TrOWL contains an OWL2-EL reasoner (REL)

1 http://trowl.eu/
2 http://www.w3.org/TR/owl2-overview/
3 http://www.hermit-reasoner.com/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

107 of 139

2 Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk, Jhonatan Garcia

and an OWL2-QL reasoner (Quill). The approach of TrOWL is to offer tractable
support for all the expressive power of OWL2 by using quality guaranteed (in
terms of soundness and/or completeness) approximate reasoning. TrOWL con-
tains an OWL2 profile checker to detect which profile an ontology may fit into.

The semantic approximation from OWL2 to OWL-QL is based on the work
described in Pan and Thomas [11]. Semantic approximation applies the knowl-
edge compilation [18] to precompute the entailment of an arbitrary ontology into
a DL-Lite ontology. In general, this approach is soundness preserving and could
be incomplete. Furthermore, a conditional completeness condition is identified:
if input queries are database style queries, i.e. the variables only bound to named
individuals, the approach is also complete. In other words, database style queries
are not expressive enough to tell the difference between the original OWL2-DL
ontology and its approximation. A drawback for this approach is that reasoners
are required to compute the semantic approximation; therefore, the construction
of the approximation is usually done off-line.

The syntactic approximation from OWL2 to OWL2-EL is based on the
soundness preserving approximate reasoning approach presented in Ren et al.
[14]. The construction of the approximation is on the syntax and hence can be
done efficiently just before applying approximate reasoning. The idea is not to
throw away the axioms that are beyond OWL2-EL; otherwise, we might suffer
from low recall — for example, if we naively remove from the Cyc ontology all
the axioms that are beyond OWL2-EL, the recall is only 1% for classification.
Therefore, in this approach, we introduce some fresh named classes to represent
non-OWL2-EL class expressions. In order to recover the hidden semantics within
these fresh named classes, some relation between such named classes and exist-
ing classes are maintained and some extra completion rules (beyond those in
OWL2-EL) are introduced, with the extended set of completion rules still being
tractable. In [14], we reported that the recall of such approximate reasoning is
very high for TBox classification, 100% for most existing benchmark ontologies
except the Wine Ontology (99.4%). A further investigation indicates that it is
due to the syntax sensitivity nature of our approach. After adding a further
normalisation step into TrOWL, the recall for the Wine Ontology is also 100%.

TrOWL supports both OWL and Jena APIs. It has a plug-in for the Protégé
ontology editor v4.3.

2 FMA Ontologies

The Foundational Model of Anatomy Ontology (FMA) [16] is an evolving comput-
er-based knowledge source for biomedical informatics, mainly developed by the
University of Washington since 1994. The importance of this ontology resides
in the fundamental underlining of anatomy in all fields of medicine. Proper in-
terpretation of these data relies on an implicit understanding of anatomy. The
inferences entailed in such reasoning call upon cognitive or computational pro-
cessing of abstractions about physical entities of the body, making use of rela-
tionships that exist among anatomical concepts. Relevance and impact of the

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

108 of 139

Reasoning the FMA Ontologies with TrOWL 3

File Source File size Cls Props Inds Expressivity

FMA-DLR4 bioontology.org 147.6 Mb 78989 110 139374 ALUIN (D)
FMA-FullR4 bioontology.org 37.7 Mb 23597 77 82935 ALCOF(D)
FMA-Constitutional [5] 42.1 Mb 41647 148 85 ALCOIF(D)
FMA-OWL2G noMTC [4] 261.7 Mb 85005 140 74698 SROIQ(D)

FMA-DLR M15 this paper 140Kb 26 133 26 ALCOIF(D)
FMA-DLR M26 this paper 225Kb 56 133 56 ALCOIF(D)

Table 1. List of FMA ontologies

FMA ontology on its field can now be compared to other well-known medical
ontologies such as SNOMED [12] or GALEN [6].

Nowadays, the FMA can be viewed as a complex, highly connected network
in which nearly 70,000 anatomical concepts, from over 170,000 frames, are in-
terrelated by over 570,000 relationship instances. There have been a number
of approaches [5, 10, 4] to translating the knowledge encapsulated by the FMA
ontology into the OWL ontology language. Golbreich et al. [4] developed the
FMA-OWLizer tool, which can be applied to automatically obtain a translation
of the FMA ontology into OWL 2.

Given the size and complexity of the FMA ontology, reasoning under OWL
has proven to be a real challenge. Table 1 provides a list of FMA ontologies
written in OWL that we used in our evaluation.

3 FMA with Metamodeling

The FMA features a complex structure of superclasses and subclasses that re-
quires the support of metamodeling. For example, “Physical anatomical entity”
is an instance of “Anatomical entity template”, and a subclass of both “Anatom-
ical entity template” and “Anatomical entity” [1]. In OWL, a class is interpreted
as a set of objects. Similarly, a metaclass is interpreted as a set of sets in meta-
modeling extensions of OWL, such as OWL-FA [7]. For example, the metaclass
Vertebra can be interpreted as a set of different types of vertebrae, such as cer-
vical, thoracic, lumbar, which in turn can be interpreted as subsets of other sets,
e.g., first, ..., fifth lumbar vertebra.

There have been several attempts in dealing with metamodeling in FMA.
Dameron et al. [1] converted the frame-based FMA ontology into an OWL1-
DL version and an OWL1-Full version, with metaclasses included in the latter
one. Golbreich et al. [5] tried to capture (some of) the knowledge encoded at
metaclasses differently in OWL1-DL directly (cf. the FMA-Constitutional on-
tology in Table 1). The idea is to replace instance-of links between a class and
its metaclasses with subClassOf links. The structure of their instances, property

4 http://www.bioontology.org/wiki/index.php/FMAInOwl
5 http://homepages.abdn.ac.uk/jeff.z.pan/pages/onto/fma-dlr-m1.owl
6 http://homepages.abdn.ac.uk/jeff.z.pan/pages/onto/fma-dlr-m2.owl

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

109 of 139

4 Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk, Jhonatan Garcia

restrictions of metaclasses are interpreted as closure axioms and approximated
by universal restrictions while restrictions of classes are translated into existen-
tial restriction. Later on, Golbreich et al. further encoded the FMA ontology
in OWL2-DL, producing two ontologies, one with metaclasses and one without
them. The idea is to use the OWL 2 metamodeling capability, i.e., punning,
to represent metaclasses, using the same URI to refer to a class and an indi-
vidual at the same time in FMA-OWL2G MT. For example, the name Heart

can be used both for the metaclass Heart and for the class Heart, instance of
Organ with cavitated organ parts.

The drawback of the punning approach is that, although a class and an
individual can share the same name, say C, they are treated as different entities.
For example, even if the class C is entailed to be equivalent to a class D, the
individuals C and D can still be different. This has been regarded as non-intuitive
due to the lack of expected entailments (e.g., the individuals C and D should be
the same). To deal with this problem, we apply the class-based approach from
Glimm et al. [3] to enrich some small (but already challenging for DL reasoners)
subsets of FMA-DLR ontology and accommodate metaclasses (cf. the last two
ontologies in Table 1) with the Typing and MatSubClass functions proposed
in [3].

Ontology RT FaCT++ HermiT TrOWL MORe Recall

FMA-DLR C 32.425 s 46.94 s 32.596 s 47.794 s 100%
FMA-FullR C 121.041 s 1064.947 s 4.45 s 4.571 s 100%
FMA-Constitutional C t/o 3043.61 s 155.808 s t/o 100%
FMA-OWL2G noMTC C o/m t/o 967.59 s t/o N/A

FMA-DLR M1 M 932.5 s 26.39 s 0.819 s N/A 100%
FMA-DLR M2 M t/o 737.43 s 2.863 s N/A 100%

Table 2. Reasoning with FMA ontologies via OWL API (‘RT’ for Reasoning Task,
‘C’ for Classification, ‘M’ for Materialisation, ‘s’ for second, ‘t/o’ for time out after one
hour, ‘o/m’ for out of memory)

Table 2 lists the classification (for the first four ontologies) and materialisa-
tion (for the last two ontologies) time (reasoning time + retrieving time) from
some of the state of the art DL reasoners (including FaCT++ v1.6.2, HermiT
v1.3.8, TrOWL v1.3 and MORe v0.1.3 [15]) over the FMA ontologies in Table
1. The machine used for the experiment is a MacBook, with CPU 2.26 core 2
duo, Ram 8 GB and 6 GB allocated to JVM. The last column of Table 2 reports
the recall (on the number of subsumptions among named classes) of TrOWL
with respect to results of HermiT. Note that FaCT++ had a datatype error for
the FMA-DLR ontology, so we did not import the FMA-DLR ontology into the
FMA-FullR ontology when testing FMA-FullR. Moreover, as MORe does not
support ABox reasoning, its time with the FMA-DLR M1 and FMA-DLR M2
ontologies is not reported.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

110 of 139

Reasoning the FMA Ontologies with TrOWL 5

4 Dealing with Unsatisfiable Concepts in FMA
Constitutional

An ontology is called incoherent [17] if it contains unsatisfiable concepts, which
are equivalent to the bottom concept ⊥ and can not have any instance. Unsatis-
fiable named concepts (except the bottom concept ⊥) in a constructed ontology
usually indicates possible design flaws. For example, 33,433 out of 41,648 con-
cepts are unsatisfiable in the FMA-Constitutional ontology. This was apparently
not intended since the current version of FMA has already eliminated all these
unsatisfiabilities.

Understanding ontology incoherence is not trivial. Incoherence can usually be
explained and resolved by computing justifications [8], i.e., minimal entailment-
preserving sub-ontologies. However, computing justifications with a black-box
algorithm requires a large number of entailment checking, which can be expensive
given the complexity of reasoning and size of the ontology. Also, looking into
33,433 justifications to debug the ontology will be very time consuming.

