
Analysis of DDoS Detection Systems

Michael Singhof
Heinrich-Heine-Universität

Institut für Informatik
Universitätsstraße 1

40225 Düsseldorf, Deutschland
singhof@cs.uni-duesseldorf.de

ABSTRACT
While there are plenty of papers describing algorithms for
detecting distributed denial of service (DDoS) attacks, here
an introduction to the considerations preceding such an im-
plementation is given. Therefore, a brief history of and in-
troduction to DDoS attacks is given, showing that these kind
of attacks are nearly two decades old. It is also depicted that
most algorithms used for the detection of DDoS attacks are
outlier detection algorithms, such that intrusion detection
can be seen as a part of the KDD research field.

It is then pointed out that no well known and up-to-date
test cases for DDoS detection system are known. To over-
come this problem in a way that allows to test algorithms
as well as making results reproducible for others we advice
using a simulator for DDoS attacks.

The challenge of detecting denial of service attacks in
real time is addressed by presenting two recently published
methods that try to solve the performance problem in very
different ways. We compare both approaches and finally
summarise the conclusions drawn from this, especially that
methods concentrating on one network traffic parameter only
are not able to detect all kinds of distributed denial of service
attacks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering, Information
filtering

Keywords
DDoS, Intrusion Detection, KDD, Security

1. INTRODUCTION
Denial of service (DoS) attacks are attacks that have the

goal of making a network service unusable for its legitimate
users. This can be achieved in different ways, either by

25th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 28.05.2013 - 31.05.2013, Ilmenau, Germany.
Copyright is held by the author/owner(s).

targeting specific weaknesses in that service or by brute force
approaches. A particularly well-known and dangerous kind
of DoS attack are distributed denial of service attacks. These
kinds of attacks are more or less brute force bandwidth DoS
attacks carried out by multiple attackers simultaneously.

In general, there are two ways to detect any kind of net-
work attacks: Signature based approaches in which the in-
trusion detection software compares network input to known
attacks and anomaly detection methods. Here, the software
is either trained with examples for normal traffic or not
previously trained at all. Obviously, the latter method is
more variable since normal network traffic does not change
as quickly as attack methods. The algorithms used in this
field are, essentially, known KDD methods for outlier detec-
tion such as clustering algorithms, classification algorithms
or novelty detection algorithms on time series. However,
in contrast to many other related tasks such as credit card
fraud detection, network attack detection is highly time crit-
ical since attacks have to be detected in near real time. This
makes finding suitable methods especially hard because high
precision is necessary, too, in order for an intrusion detection
system to not cause more harm than being of help.

The main goal of this research project is to build a dis-
tributed denial of service detection system that can be used
in today’s networks and meets the demands formulated in
the previous paragraph. In order to build such a system,
many considerations have to be done. Some of these are
presented in this work.

The remainder of this paper is structured as follows: In
section 2 an introduction to distributed denial of service at-
tacks and known countermeasures is given, section 3 points
out known test datasets. In section 4 some already existing
approaches are presented and finally section 5 concludes this
work and gives insight in future work.

2. INTRODUCTION TO DDOS ATTACKS
Denial of service and distributed denial of service attacks

are not a new threat in the internet. In [15] the first notable
denial of service attack is dated to 1996 when the internet
provider Panix was taken down for a week by a TCP SYN
flood attack. The same article dates the first noteworthy
distributed denial of service attack to the year 1997 when
internet service providers in several countries as well as an
IRC network were attacked by a teenager. Since then, many
of the more elaborate attacks that worked well in the past,
have been successfully defused.

Let us, as an example, examine the TCP SYN flood at-
tack. A TCP connection is established by a three way hand-

shake. On getting a SYN request packet, in order to open a
TCP connection, the addressed computer has to store some
information on the incoming packet and then answers with
a SYN ACK packet which is, on regularly opening a TCP
connection, again replied by an ACK packet.