We notice that some of the concepts are unsatisfiable due to other unsatis-
fiable concepts. For example in FMA-Constitutional we can infer Neuron v ⊥
and Central neuron v Neuron, hence we also have Central neuron v ⊥. In
this case, Central neuron is unsatisfiable due to the unsatisfiability of Neuron.
Such a phenomena has been formally characterised by Kalyanpur et al. [9] as
root and derived unsatisfiable concepts. Particularly, A is a derived unsatisfiable
concept if there is a justification for A v ⊥ that contains a justification for
B v ⊥, where B is another unsatisfiable concept, and B is called the parent of
A. Otherwise, A is a root unsatisfiable concept.

The REL reasoner in TrOWL is using a forward-chaining completion-based
algorithm, in which each rule infers a set of consequence axioms from a set
of antecedence axioms. Such an algorithm can be easily extended to compute
justifications on the fly by incorporating a truth-maintenance system (TMS) [13].
However naively applying such a solution has the following limitations:

1. For big and complex ontologies, maintaining the entire in TMS is a big
overhead on reasoning. In fact, we are only interested in justifications for
unsatisfiability but not the others so a fully-fledged TMS is unnecessary.

2. Repairing all the root unsatisfiabilities cannot always repair all the derived
unsatisfiabilities because a derived unsatisfiability may have another justi-
fication that depends on no other unsatisfiability. In this case, one need to
iteratively reclassify, debug and repair. For difficult ontologies such as FMA
Constitutional, we would like to minimise the number of such iterations.

In order to improve efficiency, we introduce Type I and Type II unsatisfiable
concepts as approximations to the root and derived unsatisfiable concepts with
the following procedure in REL:

1. When a rule infers A v ⊥, if the antecedences contain B v ⊥, where both
A and B are named concepts in the original ontology, we label A as a Type
II unsatisfiable concept. Otherwise, we label A as a Type I unsatisfiable
concept.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

111 of 139

6 Jeff Z. Pan, Yuan Ren, Nophadol Jekjantuk, Jhonatan Garcia

2. We continue reasoning on Type II concepts regardless their unsatisfiability,
and label them with Type I if possible. They will not be treated immediately
as sub-concept of all concepts.

The above point 2 is important to explore alternative derivation of unsatisfiabil-
ity for Type II concepts. If such a derivation does not depend on other unsatis-
fiability, the concept will be labeled Type I as well. It is possible for a derived
unsatisfiable concept to be labeled earlier than its parent, making it mistakenly
labeled as a Type I. For example, considering the following axiom:

A v B, (1)

B v C, (2)

B v ¬C, (3)

if we infer A v C from (1) and (2), then A v ¬C from (1) and (3), and
then A v ⊥, then we have A as a Type I unsatisfiable concept. To avoid such
situations as much as possible, we apply a depth-first classification strategy,
always classifying super-concepts before classifying sub-concepts.

Using the above mechanism we are able to distinguish the different types of
unsatisfiable concepts in the FMA-Constitutional. Results show that only 145
concepts belong to Type I, which is only 0.43% of all the unsatisfiable concepts.
By examining their justifications, we realise that they are due to similar reasons.
Particularly, there is a boolean-valued functional datatype property has mass
in the ontology. With the axioms in FMA Constitutional, it is possible to in-
fer both A v ∃has mass.{true} and A v ∃has mass.{false} for concept A,
making A unsatisfiable. Another boolean-valued functional datatype property
has inherent 3-D shape has a similar problem. There are in total only 6 con-
cept axioms with these two properties. Debugging these 6 axioms is apparently
much easier than debugging all the 122,136 logical axioms, or the justifications
of all the 33,433 unsatisfiable concepts.

5 Conclusion and Outlook

This paper briefly introduces the TrOWL ontology reasoning infrastructure. Our
evaluations with the FMA ontologies indicate that approximate reasoners can
be useful for reasoning and debugging complex ontologies. The tested FMA
ontologies are only some of the existing ones. We will further test more FMA
ontologies, in particular those related to metamodeling.

References

1. O. Dameron, D. L. Rubin, and M. A. Musen. Challenges in converting frame-based
ontology into OWL: the Foundational Model of Anatomy case-study. In the Proc.
of the AMIA Annual Symposium, 2005.

2. Birte Glimm, Ian Horrocks, and Boris Motik. Optimized description logic reasoning
via core blocking. In IJCAR, pages 457–471, 2010.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

112 of 139

Reasoning the FMA Ontologies with TrOWL 7

3. Birte Glimm, Sebastian Rudolph, and Johanna Völker. Integrated metamodeling
and diagnosis in owl 2. In Proceedings of the 9th International Semantic Web
Conference, volume 6496 of LNCS, pages 257–272. Springer, November 2010.

4. C. Golbreich, J. Grosjean, and S. J. Darmoni. The fma in owl 2. In Proceedings of
the 13th conference on Artificial intelligence in medicine, AIME’11, pages 204–214,
Berlin, Heidelberg, 2011. Springer-Verlag.

5. Christine Golbreich, Songmao Zhang, and Olivier Bodenreider. The foundational
model of anatomy in owl: Experience and perspectives. J. Web Sem., 4(3):181–195,
2006.

6. Rogers JE, Roberts A, Solomon WD, van der Haring E, Wroe CJ, Zanstra PE,
and AL. Rector. Galen ten years on: Tasks and supporting tools. In Proceedings
of the MEDINFO2001, pages 256–260. IOS Press, 2001.

7. Nophadol Jekjantuk, Jeff Z. Pan, and Gerd Grner. Verifying and Validating Multi-
Layered Models with OWL FA Toolkit. In the Proc. of the Extended Semantic Web
Conference (ESWC2010), 2008.

8. Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all
justifications of owl dl entailments. In ISWC/ASWC 2007, pages 267–280, 2007.

9. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging un-
satisfiable classes in owl ontologies. Web Semantics: Science, Services and Agents
on the World Wide Web, 3(4):268–293, 2005.

10. Natalya Fridman Noy and Daniel L. Rubin. Translating the foundational model
of anatomy into owl. J. Web Sem., 6(2):133–136, 2008.

11. Jeff Z. Pan and Edward Thomas. Approximating OWL-DL Ontologies. In the
Proc. of the 22nd National Conference on Artificial Intelligence (AAAI-07), pages
1434–1439, 2007.

12. Stearns M. Q., Price C., Spackman K. A., and Wang A. Y. Snomed clinical
terms: overview of the development process and project status. In Proceedings
of the AMIA Symposium, American Medical Informatics Association, pages 662–
666, 2001.

13. Yuan Ren and Jeff Z Pan. Optimising ontology stream reasoning with truth main-
tenance system. In Proceedings of the 20th ACM international conference on In-
formation and knowledge management, pages 831–836. ACM, 2011.

14. Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness Preserving Approxima-
tion for TBox Reasoning. In the Proc. of the 25th AAAI Conference Conference
(AAAI2010), 2010.

15. Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. More: Modular
combination of owl reasoners for ontology classification. In Proceedings of the 11th
International Semantic Web Conference (ISWC 2012), LNCS. Springer, 2012.

16. Cornelius Rosse and José L. V. Mejino Jr. A reference ontology for biomedical in-
formatics: the foundational model of anatomy. Journal of Biomedical Informatics,
36(6):478–500, 2003.

17. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In IJCAI, pages 355–362. Morgan
Kaufmann, 2003.

18. Bart Selman and Henry Kautz. Knowledge compilation and theory approximation.
J. ACM, 43(2):193–224, March 1996.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

113 of 139

KB Bio 101 : A Challenge for OWL Reasoners

Vinay K. Chaudhri, Michael A. Wessel, Stijn Heymans

SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
firstname.lastname@sri.com

Abstract. We describe the axiomatic content of a biology knowledge base that
poses both theoretical and empirical challenges for OWL reasoning. The knowl-
edge base is organized hierarchically as a set of classes with necessary and suf-
ficient properties. The relations have domain and range restrictions, are orga-
nized into a hierarchy, can have cardinality constraints and composition axioms
stated for them. The necessary and sufficient properties of classes induce general
graphs for which there are no known decidable reasoners. The OWL version of
the knowledge base presented in this paper is an approximation of the original
knowledge base. The knowledge content is practically motivated by an education
application and has been extensively tested for quality.

1 Introduction

The goal of Project Halo is to develop a “Digital Aristotle” - a reasoning system ca-
pable of answering novel questions and solving problems in a broad range of scientific
disciplines and related human affairs [11]. As part of this effort, SRI has created a sys-
tem called Automated User-Centered Reasoning and Acquisition System (AURA) [8],
which enables educators to encode knowledge from science textbooks in a way that it
can be used for answering questions by reasoning.

A team of biologists used AURA to encode a significant subset of a popular biology
textbook that is used in advanced high school and introductory college courses in the
United States [15]. The knowledge base called KB Bio 101 (for short: KBB101) is
an outcome of this effort. KBB101 is a central component of an electronic textbook
application called Inquire Biology [13] aimed at students studying from it.

AURA uses a frame-based knowledge representation and reasoning system called
Knowledge Machine (KM) [7]. We have translated the original KM-version of KBB101
into first-order logic with equality. By using this representation as a common basis, we
have translated it into multiple different formats including SILK [9], OWL2 functional
[17], answer set programming [5], and the TPTP FOF syntax [6]. In this paper, we
describe the OWL2 translation. The translations are available for download [4].1

2 Modeling in the AURA Project – The Role of Skolem Functions

AURA provides a graphical knowledge authoring environment for biologists. For ex-
ample, the knowledge Every Cell has a Ribosome part and a Chromosome part is ex-

1 This work is owned by Vulcan Inc. and is licensed for use under the Creative Commons
Attribution-NonCommerical-ShareAlike 3.0 license (http://creativecommons.org/
licenses/by-nc-sa/3.0/).