The idea of the SYN flood attack is to cause a memory
overrun on the victim by sending many TCP SYN packets.
As for every such packet the victim has to store information
while the attacker just generates new packets and ignores the
victim’s answers. By this the whole available memory of the
victim can be used up, thus disabling the victim to open le-
gitimate connection to regular clients. As a countermeasure,
in [7] SYN cookies were introduced. Here, instead of storing
the information associated with the only half opened TCP
connection in the local memory, that information is coded
into the TCP sequence number. Since that number is re-
turned by regular clients on sending the last packet of the
already described three way handshake and initial sequence
numbers can be arbitrarily chosen by each connection part-
ner, no changes on the TCP implementation of the client
side have to be made. Essentially, this reduces the SYN
cookie attack to a mere bandwidth based attack.

The same applies to many other attack methods that have
been successfully used in the past, such as the smurf attack
[1] or the fraggle attack. Both of these attacks are so called
reflector attacks that consist of sending an echo packet –
ICMP echo in case of the smurf attack and UDP echo in
case of the fraggle attack – to a network’s broadcast address.
The sender’s address in this packet has to be forged so that
the packet occurs to be sent by the victim of the attack, so
that all replies caused by the echo packet are routed to the
victim.

Thus, it seems like nowadays most denial of service attacks
are distributed denial of service attack trying to exhaust the
victims bandwidth. Examples for this are the attacks on
Estonian government and business computers in 2007 [12].

As already mentioned, distributed denial of service attacks
are denial of service attacks with several participating at-
tackers. The number of participating computers can differ
largely, ranging from just a few machines to several thou-
sands. Also, in most cases, the owners of these computers
are not aware that they are part of an attack. This lies in the
nature of most DDoS attacks which consist of three steps:

1. Building or reusing a malware that is able to receive
commands from the main attacker (“master”) and to
carry out the attack. A popular DDoS framework is
Stacheldraht [9].

2. Distribute the software created in step one to create
a botnet. This step can essentially be carried out in
every known method of distributing malware, for ex-
ample by forged mail attachments or by adding it to
software like pirate copies.

3. Launch the attack by giving the infected computers
the command.

This procedure – from the point of view of the main at-
tacker – has the advantage of not having to maintain a direct
connection to the victim. This makes it very hard to track
that person. It is notable though, that during attacks origi-
nating to Anonymous in the years 2010 and 2012 Low Orbit
Ion Cannon [6] was used. This is originally a tool for stress

Figure 1: Detection locations for DDoS attacks.

testing that allows users, among other functions, to volun-
tary join a botnet in order to carry out an attack. Since
the tool is mainly for testing purposes, the queries are not
masqueraded so that it is easy to identify the participat-
ing persons. Again, however, the initiator of the attack does
not necessarily have to have direct contact to the victim and
thus remains unknown.

A great diversity of approaches to solve the problem of
detecting DDoS attacks exists. Note again, that this work
focuses on anomaly detection methods only. This describes
methods, that essentially make use of outlier detection meth-
ods to distinguish normal traffic and attack traffic. In a field
with as many publications as intrusion detection and even,
more specialised, DDoS detection, it is not surprising, that
many different approaches are used, most of which are com-
mon in other knowledge discovery research fields as well.

As can be seen in Figure 1 this research part, again, can
be divided in three major categories, namely distributed de-
tection or in network detection, source end detection and
end point or victim end detection.

By distributed detection approaches we denote all ap-
proaches that use more than one node in order to monitor
the network traffic. This kind of solution is mostly aimed
to be used by internet providers and sometimes cooperation
between more than one or even all ISPs is expected. The
main idea of almost all of these systems is to monitor the
network traffic inside the backbone network. Monitors are
mostly expected to be backbone routers, that communicate
the results of their monitoring either to a central instance or
among each other. These systems allow an early detection of
suspicious network traffic so that an attack can be detected
and disabled – by dropping the suspicious network packets
– before it reaches the server the attack is aimed at. How-
ever, despite these methods being very mighty in theory,
they suffer the main disadvantage of not being able to be
employed without the help of one or more ISPs. Currently,
this makes these approaches impractical for end users since,
to the knowledge of the author, at this moment no ISP uses
such an approach.