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

114 of 139

Fig. 1. (Simplified) Class Graphs for Cell and EukaryoticCell in AURA.

pressed graphically as shown in the left half of Fig. 1. Here, white nodes represent
universally quantified variables, and grey nodes represent existentially quantified vari-
ables. Cell hence corresponds to the following first-order formula:

∀x : Cell(x) ⇒
∃y1, y2 : hasPart(x, y1) ∧ hasPart(x, y2) ∧ Ribosome(y1) ∧ Chromosome(y2)

Using the well-known technique of Skolemization, we can also write this as follows;
the advantages of Skolem functions will become clear shortly:

∀x : Cell(x) ⇒
hasPart(x, f1

Cell(x)) ∧ hasPart(x, f2
Cell(x))∧

Ribosome(f1
Cell(x)) ∧ Chromosome(f2

Cell(x))

The system supports inheritance. Consider the subclass EukaryoticCell , which in-
herits knowledge from Cell , see the right half of Fig. 1. The Chromosome in
EukaryoticCell was inherited from Cell , and then specialized into a Eukaryotic-
Chromosome, and likewise for Ribosome . The Nucleus was added locally in
EukaryoticCell . The advantage of using Skolem functions is that the inheritance can be
made explicit by means of equality atoms: by adding f3ECell(x) = f2Cell(x), f

2
ECell(x) =

f1Cell(x) to the Skolemized formula for EukaryoticCell it is made explicit that the
EukaryoticChromosome in EukaryoticCell is a specialization of the Chromosome
in Cell and consequently, all knowledge which was modeled for that Chromosome
in the context of Cell also applies to the EukaryoticChromosome in the context of
EukaryoticCell (in addition to what was modeled for Chromosome itself, of course):

∀x : EukaryoticCell(x) ⇒ Cell(x)∧
hasPart(x, f1

ECell(x)) ∧ hasPart(x, f2
ECell(x)) ∧ hasPart(x, f3

ECell(x))∧
EukaryoticChromosome(f3

ECell(x)) ∧Nucleus(f1
ECell(x))∧

EukaryoticRibosome(f2
ECell(x)) ∧ isInside(f3

ECell(x), f
1
ECell(x))∧

f3
ECell(x) = f2

Cell(x) ∧ f2
ECell(x) = f1

Cell(x)

The employed graphical modeling paradigm can be described as inherit, specialize,
and extend. During the modeling process, the system keeps track of the specialized and
extended Skolem functions and records the inheritance structures as demonstrated.

Since the above axiom defines a graph, it is not expressible in the known decidable
description logics [12].

3 The Axiomatic Content of KB Bio 101

We first describe the signature of an AURA KB in first order logic. KBB101 is an
AURA KB. Let CN be a set of class names (e.g., Cell ∈ CN), and RN be a set of
relation names (e.g., hasPart ∈ RN). Let AN ⊆ RN be a set of attribute names (e.g.,
color , temperature ∈ AN). Let C,C1, C2, . . . , D,D1, D2, . . . , E,E1, E2, . . . , F, F1,
F2, . . . be class names, andR,R1, R2, . . . , S, S1, S2, . . . , T, T1, T2, . . . be relation names.
Let {x, y, z, x1, x2, . . .} be a set of variables, and, for everyC ∈ CN , let {fn1C , fn2

C , . . .}

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

115 of 139

be a set of function symbols. We have the following sets of constants: scalar constant
values SCs = {small , big , . . .}, categorical constant values CCs = {blue, green, . . .},
cardinal unit classes CUCs = {meter , year , . . .}, and CN ∪ RN are considered con-
stants as well. There are three kinds of attributes; they are used in so-called value atoms,
see below:

Cardinal attribute values: For example, t is 43 years would be represented as
age(t, t1), theCardinalValue(t1, 43), cardinalUnitClass(t1, year).

Categorial attribute values: For example, t has color green would be represented as
color(t, t1), theCategoricalValue(t1, green).

Scalar attribute values: For example, t is big w.r.t. a house (where house is a class)
would be represented as size(t, t1), theScalarValue(t1, big), scalarUnitClass(t1,
house).

Next we describe the axiomatic content. An AURA KB is a tuple
(CTAs,CAs,RAs,EQAs), where CTAs is a set of constant type assertions, RAs
is a set of relation axioms, CAs is a set of class axioms, and EQAs is a set of equality
atoms. Those axioms are described in the following:

CTAs : The AURA KB contains, for every c ∈ SCs ∪ CCs ∪ CUCs , 1 to n type
assertions of the form C(c), where C ∈ CN (the types of the constant).

EQAs : A set of equality atoms for C, of the form t = fn(t′), where t, t′ ∈
{x, fn1

C(x), fn
2
C(x), . . .}, and fn ∈ {fn1D, fn2

D, . . .}, with C 6= D, for some D (D
is a class mentioned in C, or a direct or indirect superclass of C).

CAs : For every class name C ∈ CN , it may contain the following kinds of ax-
ioms: DAs : disjointness axioms: ∀x : C(x) ⇒ ¬D(x); TAs : taxonomic axioms:
∀x : C(x) ⇒ E(x); NCAs : necessary conditions: ∀x : C(x) ⇒ Φ [x], where
Φ [x] is a conjunction of unary (class) atoms and binary (relation) atoms over terms
{x, fn1

C(x), fn
2
C(x), . . .}.

There are two special equality relations, namely equal ,notEqual , which are user
asserted equality atoms. The intended semantics is the semantics of first-order equal-
ity resp. in-equality. In order to distinguish them from the equalities in EQAs we use
different predicate names.

Moreover, Φ [x] can contain the following value atoms: for a term t, let float be
a floating point number, scalar ∈ SCs , categorical ∈ CCs , cardinalUnitClass ∈
CUCs , and scalarUnitClass ∈ CN , then the following atoms are value atoms:
theCardinalValue(t,float), theScalarValue(t, scalar), theCategoricalValue(t,
categorical), cardinalUnitClass(t, cardinalUnitClass), and scalarUnitClass(t,
scalarUnitClass).

In addition, an AURA KB can contain qualified number restrictions. Due to a lack of
counting quantifiers, we represent them by means of quadrary atoms
maxCardinality(t, R, n, C) (resp. minCardinality and exactCardinality), where n
is a non-negative integer, C is a class, and R is a relation name.

SCAs : sufficient conditions: ∀x : Θ [x, . . .]⇒ C(x)∧EQs [x, . . .], whereΘ [x, . . .]
is a conjunction of unary, binary, value and qualified number restriction atoms over
terms {x, x1, x2, . . .}, the sufficient conditions, and EQs [X, . . .] is a conjunction of
equality atoms of the form t1 = t2, where t1 ∈ {x, x1, x2, . . .}, and t2 ∈ {x, fn1

C(x),
fn2C(x), . . .}, linking the variables in the antecedent to the Skolem function values in

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

116 of 139

the consequent of the necessary conditions, Φ(x). Obviously, requiring the use of the
Skolem functions in the antecedent of the sufficient condition would be a too strong re-
quirement and render the sufficient condition inapplicable in many cases. Also note that
Θ′ [x] ⊆ Φ [x], whereΘ′ [x] is the result of substituting the variablesΘ [x] with their re-
spective Skolem terms fromEQs [x, . . .]:Θ′ [x] = Θ [x]{t1 7→t2,t1=t2∈EQs[x,...]}. Hence,
every sufficient condition is also necessary (a byproduct of the graphical modeling).

For a given class name C, we refer to the corresponding axioms as DAs(C),
TAs(C), and EQAs(C). We refer to the union of all axioms for C as CAs(C).

RAs : For every relation name R ∈ RN , RAs may contain the following: DRAs :
relation domain restrictions ∀x, y : R(x, y) ⇒ C1(x) ∨ . . . ∨ Cn(x); RRAs : relation
range restrictions ∀x, y : R(x, y) ⇒ D1(y) ∨ . . . ∨ Dm(y); RHAs : simple relation
hierarchy ∀x, y : R(x, y) ⇒ S(x, y); QRHAs : qualified relation hierarchy ∀x, y :
R(x, y)∧C(x)∧D(y)⇒ S(x, y); IRAs : inverse relations ∀x, y : R(x, y)⇒ S(y, x);
12NAs : 1-to-N cardinality ∀x, y, z : R(x, y) ∧ R(z, y) ⇒ x = z; N21As : N-to-1
cardinality ∀x, y, z : R(x, y)∧R(x, z)⇒ y = z; TRANSAs : simple transitive closure
axioms ∀x, y, z : R(x, y)∧Rstar(y, z)∧C(x)∧D(y)∧E(z)⇒ Rstar(x, z), where
Rstar(x, z) = R∗(x, z); GTRANSLAs : generalized transitive closure axioms (left
composition) ∀x, y, z : R(x, y) ∧ S(y, z) ∧ C(x) ∧D(y) ∧ E(z)⇒ Rstar(x, z); and
GTRANSRAs : generalized transitive closure axioms (right composition) ∀x, y, z :
R(x, y) ∧ S(y, z) ∧ C(x) ∧D(y) ∧ E(z)⇒ Sstar(x , z).

We refer to the axioms for a relation R by DRAs(R) etc. We refer to the union of
all axioms for R as RAs(R).

4 The OWL Translations of KB Bio 101

Our OWL translator produces OWL2 functional syntax [17], which has good human
readability and is readily processed by most OWL2 reasoners. The generated KBs have
been syntax-tested with Protégé 4.2 [14] (utilizing the OWLAPI parser) as well as Rac-
erPro [16] (which has its own proprietary parser).

The following features of KBB101 might be challenging for OWL reasoners:
Cycles: KBB101 contains terminological cycles. It does not have the finite model

property, nor the tree model property [1].
Size: the most complete export is 16 MBs big.
Complexity: the most complete export exploits SHOIQ(Dn) [3] (potentially we

could use SROIQ(Dn) [10], but we currently do not include complex role inclusions,
see below for a discussion).

Graph structures: we cannot represent the graph structures truthfully in OWL2.
The original graph structures have to be approximated. We do this by rewriting and
exporting the KBB101 in two flavors. Flavor 1 - Unraveling: We unravel the graph
structures up to a certain maximal depth n. Unraveling is a standard technique from
modal logics - let us give the following intuition: Given a class graph C (see Fig. 1), an
up to max. depth n unraveled version ofC can be produced by an n-bounded depth-first
graph traversal of C, starting from the root node x, that outputs the (inverse) edge label
whenever an (inverse) edge is traversed to visit a successor node, together with the node
label. This produces a tree. This tree with max-depth n is then translated into OWL2
functional syntax as described. It results in an approximation of the original KBB101

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

117 of 139

which gets better the larger the value of n is. Note that nodes reachable only over paths
of length> n are excluded. The filenames of KBB101s which were produced using un-
raveling start with kb-owl-syntax-unraveled-depth-n. We currently vary
n from 0 to 4 and produce the corresponding KBB101s. With n = 0, the axioms in
NCAs and SCAs are basically ignored, as the unraveled tree consists of the root node
only (hence, only the taxonomy is exported). Flavor 2 - Node IDs: We can represent
the graph structure by introducing symbolic node identifiers in the OWL2 class expres-
sions. Even though the OWL2 reasoner will be blind to the intended semantic meaning
of these node IDs, modeling graph structure and co-references, the original graph struc-
ture is at least represented and could, in principle, be exploited for reasoning by some
powerful extended future OWL2 reasoner. Note that node IDs are only introduced if
required (in tree-shaped class descriptions they are not required). Moreover, those node
IDs can either be rendered as atomic classes, or introduced as nominals. The filenames
of the respective KBB101s start with kb-owl-syntax-coreference-IDs.

Explicit inheritance and equality: the inter-class co-references between Skolem
function values and equality atoms cannot be represented in OWL2. We hence skip
all the axioms in EQNs . We consider the OWL2 export underspecified. In principle,
we could preserve some of those by using functional properties and encoding tricks,
but even then, feature agreements or role value maps might be required, and already
ALCF with general TBoxes is undecidable [2].

Rendering of axioms We can en- and disable the export of certain axiom types,
e.g, there is a switch which determines whether DAs are exported or not, and likewise
for other axiom types. We produce all KBB101s for all possible combinations of those
switches. Let us describe the rendering of class axioms and relation axioms. In the
following, C’ denotes the OWL2 version of classC, and R’ the corresponding property
of relation R.

The class axioms CA(C) are exported as follows: The axioms TAs(C) and NCA(C)
are combined into one axiom of the form ∀x : C(x)⇒ Ω, which is then rendered as a
SubClassOf(C Ω′) axiom. Here, Ω′ is either an – up to depth n – unraveled ver-
sion of Ω as an OWL2 class expression, or the Ω′ class expression uses node IDs for
representing the graph structure as described. Note that the DAs(C) and EQAs(C)
are excluded here. Moreover, if C has a user-description or -comment, then this is ren-
dered as AnnotationAssertion(C’ string). During rendering of SCAs , we
are omitting the EQs [x, . . .] from ∀x : Θ [x, . . .] ⇒ C(x) ∧ EQs [x, . . .] ∈ SCAs .
KBB101s with SCAs preserved have a triggers in their file names. We generate
a SubClassOf(Θ′ C) axiom, where Θ′ is Θ [x, . . .] as an OWL2 class expres-
sion, unraveled up to depth n. Disjointness axioms DAs are represented by means
of DisjointClasses. The rendering of DAs can be suppressed; KBB101s with
DAs preserved have -disjointness in their file names. The rendering of cardi-
nality constraints in necessary conditions NCAs can be omitted. Also, we may choose
to only export the cardinality constraints with cardinalities 0 and 1, as those are the
only cardinality constraints used by the KM reasoning system [7] (the other cardinal-
ity constraints are ignored). KBB101s with cardinality constraints preserved have a
cardinalities resp. km-relevant-cardinalities in their file names.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

118 of 139

We also employ class and property annotation axioms to represent user descriptions
and documentations.

The inter-class equality axioms EQAs are ignored – as explained, there is no straight-
forward way to model our Skolem function inheritance in OWL2. However, the user
asserted intra-class equality and in-equality atoms are retained, and we are using the
:same-as and :not-equal object properties for that purpose.

Exporting the relation axioms RAs is straightforward, too. KBB101s with rela-
tion axioms retained have a relation-axioms in their file names: The axioms
TRANSAs , GTRANSLAs , GTRANSRAs are analyzed. If an axiom can be truth-
fully encoded as an OWL2 complex role inclusion axiom obeying the regularity con-
dition [10], then it is included in the file (unfortunately, none are, so the KBB101 ends
up in SHOIQ(Dn) instead of SROIQ(Dn)). If a relations R turns out to be transi-
tive, then this is declared by means of TransitiveObjectProperty(R) axiom.
RDAs(R) are rendered as ObjectPropertyDomain(R, C), for every ∀x, y :
R(x, y) ⇒ C(x) ∈ RDAs(R). RRAs(R) are rendered as ObjectProperty-
Range(R, C), for every ∀x, y : R(x, y) ⇒ D(y) ∈ RRAs(R). RHAs(R) are
rendered as SubObjectProperty(R,S), for every ∀x, y : R(x, y) ⇒ S(x, y) ∈
RHAs(R). IRAs(R) are rendered as InverseObjectProperties(R, S), for
every ∀x, y : R(x, y) ⇒ S(y, x) ∈ IRAs(R). If N21As(R) 6= ∅, then we declare
FunctionalObjectProperty(R), and ObjectProperty(R) otherwise. IfR
has a user-description string, then this is rendered as an AnnotationAssertion(R
string).

Rendering of terms: OWL2 is a term-free language. However, there is the analog
of first-order constants, so-called nominals, and we may choose to use them for the rep-
resentation of categorical property values (such as green) and scalar symbolic prop-
erty values (such as big). A categorical property value such as green can either be
represented as a type / instance assertion of the form ClassAssertion(:Color-
Constant :green) and then used as a nominal object property filler in class sub-
expressions such as ObjectHasValue(:color :green), or :green might be
a special subclass of :ColorConstant, SubClassOf(:green :ColorCon-
stant), and then used in an ObjectSomeValuesFrom(:color :green) ex-
pression to represent the color of some object. However, for string- and float-based
property values we need to use a datatype property-based representation, e.g. Data-
HasValue(:theCardinalValue "43.0e0"ˆˆxsd:float). KBB101s us-
ing the nominal representation have a value-nominals in their file names, and oth-
erwise value-classes. The rendering of value classes and nominals can also be
switched off completely.

5 Conclusion

An initial version of the KB Bio 101 in OWL2 is now available [4] and we are very
interested to actively engage with the research community to facilitate its use. We are
also looking forward to seeing the reasoning runtimes of different systems participating
in the ORE 2013 reasoner competition for the different OWL2 variants of KBB101.
The reasoning problems we are currently interested in are consistency checking and
classification.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

119 of 139

Acknowledgment: This work has been funded by Vulcan Inc.

References

1. F. Baader. Terminological Cycles in a Description Logic with Existential Restrictions. In
International Joint Conference on Atificial Intelligence, 2003.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

3. F. Baader and B. Hollunder. Qualifying Number Restrictions in Concept Languages. In
International Conference on Knowledge Representation and Reasoning, 1991.

4. V. K. Chaudhri, S. Heymans, and M. A. Wessel. The Bio KB 101 Download Page, 2012.
See http://www.ai.sri.com/halo/halobook2010/exported-kb/biokb.
html.

5. V. K. Chaudhri, M. W. Stijn Heymans, and S. C. Tran. Object-Oriented Knowledge Bases
in Logic Programming. Technical report, SRI International, 2013. Available from http:
//www.ai.sri.com/pub_list/1935.

6. V. K. Chaudhri, M. A. Wessel, and S. Heymans. KB Bio 101: A Challenge for TPTP First-
Order Reasoners. In CADE-24 Workshop on Knowledge Intensive Automated Reasoning,
2013. Available from http://www.ai.sri.com/pub_list/1937.

7. P. Clark and B. Porter. Building Concept Representations from Reusable Components. In
AAAI. AAAI Press, 1997.

8. D. Gunning and V. Chaudhri et al. Project Halo Update Progress Toward Digital Aristotle.
AI Magazine, Fall 2010.

9. B. Grosof. The SILK Project: Semantic Inferencing on Large Knowledge, 2012. See http:
//silk.semwebcentral.org/.

10. I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In International
Conference on Knowledge Representation and Reasoning, 2006.

11. V. Inc. Project Halo, 2012. See http://www.projecthalo.com/.
12. B. Motik, B. C. Grau, I. Horrocks, and U. Sattler. Representing Ontologies Using Description

Logics, Description Graphs, and Rules. Artificial Intelligence, 173(14), Sept. 2009.
13. A. Overholtzer, A. Spaulding, V. K. Chaudhri, and D. Gunning. Inquire: An Intelligent

Textbook. In Proceedings of the Vidoe Track of AAAI Conference on Artificial Intelli-
gence. AAAI Press, 2012. See http://www.aaaivideos.org/2012/inquire_
intelligent_textbook/.