Source end detection describes approaches that monitor
outgoing attack streams. Of course, such methods can only
be successful if the owner of an attacking computer is not
aware of his computer participating in that attack. A widely
used deployment of such solutions is necessary for them to
have an effect. If this happens, however, these methods have
the chance to not only detect distributed denial of service
attacks but also to prevent them by stopping the attacking
traffic flows. However, in our opinion, the necessity of wide
deployment makes a successful usage of this methods – at

Packet type No of packets Percentage

IP 65612516 100
TCP 65295894 99.5174
UDP 77 0.0001
ICMP 316545 0.4824

Protocol Incoming Traffic Outgoing Traffic

IP 24363685 41248831
TCP 24204679 41091215
UDP 77 0
ICMP 158929 157616

Table 1: Distribution of web traffic on protocol types
and incoming and outgoing traffic at the university’s
web server.

least in the near future – difficult.
In contrast to the approaches described above, end point

detection describes those methods that rely on one host only.
In general, this host can be either the same server other ap-
plications are running on or a dedicated firewall in the case
of small networks. Clearly, these approaches suffer one dis-
advantage: Attacks cannot be detected before the attack
packets arrive at their destination, as only those packets
can be inspected. On the other hand end point based meth-
ods allow individual deployment and can therefore be used
nowadays. Due to this fact, our work focuses on end point
approaches.

3. TEST TRACES OF DISTRIBUTED DE-
NIAL OF SERVICE ATTACKS

Today, the testing of DDoS detection methods unfortu-
nately is not easy, as not many recordings of real or simu-
lated DDoS attacks exist or, at least, are not publicly avail-
able. The best known test trace is the KDD Cup 99 data
set [3]. A detailed description of this data set is given in
[18]. Other known datasets are the 1998 DARPA intrusion
detection evaluation data set that has been described in [14]
as well as the 1999 DARPA intrusion detection evaluation
data set examined in [13].

In terms of the internet, with an age of 14 to 15 years,
these data sets are rather old and therefore cannot reflect
today’s traffic volume and behaviour in a realistic fashion.
Since testing with real distributed denial of service attacks
is rather difficult both on technical as well as legal level, we
suggest the usage of a DDoS simulator. In order to get a feel-
ing for today’s web traffic, we recorded a trace at the main
web server of Heinrich-Heine-Universität. Tracing started on
17th September 2012 at eight o’clock local time and lasted
until eight o’clock the next day.

This trace consists of 65612516 packets of IP traffic with
31841 unique communication partners contacting the web
server. As can be seen in Table 1 almost all of these packets
are TCP traffic. This is not surprising as the HTTP protocol
uses the TCP protocol and web page requests are HTTP
messages.

About one third of the TCP traffic is incoming traffic.
This, too, is no surprise as most clients send small request
messages and, in return, get web pages that often include
images or other larger data and thus consist of more than
one package. It can also be seen, clearly, that all of the

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

Arrival time [seconds]

Number of packets over arrival times

Figure 2: Arrival times for the university’s web-
server trace.

UDP packets seem to be unwanted packets as none of these
packets is replied. The low overall number of these packets is
an indicator for this fact, too. With ICMP traffic, incoming
and outgoing packet numbers are nearly the same which lies
in the nature of this message protocol.

In order to overcome the problems with old traces, based
on the characteristics of the web trace, as a next step we
implement a simulator for distributed denial of service at-
tacks. As the results in [20] show, the network simulators
OMNeT++ [19], ns-3 [10] and JiST [5] are, in terms of speed
and memory usage, more or less equal. To not let the simula-
tion become either too slow or too inaccurate, it is intended
to simulate a nearer neighbourhood of the victim server very
accurately. With greater distance to the victim, it is planned
to simulate in less detail. In this context, the distance be-
tween two network nodes is given by the number of hops
between the nodes.