14. Protégé Group. The Protégé Ontology Editor and Knowledge Acquisition System, 2012. See
http://protege.stanford.edu.

15. J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. B. Jackson.
Campbell Biology, 9th ed. Harlow: Pearson Education, 2011.

16. V. Haarslev and K. Hidde and R. Möller and M. Wessel. The RacerPro Knowledge Repre-
sentation and Reasoning System. Semantic Web Journal, 3(3):267–277, 2012.

17. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

120 of 139

Evaluating OWL 2 Reasoners in the context of Clinical
Decision Support in Lung Cancer Treatment Selection

M. Berkan Sesen1, Ernesto Jiménez-Ruiz2,
René Bañares-Alcántara1, Sir Michael Brady3

1 Department of Engineering Science, University of Oxford, UK
2 Department of Computer Science, University of Oxford, UK

3 Department of Oncology, University of Oxford, UK

Abstract. This paper evaluates the performances of the OWL 2 reasonersHer-
miT, FaCT++ and Pellet in the context of an ontological clinical decision support
system in lung cancer care. In the first set of experiments, wecompare how the
classification and realisation times of the LUCADA and LUCADA-SNOMED CT

ontologies vary as we expand their TBoxes with additional guideline rule knowl-
edge. In the second set of experiments, we investigate the effect of increasing the
ABox of the LUCADA ontology on the realisation times.

1 Introduction

Lung cancer is the most common and deadliest type of cancer, and is responsible for
21% of all cancer-related deaths globally. In England, caredecisions for lung cancer pa-
tients are made by multidisciplinary teams (MDTs) that are comprised of clinical staff
from diverse backgrounds. These teams meet weekly in cancercentres across the coun-
try in order to come to treatment decisions for each patient in their care. Usually, MDTs
make use of their combined experience and knowledge of published clinical guidelines
to decide upon the next stage of treatment for a patient [1]. The National Lung Can-
cer Audit (NLCA) data reveals that one of the major problems in the management of
lung cancer care in England is the substantial level of unjustified variation in treatment
decisions between different cancer centres [14, 13].

In order to reduce variability in clinical practice, clinical guidelines provide well
defined sets of directions and evidence based standards to assist clinicians on decisions
about appropriate clinical procedures [6]. However, as unstructured and free-text doc-
uments, clinical guidelines are usually not readily accessible at the point of decision
making in the MDT meetings. Fortunately, clinical decisionsupport (CDS) systems
that computerise and automate the daily management of guidelines can facilitate access
to guideline information in these meetings.

The computerisation of guideline rules can be achieved by structured logical lan-
guages which can express guideline rule eligibility and decision criteria. To date, many
proprietary expression languages [4, 9, 11, 19, 20] have been proposed in order to en-
code and interpret guideline rules that are in a machine readable format. The interpreta-
tion of computerised guideline rules are carried out by execution engines that can match
the encoded guideline rule criteria against existing patient records in order to infer rule
applicability for different patient records.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

121 of 139

In [16], we proposed OWL 2 [2] as a suitable candidate for encoding guideline rule
criteria in the context of a CDS system for lung cancer care and we outlined a purely
ontological guideline rule inference framework. In this paper, we focus on performance
evaluations of off-the-shelf OWL 2 reasoners for inferringpatient rule applicability
based on the guideline rule inference framework presented in [16].

2 LUCADA ontology

Since 2004, the NLCA has collected all lung cancer patient data in England within the
English Lung Cancer Dataset (LUCADA) [13] in order to gain a better understanding
of the care delivered during referral, diagnosis and treatment of lung cancer patients.
We have manually built a domain specific OWL 2 lung cancer ontology based on the
LUCADA data model.4 The LUCADA ontology provides the semantic layer of the Lung
Cancer Assistant [16], an ontology-based system that is capable of providing guideline
rule-based decision support during lung cancer MDT meetings.

SNOMED CT [15] is the reference ontology of choice across the information sys-
tems within the National Health Service (NHS). Thus, to facilitate interoperability with
other NHS applications, we integrated LUCADA with a lung cancer-specific module
of SNOMED CT. To this end, we have(i) identified the classes in SNOMED CT related
to those in LUCADA and established correspondences (i.e. mappings) between them;
and(ii) extracted a small fragment of SNOMED CT that captures the meaning of such
relevant classes (i.e., a domain-specific module). SNOMED CT, however, is a complex
ontology describing more than 300,000 classes; as a result,computing mappings with
LUCADA is infeasible without suitable tool support. Thus, to perform task (i) we used
the interactive-mode of the ontology matching system LogMap [7, 8]. Additionally, in
order to perform task (ii), we used the ontology modularization technique described
in [3]. Table 1 provides a side by side comparison of LUCADA and the integrated ontol-
ogy LUCADA-SNOMED CT in terms of number of entities, axioms and expressivity.

In order to incorporate lung cancer guideline knowledge, weintroduced thepatient
scenarioclass into both ontologies [16]. A guideline rule consists of an antecedent, i.e.
rule body, which specifies the eligibility criteria for the rule and a consequent, i.e. rule
head, which encapsulates the action(s) to take when the conditions in the antecedent
are satisfied [5]. According to our guideline rule inferenceframework, we represent
the guideline rule antecedents as definedpatient scenarioclasses, whose equivalent
class capture the semantics for rule eligibility criteria.As an example, the eligibility
for the guideline rule5 “Consider radiotherapy for Stage I, II, III patients with good
performance status”is encoded as the following OWL 2 class equivalence axiom:

GR1 ≡ GoodPerformancePatient ⊓ ∃hasClinicalFinding.

(NeoplasticDisease ⊓ ∃hasPreHistology.NonsmallCellCarcinoma ⊓

∃hasPreTNMStaging.string ⊓ ∀hasPreTNMStaging.{I, II, III})

4 Through a data sharing agreement between the University of Oxford and NLCA, we have been
granted access to an anonymised version of LUCADA dataset.

5 The guideline rules have been extracted from from National Institute for Clinical Excellence
(NICE) document [12].

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

122 of 139

Table 1: Summary of the LUCADA and LUCADA-SNOMED CT ontology metrics

Metric
Ontology

LUCADA-SNOMED CT LUCADA

DL Expressivity ALCHIF(D) ALCHI(D)

Classes 1553 376
Object properties 63 37
Data Properties 63 63

Equiv. class axioms 1010 0
Subclass of axioms 999 386
Prop. domain axioms 97 97
Prop. range axioms 30 30

Furthermore, we represent apatient recordas a set of OWL 2 individual axioms
with respect to the terminological knowledge captured within the LUCADA and the
integrated LUCADA-SNOMED CT ontologies as exemplified in [16]. According to this,
a patient record is characterised (on average) by 25 class and property assertion axioms.
An OWL 2 reasoner can be used to determine whether a specific patient is a member
of a particular patient scenario class, and therefore, subject to the recommendations or
actions of the respective guideline rule.

3 Evaluation

We evaluated the scalability of our guideline rule inference framework with off-the-
shelf OWL 2 reasoners: HermiT 1.3.7 [10], Pellet 2.3.0 [17] and FaCT++ 1.6.2 [18].
The tests have been performed on a Windows 7 64-bit desktop computer with 15 GiB
of RAM and an Intel Xeon 2.27 GHz CPU. Overall, we report two sets of experimental
results as given below. Note that all results reported here have been acquired as averages
of at least 10 repetitions of the described experimental setup.

3.1 Increasing the TBox with patient scenarios

In the first set of experiments we compared how the classification and realisation times
of LUCADA and LUCADA-SNOMED CT ontologies varied as we increased the guide-
line rule coverage (i.e. patient scenarios classes). To this end, we incrementally added to
each ontology 40 patient scenarios, represented as equivalent class axioms (see Section
2), and recorded the times taken by each reasoner to perform classification (i.e. exe-
cution ofprecomputeInferences(CLASS HIERARCHY) method) and realisation of
only one patient individual (i.e. execution of the methodgetTypes()).

Figures 1 and 2 summarise the reasoning times obtained for the LUCADA and LU-
CADA-SNOMED CT ontologies respectively. In both figures, we only report thetotal
inference times (classification + realisation) for FaCT++ and Pellet since the individ-
ual realisation times for these two reasoners were negligible. However, for HermiT

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

123 of 139

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40
 0

 50

 100

 150

 200

 250

T
im

e
(m

s)

Number of patient scenarios

FaCT++ (total)
Pellet (total)

HermiT (classification)
HermiT (realisation)

Fig. 1: Reasoning times for LUCADA containing 1 to 40 patient scenarios

1000

3000

5000

7000

9000

40000

50000

 5 10 15 20 25 30 35 40

1000

3000

5000

7000

9000

40000

50000

T
im

e
(m

s)

Number of patient scenarios

FaCT++ (total)
Pellet (total)

HermiT (classification)
HermiT (realisation)

Fig. 2: Reasoning times for LUCADA-SNOMED CT containing 1 to 40 patient scenarios

we present classification and realisation times separately, since realisation takes up a
significant portion of the total inference time (up to 0.2ms for LUCADA and 1s for LU-
CADA-SNOMED CT). We note that the classification times for all three reasoners are
below one second for the LUCADA ontology, whereas they rise to 9 and 50 seconds re-

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

124 of 139

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

T
im

e
(m

s)

Number of patients

FaCT++
Pellet

HermiT

Fig. 3: Realisation times in LUCADA with 1 to 100 patient records

spectively with FaCT++ and Pellet for the integrated LUCADA-SNOMED CT ontology.
Note that HermiT classifies the integrated ontology the fastest, with classification times
ranging from 1.6s to 2.2s.

3.2 Increasing the ABox with patient records

In the second set of experiments, we incrementally added 100patient records, repre-
sented as OWL 2 individuals axioms (see Section 2), to the LUCADA ontology which
contained 40 patient scenarios. Figure 3 compares the realisation times (i.e. execution
of the methodgetTypes() for each patient individual) obtained by all three reasoners.
As expected, realisation times increase as more patients are added to the ontology. It is
noticeable that FaCT++ and HermiT have very disparate behaviours. While the increase
in realisation times with respect to the number of patient individual in the ontology is
fairly gradual and linear for FaCT++, the realisation timesfor HermiT increase very
quickly and clearly in a non-linear fashion. Although not assevere as the realisation
times achieved by HermiT, Pellet realisation times are alsoconsiderably slower com-
pared to FaCT++ and seem to increase non-linearly.

4 Conclusions

In this paper we evaluated empirically the classification and realisation performances
of the three most commonly used OWL 2 reasoners within our guideline rule inference
framework. We found that FaCT++ is the best choice for our application since it pro-
vides very fast inference times for both classification and realisation. We also found

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

125 of 139

that HermiT provides the fastest TBox reasoning times for the integrated LUCADA-
SNOMED CT ontology; but it performs poorly in ABox reasoning with bothontologies.
Finally, we found that Pellet performs well in classifying the LUCADA ontology but
struggles with the LUCADA-SNOMED CT ontology, which contains many axioms in-
herited from SNOMED CT.

Acknowledgements

The LCA project was funded by the CDT in Healthcare Innovation programme within
the Institute of Biomedical Engineering, Oxford University. We would also like to ac-
knowledge the clinical inputs from our collaborators Dr Michael Peake, Prof Fergus
Gleeson and Dr Donald Tse during the elicitation of guideline rules from the literature.
Jiménez-Ruiz was partially supported by the Seventh Framework Program (FP7) of
the European Commission under Grant Agreement 318338, ”Optique”, and the EPSRC
projects Score!, ExODA and MaSI3.

References

1. Austin, M.: Information Integration and Decision Support for Multidisciplinary Team Meet-
ings on Colorectal Cancer. Ph.D. thesis, University of Oxford (2008)

2. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL
2: The next step for OWL. J. Web Sem. 6(4), 309–322 (2008)

3. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

4. Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Thomson, R., Wilson, P.: PROforma: a
general technology for clinical decision support systems.Computer Methods and Programs
in Biomedicine 54(12), 59 – 67 (1997)

5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. Tech. rep., World Wide Web
Consortium (2004)

6. Isern, D., Sánchez, D., Moreno, A.: HeCaSe2: A Multi-agent Ontology-Driven Guideline
Enactment Engine. In: 5th International Central and Eastern European Conference on Multi-
Agent Systems. pp. 322–324 (2007)

7. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-basedand Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

8. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology
matching: Algorithms and implementation. In: European Conf. on Artif. Intell. (ECAI). pp.
444–449 (2012)

9. Miksch, S., Shahar, Y., Johnson, P.D.: Asbru: A Task-Specific, Intention-Based, and Time-
Oriented Language for Representing Skeletal Plans. In: 7thWorkshop on Knowledge Engi-
neering: Methods & Languages (KEML-97) (1997)

10. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif.
Intell. Res. 36, 165–228 (2009)

11. Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: EON: A Component-Based Approach to
Automation of Protocol-Directed Therapy. Journal of the American Medical Informatics
Association 3(6) (1996)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

126 of 139

12. NICE: The Diagnosis and Treatment of Lung Cancer (Update). National Collaborating Cen-
tre for Cancer (UK). NICE Clinical Guidelines, No. 121. (2011), available from:http:
//www.ncbi.nlm.nih.gov/books/NBK99021/

13. NLCA: The National Clinical Lung Cancer Audit (LUCADA) Data Manual (2010), available
from: http://www.hscic.gov.uk/lung

14. Riaz, S.P., Lchtenborg, M., Jack, R.H., Coupland, V.H.,Linklater, K.M., Peake, M.D., Mller,
H.: Variation in surgical resection for lung cancer in relation to survival: Population-based
study in england 20042006. European Journal of Cancer 48(1), 54 – 60 (2012)

15. Schulz, S., Cornet, R., Spackman, K.A.: Consolidating SNOMED CT’s ontological commit-
ment. Applied Ontology 6(1), 1–11 (2011)

16. Sesen, M.B., Bañares-Alcántara, R., Fox, J., Kadir, T., Brady, J.M.: Lung Cancer Assistant:
An ontology-driven, online decision support prototype forlung cancer treatment selection.
In: OWL: Experiences and Directions Workshop (OWLED) (2012)

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. J. Web Sem. 5(2), 51–53 (2007)

18. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:
Third International Joint Conference on Automated Reasoning, IJCAR. pp. 292–297 (2006)

19. Tu, S.W., Campbell, J.R., Glasgow, J., Nyman, M.A., McClure, R., McClay, J., Parker, C.,
Hrabak, K.M., Berg, D., Weida, T., Mansfield, J.G., Musen, M.A., Abarbanel, R.M.: The
SAGE Guideline Model: Achievements and Overview. Journal of the American Medical
Informatics Association 14(5), 589 – 598 (2007)

20. Wang, D., Peleg, M., Tu, S.W., Boxwala, A.A., Ogunyemi, O., Zeng, Q.T., Greenes, R.A.,
Patel, V.L., Shortliffe, E.H.: Design and implementation of the GLIF3 guideline execution
engine. Journal of Biomedical Informatics 37(5), 305–318 (2004)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

127 of 139

Genomic CDS: an example of a complex ontology for

pharmacogenetics and clinical decision support

Matthias Samwald
1

1 Medical University of Vienna, Vienna, Austria

matthias.samwald@meduniwien.ac.at

Abstract. Individual genetic data can be used to better predict the efficacy and

safety of medications for individual patients. The Genomic Clinical Decision

Support (Genomic CDS) ontology aims to utilize advanced Web Ontology

Language 2 (OWL 2) reasoning for this task. The important, clear-cut medical

use case, the complex axioms in the ontology and the heavy use of qualified

cardinality restrictions make the ontology an interesting test object for new

OWL 2 reasoners with improved performance.

Keywords: OWL, pharmacogenetics, clinical decision support

1 Motivation

Different patients can react drastically different to the same type of medication (Fig.

1). The goal of personalized medicine and pharmacogenetics is to predict an individu-

al patient’s response by analyzing genetic markers that influence how medications are

metabolized or able to bind to their targets.

Fig. 1. The efficacy and safety of medications can drastically vary between patients. The goal

of pharmacogenetics is to classify patients into subgroup based on genetic markers, to better

predict which treatments could help and which could do harm.

To produce clinically valid and trustworthy predictions, no errors or ambiguities

should arise in the process of inferring a patient’s likely response from raw genetic

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

128 of 139

data. Current formalisms, data infrastructures and software applications leave many

opportunities for introducing such errors and ambiguities. Ontologies formalized with

the Web Ontology Language 2 (OWL 2) could be an excellent choice for tackling this

problem, but the complexity and potentially large scale of ontologies in this domain

also pose formidable challenges to currently available OWL 2 reasoners.

2 The Genomic CDS ontology

The Genomic Clinical Decision Support (Genomic CDS) ontology is an OWL 2 on-

tology aimed at representing pharmacogenetic knowledge and providing clinical deci-

sion support based on pharmacogenetic data. It is being developed by members of the

Clinical Pharmacogenomics Task Force, which is part of the Health Care and Life

Science Interest Group of the World Wide Web Consortium (W3C). The OWL files

of the ontology, as well as ‘demo’ files containing example patient data can be down-

loaded from http://www.genomic-cds.org/ont/snapshot-june-2013

We also created a simplified version of the Genomic CDS ontology, called ‘Genomic

CDS light’, which does not contain some of the axioms of the full ontology. Both

versions of the ontology have ALCQ expressivity. They are characterized by exten-

sive use of qualified cardinality restrictions.

The goals of developing the ontology are:

 Providing a simple and concise formalism for representing pharmacogenetic

knowledge,

 Finding errors and lacking definitions in pharmacogenetic knowledge bases

 Automatically assigning alleles and phenotypes to patients

 Matching patients to clinically appropriate pharmacogenetic guidelines and clinical

decision support messages

In the most common scenario, genetic patient data in OWL format is combined with

the axioms of the Genomic CDS ontology, and an OWL reasoner is used to infer

matching pharmacogenetic treatment recommendations. Several inference steps are

needed to derive matching treatment recommendations from raw data about genetic

markers (Fig. 2). The raw data consists of small variants in the genetic code, which in

most cases are so-called single nucleotide polymorphisms (SNPs), such as an ‘A’

instead of a ‘G’. Alleles are variants of a gene that are defined by containing sets of

such small variants. Phenotypes are referring to the specific effects that certain small

variants and alleles can have on the organism, e.g., how quickly a patient metabolizes

a specific drug. Clinical guidelines can use small variants, alleles and/or phenotypes

to match patients with treatment recommendations

The human genome usually contains two copies of each gene (one from the father,

one from the mother), with each copy potentially bearing multiple genetic variants.

Because of this, the ontologies rely heavily on qualified cardinality restrictions with

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

129 of 139

http://www.genomic-cds.org/ont/snapshot-june-2013

cardinalities of two, which seems to cause performance issues with most current

OWL reasoners.

Fig. 2. : Through a series of inference steps, matching pharmacogenetic treatment guidelines

are inferred from raw genetic patient data.