Simulation results then will be compared with the afore-
mentioned network trace to ensure its realistic behaviour.
After the simulation of normal network traffic resembles the
real traffic at the victim server close enough, we will proceed
by implementing distributed denial of service attacks in the
simulator environment. With this simulator it will then,
hopefully, be possible to test existing and new distributed
denial of service detection approaches in greater detail as
has been possible in the past.

4. EXISTING APPROACHES
Many approaches to the detection of distributed denial of

service attacks already exist. As has been previously pointed
out in section 1, in contrast to many other outlier and nov-
elty detection applications in the KDD field, the detection
of DDoS attacks is extremely time critical, hence near real
time detection is necessary.

Intuitively, the less parameters are observed by an ap-
proach, the faster it should work. Therefore, first, we take a
look at a recently issued method that relies on one parameter
only.

4.1 Arrival Time Based DDoS Detection
In [17] the authors propose an approach that bases on ir-

regularities in the inter packet arrival times. By this term

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.00122 0.00124 0.00126 0.00128 0.0013 0.00132 0.00134 0.00136 0.00138 0.0014 0.00142

α

Arrival times [s]

Figure 3: The fuzzy mean estimator constructed ac-
cording to [17].

the authors describe the time that elapses between two sub-
sequent packets.

The main idea of this work is based on [8] where non-
asymptotic fuzzy estimators are used to estimate variable
costs. Here, this idea is used to estimate the mean arrival
time x̄ of normal traffic packets. Then, the mean arrival
time of the current traffic – denoted by tc – is estimated,
too, and compared to the overall value. If tc > x̄, the traffic
is considered as normal traffic and if tc < x̄ a DDoS attack
is assumed to be happening. We suppose here, that for a
value of tc = x̄ no attack is happening, although this case is
not considered in the original paper.

To get a general feeling for the arrival times, we computed
them for our trace. The result is shown in Figure 2. Note,
that the y-axis is scaled logarithmic as values for arrival
times larger than 0.1 seconds could not been distinguished
from zero on a linear y-axis. It can be seen here, that most
arrival times are very close to zero. It is also noteworthy
that, due to the limited precision of libpcap [2], the most
common arrival interval is zero.

Computing the fuzzy mean estimator for packet arrival
times yields the graph presented in Figure 3 and x̄ ≈ 0.00132.
Note, that since the choice of parameter β ∈ [0, 1) is not
specified in [17], we here chose β = 1

2
. We will see, however,

that, as far as our understanding of the proposed method
goes, this parameter has no further influence.

To compute the α-cuts of a fuzzy number, one has to
compute

αM =

[
x̄− zg(α)

σ√
n
, x̄+ zg(α)

σ√
n

]
where x̄ is the mean value – i.e. exactly the value that is
going to be estimated – and σ is presumably the arrival
times’ deviation. Also

g(α) =

(
1

2
− β

2

)
α+

β

2

and

zg(α) = Φ−1(1− g(α)).

Note, that αM is the (1 − α)(1 − β) confidence interval
for µ, the real mean value of packet arrival times.

Now, since we are solely interested in the estimation of x̄,
only 1M is needed, which is computed to be [x̄, x̄] since

g(1) =

(
1

2
− β

2

)
1 +

β

2
=

1

2
(1− β + β) =

1

2

and

zg(1) = Φ−1(1− g(1)) = Φ−1(
1

2
) = 0.