A simplified example of a rule for inferring an allele (CYP2C9*3) and its single nu-

cleotide polymorphisms (SNPs) from a so-called ‘tagging SNP’ (a SNP that is neces-

sary and sufficient for inferring the presence of the allele) looks like this in Manches-

ter syntax:

Class: 'human with CYP2C9*3'

 EquivalentTo:

 has some rs1057910_C

 SubClassOf:

 has some 'CYP2C9 *3',

 (has some rs1057910_C)

 and (has some rs1057911_A)

 and (has some rs1799853_C)

 and (has some rs2256871_A)

 and (has some rs72558188_AGAAATGGAA)

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

130 of 139

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

131 of 139

An example of an axiom for inferring an adequate clinical decision support message

for the anticoagulant drug warfarin (based on a combination of alleles and SNPs ac-

cording to an official recommendation in the drug label):

Class: 'human triggering CDS rule 7'

 EquivalentTo:

 (has some 'CYP2C9*1') and (has some 'CYP2C9*3')

 and (has exactly 2 rs9923231_C)

 Annotations:

 label "human triggering CDS rule 7",

 CDS_message "3-4 mg warfarin per day should

 be considered as a starting dose range for

 a patient with this genotype according to

 the Warfarin drug label (Bristol-Myers

 Squibb)."

We used two OWL 2 reasoners with our ontology: TrOWL
1
 [1] and HermiT

2
 [2]. We

also evaluated other OWL 2 reasoners (Fact++
3
, Pellet

4
) in early stages of the project,

but excluded them from further tests because they did not terminate or crashed even

with small, preliminary versions of the ontology we developed. We compared the

performance of the two reasoners on a virtual machine running on the Amazon Elastic

Cloud Computing (EC2) cloud
5
. The machine was of the “High-Memory Extra Large

Instance” type, running Microsoft Windows Server 2008, with 17.1 GB of memory, a

64-bit platform, and two virtual cores with 3.25 EC2 compute units each.

The reasoners were run as plugins in the 64 bit version of the Protégé 4.2 ontology

editor. The initial heap size for Protégé was 10
10

 bytes (10 GB), and the maximum

allowed heap size was 1.5x10
10

 bytes (15 GB). The TrOWL reasoner plugins with

version 0.6 and 1.1 were each run three times for each ontology, and the mean of the

time needed for classification was calculated. The HermiT 1.3.8 plugin was run once

for each version of the ontology.

These preliminary tests showed TrOWL to be significantly more performant than

HermiT for classifying the ontologies (

Table 1). However, HermiT was able to identify biologically meaningful inconsisten-

cies present in genomic-cds-demo.owl (but not present in the light version of the on-

tology). TrOWL did not recognize these inconsistencies, most likely because it only

partially covers the OWL 2 DL ruleset. These results show that only TrOWL is per-

formant enough to be used in realistic settings (e.g. for clinical decision support), but

that HermiT could serve to test and validate the results from TrOWL during develop-

1 http://trowl.eu
2 http://www.hermit-reasoner.com/
3 http://code.google.com/p/factplusplus/
4 http://clarkparsia.com/pellet/
5 http://aws.amazon.com/en/ec2/

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

132 of 139

http://trowl.eu/

ment (possibly comparing the results of the two reasoners for smaller ontology frag-

ments).

Table 1. Reasoning performance: TrOWL is significantly more performant than HermiT in

classifying our demo ontology (OWL 2 DL with ALCQ expressivity)

 HermiT 1.3.8 TrOWL 1.1 TrOWL 0.6

genomic-cds-light-demo.owl

(2150 classes, 9500 axioms)

3 hours 48

minutes

1.5 seconds 18 seconds

genomic-cds-demo.owl

(2300 classes, 11000 axioms)

detected incon-

sistencies

5.8 seconds 54 seconds

3 Conclusions and outlook

The Genomic CDS ontology is an example of an OWL 2 ontology for clinical genet-

ics and decision support. Even though it is focused on a relatively small set of the

most important pharmacogenetic markers, the ontology poses a significant challenge

to currently available OWL 2 reasoners. There is great need for reasoners that are

optimized for the kinds of OWL axioms encountered in ontologies dealing with clini-

cal genomics.

4 Acknowledgements

The research leading to these results has received funding from the Austrian Science

Fund (FWF): [PP 25608-N15].

References

1. Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: Tractable OWL 2 Reasoning Infrastructure. the

Proc. of the Extended Semantic Web Conference (ESWC2010) (2010).

2. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. J.

Artif. Intell. Res. 36, 165–228 (2009).

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

133 of 139

A large-scale gene-centric semantic web knowledge base

for molecular biology

José Cruz-Toledo
1§

, Alison Callahan
1§

, and Michel Dumontier
1

1Department of Biology, Carleton University, Ottawa, Canada,

{acallaha, jctoledo}@connect.carleton.ca, michel_dumontier@carleton.ca
§These authors contributed equally to this work

Abstract. The discovery of the central role of genes in regulating the funda-

mental biochemical processes of living things has driven biologists to collect,

analyze and re-use enormous amounts of information, and to make this infor-

mation available in thousands of curated databases. The increasingly popular

use of specialized terminologies, often organized into hierarchical taxonomies

or more formal ontologies, to describe this data indicates that managing the to-

tal amount of resources available (big data) will surely continue to be an ongo-

ing challenge. Here, we describe a biological gene-centric dataset (available at

http://semanticscience.org/projects/gene-world), aimed at providing the

reasoner community with a fully connected graph of data and ontologies of val-

ue to the bioinformatics community and for which there currently exists signifi-

cant challenges in using automated reasoning for consistency checking and que-

ry answering of large ontology-mapped linked data.

Keywords. Semantic Web, Bioinformatics, DL reasoning, SPARQL

1 Motivation

The central dogma of molecular biology states that regions of DNA (genes) are re-

sponsible for encoding molecular machines called proteins, which participate in and

control the biochemical reactions essential to sustaining life. The discovery of the

central role of genes as the blueprint of our evolutionary history and their involvement

in health and disease has driven biologists to characterize these very important enti-

ties. Enormous amounts of information have been collected, analyzed, summarized

and re-published in thousands of curated databases [1] and large central hubs such as

the databases of the National Center for Biotechnology Information (NCBI).

The exponential growth of available molecular data clearly yields enormous bene-

fits to biologists attempting to elucidate the functioning of genes in related systems,

but it also presents significant challenges for modern biology. Consider that the

amount of data collected in this year alone to characterize a collection of biochemical

reactions (a pathway) will be on par with the amount of data that has ever been col-

lected about that pathway in the history of the field [2]. Moreover, the use of special-

ized terminologies, often organized into hierarchical taxonomies or more formal on-

tologies, indicates that managing the total amount of data (big data) will surely con-

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

134 of 139

mailto:jctoledo%7d@connect.carleton.ca

tinue to be an ongoing challenge. Indeed, it is the overall organization and interpreta-

tion of this vast deluge of information that presents the greatest challenge.

Motivated by this challenge, we present a preliminary version of a biological gene-

centric dataset aimed at providing the reasoner community with a fully connected

graph of data and ontologies of value to the bioinformatics community, for which

there currently exists significant challenges in using automated reasoning for con-

sistency checking and query answering of large ontology-mapped linked data. We

focus our attention on one of the larger datasets in the Bio2RDF project [3] - NCBI

Gene - and consider queries that extend from this dataset into other datasets and on-

tologies that together form a large ‘Gene-World’ knowledge base. Our Gene-World

knowledge base contrasts other ontologies and datasets that have been used to

benchmark OWL reasoners [4], such as LUBM [5] and SNOMED-CT [6], in several

respects: (i) Gene-World is a ‘real world’ knowledge base composed of existing re-

sources used by biologists and bioinformaticians on a daily basis, as opposed to an

arbitrary automatically generated knowledge base, (ii) it consists of a very large T-

box and A-box and (iii) its T-Box consists of multiple ontologies with differing DL

expressivity. The datasets and ontologies described are available at [7]. Example que-

ries that can be used to evaluate RDF/OWL based reasoner performance over this

knowledge base are also described.

2 Datasets and Ontologies

All Gene-World datasets are drawn from Bio2RDF Release 2 (released January

2013). The NCBI Gene [8] Bio2RDF dataset consists of 394,026,267 triples with

12,543,449 unique subjects, 60 unique predicates, and 121,538,103 unique objects.

NCBI Gene describes genes including their names, reference sequences, variants,

phenotypes, pathways and cross-references to related resources. HomoloGene [9] is a

database of programmatically generated clusters of homologous, including paralogous

and orthologous, genes from a set of 21 completely sequenced eukaryotic genomes.

The HomoloGene Bio2RDF dataset consists of 1,281,881 triples with 43,605 unique

subjects, 17 unique predicates and 1,011,783 unique objects, and uses NCBI Gene

identifiers to refer to the genes it clusters. NCBI Gene makes reference to three ontol-

ogies: the Gene Ontology (GO) for asserting function, process or location annotations

about genes, the Evidence Code Ontology (ECO) for qualifying the source of these

GO annotations, the NCBI Taxonomy (TAXON) for asserting the species of a gene.

The Semanticscience Integrated Ontology (SIO) and the Sequence Ontology (SO)

have been mapped to NCBI Gene Bio2RDF vocabulary classes and relations (Table

1) to ground the dataset types and predicates in domain-specific ontologies.

The Gene Ontology (GO) [10] [11] is a hierarchy of controlled biological terms

that is organized into three orthogonal ontologies which capture knowledge about

cellular locations, biological processes and molecular functions. The terms and rela-

tions contained in GO are serialized as a directed acyclic graph where concepts are

organized into a hierarchy in which more specific GO terms are subsumed by more

general terms by following is a or in some cases part of relationships. The Evidence

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

135 of 139

Code Ontology (ECO) is a controlled vocabulary used for describing the scientific

evidence that supports an assertion. ECO’s 290+ terms include descriptions of labora-

tory experiments, computational methods and literature annotation terminology. The

NCBI Taxonomy (TAXON) [9] is a database of taxonomic lineage obtained from a

variety of sources, including primary literature, external databases and expert human

curation efforts for databases hosted by the NCBI. The Sequence Ontology (SO) [12]

describes a rich set of features and attributes of biological sequences. The terms and

relations included in this ontology characterize both physical attributes of biological

sequences (i.e. binding sites, exons) and the processes in which biological sequences

may be involved in (i.e. translational frameshifts, transitions, deletions, etc). The

Semanticscience Integrated Ontology (SIO) provides a basic set of types and relations

for describing objects, processes and attributes of biological entities. Fig. 1 shows

how these ontologies are used within the Gene dataset, or are linked to the Gene da-

taset by virtue of mappings to SIO.

Table 1. Summary metrics of ontologies that can be used to reason over the NCBI Gene

dataset: the Evidence Code Ontology (ECO), the Gene Ontology (GO), the NCBI Taxonomy

(NT), the SemanticScience Integrated Ontology (SIO) and the Sequence Ontology (SO)

Ontology Classes Object

properties

subClassOf

axioms

subPropertyOf

axioms

DL

expressivity

ECO 297 2 453 0 ALC

GO 34403 6 63375 0 ALE

TAXON 1018210 15 1018204 0 AL(D)

SIO 1385 201 1729 207 SRIQ(D)

SO 2151 74 2602 9 SHI

3 Reasoning Tasks

In this section, we describe reasoning tasks over the Gene-World knowledge base that

can be used to benchmark the performance of an OWL reasoner or SPARQL query

system. After loading all the triples for the NCBI Gene and HomoloGene RDF da-

tasets, as well as all ontologies listed in Table 1, the first benchmark task for an OWL

reasoner would be to check the consistency of the combined knowledge base. While

each component is expected to not contain any unsatisfiable classes, mappings be-

tween SIO and Gene, SO and Gene or the disjoint class axioms for the NCBI taxono-

my ontology may lead to class or property unsatisfiability.

Below, we present a set of DL and SPARQL-DL queries over the combined

knowledge base that may not give the complete set of results without reasoning sup-

port for some portion of OWL2-DL (there are no nominals in the knowledge base).

GitHub Gists of all queries are available at [13].

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

136 of 139

Fig. 1. Links between a gene in the NCBI Gene dataset and annotations of its function, associ-

ated cellular components and/or processes. Functions, cellular components, and processes are

described using the Gene Ontology (GO, in green), while the associated evidence type for an

association is described using the Evidence Codes Ontology (ECO, in orange). The taxonomic

group for a gene is described using NCBI Taxonomy (in blue). HomoloGene (in purple) groups

related genes and taxa. Each part of an NCBI Gene record is mapped to the Semanticscience

Integrated Ontology (SIO, in yellow), which also has mappings to the Sequence Ontology (SO,

in pink). Ellipses represent resources. Boxes represent ontology classes.

3.1 Query answering

Q1: retrieve transfer RNA genes

DL query: tRNA-gene

simple query that retrieves a type assertion in NCBI gene data

Q2: retrieve human genes

DL query: gene that has_taxid some ‘Homo sapiens [taxid:9606]’

conjunctive query over NCBI Gene and NCBI taxonomy

Q3: retrieve genes that are from any mammal but human

DL query: gene that has_taxid some (‘Mammalia [taxid: 40674]’ and not ‘Homo sa-

piens [taxid:9606]’)

conjunctive query with negation, and subclass reasoning over asserted hierarchy and

class and relation mappings to upper level ontology

Q4: retrieve genes that are annotated with a specific enzymatic function:

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

137 of 139

DL query: gene that ‘has function’ some ‘acetylglucosaminyltransferase activity [go:

0008375]’

simple conjunctive query with subclass reasoning

Q5: retrieve genes that are annotated with a specific function that was not inferred by

computational analysis.

DL query: gene that ‘has function’ some function that inverse(go_term) some (‘has

evidence’ some (not ‘inferred from electronic annotation’))

conjunctive query using negation, mappings, inverse

Q6: retrieve organisms that have genes with an enzymatic activity that was not ob-

tained by computational analysis

DL query: ‘Mammalia [taxid: 40674]’ that inverse(has_taxid) some (gene that 'has

function' some (function that inverse(go_term) some ('has evidence' some (not

'inferred from electronic annotation')))

conjunctive query with negation, inverse, mappings

3.2 Querying using class axioms

All of the ontologies listed in Table 1 have rich class hierarchies. SIO and the Se-

quence Ontology (SO) also have axiomatic class definitions. DL queries can thus

leverage the axioms used to define classes, as well as the class hierarchy.

Q7: retrieve a gene that encodes for a certain kind of molecule using SIO

DL query: gene and (encodes some ‘small cytoplasmic RNA (scRNA)’)

reasoning with subclass axioms from mapped ontology

Q8: retrieve a gene that encodes for a certain kind of molecule using SO

DL query: gene and (has_quality scRNA_encoding)

reasoning with subclass axioms from mapped ontology

3.3 SPARQL DL queries

SPARQL DL [14] is a subset of SPARQL that allows the formulation of queries using

combination of OWL semantics and SPARQL variables. SPARQL DL is particularly

useful in cases where one wishes to retrieve instances that are linked to some other

resource, but also take advantage of DL reasoning. This is possible by using SPARQL

variable bindings.

Q9: retrieve orthologous human and mouse genes annotated with function to bind

ATP

Type(?human_gene, ‘gene’), Type(?mouse_gene, ‘gene’), Type(?homologene_group,

HomoloGene_Group), PropertyValue(?human_gene, has_taxid, ‘Homo sapiens’),

PropertyValue(?mouse_gene, has_taxid, ‘Mus musculus’),

PropertyValue(?human_gene, ‘has function’, ‘ATP binding’),

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

138 of 139

PropertyValue(?mouse_gene, ‘has function’, ‘ATP binding’),

PropertyValue(?homologene_group, has_gene, ?human_gene),

PropertyValue(?homologene_group, has_gene, ?mouse_gene)

4 Summary

We have described Gene-World, a large gene-centric knowledge base consisting of

Bio2RDF datasets with over 395 million statements linked to five bio-ontologies with

varying degrees of DL expressivity. The size and complexity of this dataset in addi-

tion to the provided DL and SPARQL-DL queries may provide a useful benchmark

against which to evaluate OWL reasoner capability and efficiency for life science

datasets. Should this preliminary knowledge base become useful in reasoner evalua-

tion, we expect to extend it include more of the 20+ datasets and hundreds of ontolo-

gies in Bio2RDF.

5 References

1. Fernandez-Suarez XM, Galperin MY: The 2013 Nucleic Acids Research Database Issue

and the online molecular biology database collection. Nucleic Acids Res 2013,

41(Database issue):D1-7.

2. Chuang HY, Hofree M, Ideker T: A decade of systems biology. Annu Rev Cell Dev Biol

2010, 26:721-744.

3. Callahan A, Cruz-Toledo J, Dumontier M: Ontology-Based Querying with Bio2RDF’s

Linked Open Data. Journal of Biomedical Semantics 2013, 4(Supplement 1):S1.

4. Dentler K, Cornet R, ten Teije A, de Keizer N: Comparison of reasoners for large

ontologies in the OWL 2 EL profile. Semantic Web 2011, 2(2):71-87.

5. Guo Y, Pan Z, Heflin J: LUBM: A benchmark for OWL knowledge base systems. Web

Semantics: Science, Services and Agents on the World Wide Web 2005, 3(2-3):158-182.

6. Stearns MQ, Price C, Spackman KA, Wang AY: SNOMED clinical terms: overview of

the development process and project status. Proc AMIA Symp 2001:662-666.

7. Gene-World: A large-scale gene-centric semantic web knowledge base for molecular

biology [http://semanticscience.org/projects/gene-world]

8. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at

NCBI. Nucleic Acids Res 2011, 39(Database issue):D52-57.

9. Database resources of the National Center for Biotechnology Information. Nucleic

Acids Res 2013, 41(Database issue):D8-D20.

10. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski

K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.

11. OWL Export of GO DATABASE DAILY TERMDB

[http://archive.geneontology.org/latest-termdb/go_daily-termdb.owl.gz]

12. Eilbeck K, Lewis SE: Sequence ontology annotation guide. Comp Funct Genomics

2004, 5(8):642-647.

13. Gene-World DL and SPARQL-DL Queries [http://semanticscience.org/projects/gene-

world/gene-world-query-gists.html]

14. Sirin E, Parsia B: SPARQL-DL: SPARQL Query for OWL-DL. In: 3rd OWL

Experiences and Directions Workshop (OWLED-2007). Innsbruck, Austria; 2007.

Proceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE 2013)

139 of 139

http://semanticscience.org/projects/gene-world
http://archive.geneontology.org/latest-termdb/go_daily-termdb.owl.gz
http://semanticscience.org/projects/gene-world/gene-world-query-gists.html
http://semanticscience.org/projects/gene-world/gene-world-query-gists.html

	A Transformation Approach for Classifying ALCHI(D) Ontologies with a Consequence-based ALCH Reasoner
	Evaluating SPARQL-to-SQL translation in ontop
	Mariano Rodriguez-Muro, Martin Rezk, Josef Hardi, Mindaugas Slusnys Timea Bagosi and Diego Calvanese