During traffic monitoring, for a given time interval, the
current traffic arrival times tc are computed by estimating

[tc]α =

[
ln

(
1

1− p

)
1

rα
, ln

(
1

1− p

)
1

lα

]
where p is some given but again not specified probability and
[lα, rα] are the α-cuts for E(T) = t̄. As described above, the
only value that is of further use is tc, the only value in the
interval of [tc]1. Since [E(T)]1 = [t̄]1 = [t̄, t̄] it follows that

[tc]1 =

[
ln

(
1

1− p

)
1

t̄
, ln

(
1

1− p

)
1

t̄

]
and thus

tc = ln

(
1

1− p

)
1

t̄
=

1

t̄
(ln(1)− ln(1− p)) .

As ln(1) = 0 this can be further simplified to

tc = − ln(1− p)
t̄

∈ [0,∞)

with p ∈ [0, 1).
By this we are able to determine a value for p by choosing

the smallest p where tc ≥ x̄ for all intervals in our trace. An
interval length of four seconds was chosen to ensure compa-
rability with the results presented in [17].

During the interval with the highest traffic volume 53568
packets arrived resulting in an average arrival time of t̄ ≈
7.4671 · 10−5 seconds. Note here, that we did not maximise
the number of packets for the interval but instead let the first
interval begin at the first timestamp in our trace rounded
down to full seconds and split the trace sequentially from
there on.

Now, in order to compute p one has to set

p = 1− e−x̄t̄

leading to p ≈ 9.8359 · 10−8. As soon as this value of p is
learned, the approach is essentially a static comparison.

There are, however, other weaknesses to this approach
as well: Since the only monitored value is the arrival time,
a statement on values such as bandwidth usage cannot be
made. Consider an attack where multiple corrupted com-
puters try to download a large file from a server via a TCP
connection. This behaviour will result in relatively large
packets being sent from the server to the clients, resulting
in larger arrival times as well. Still, the server’s connec-
tion can be jammed by this traffic thus causing a denial of
service.

By this, we draw the conclusion that a method relying on
only one parameter – in this example arrival times – can-
not detect all kinds of DDoS attacks. Thus, despite its low
processing requirements, such an approach in our opinion is
not suited for general DDoS detection even if it seems that
it can detect packet flooding attacks with high precision as
stated in the paper.

Figure 4: Protocol specific DDoS detection architec-
ture as proposed in [11].

4.2 Protocol Type Specific DDoS Detection
In [11] another approach is presented: Instead of using the

same methods on all types of packets, different procedures
are used for different protocol types. This is due to the fact,
that different protocols show different behaviour. Especially
TCP traffic behaviour differs from UDP and ICMP traffic
because of its flow control features. By this the authors try
to minimise the feature set characterising distributed denial
of service attacks for every protocol type, separately, such
that computation time is minimised, too.

The proposed detection scheme is described as a four step
approach, as shown in Figure 4. Here, the first step is the
preprocessing where all features of the raw network traffic
are extracted. Then packets are forwarded to the correspon-
dent modules based on the packet’s protocol type.

The next step is the protocol specific feature selection.
Here, per protocol type, the most significant features are
selected. This is done by using the linear correlation based
feature selection (LCFS) algorithm that has been introduced
in [4], which essentially ranks the given features by their
correlation coefficients given by

corr(X,Y) :=

∑n
i=1(xi − x̄)(yi − x̄)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

for two random variables X,Y with values xi, yi, 1 ≤ i ≤ n,
respectively. A pseudo code version of LCFS is given in
Algorithm 1. As can be seen there, the number of features
in the reduced set must be given by the user. This number
characterises the trade-off between precision of the detection
and detection speed.

The third step is the classification of the instances in ei-
ther normal traffic or DDoS traffic. The classification is
trained on the reduced feature set generated in the previous
step. The authors tested different well known classification
techniques and established C4.5 [16] as the method working
best in this case.

Finally, the outputs of the classifiers are given to the
merger to be able to report warnings over one alarm gen-
eration interface instead of three. The authors mention that
there is a check for false positives in the merger, too. How-
ever, there is no further information given on how this check
works apart from the fact that it is relatively slow.

The presented experiments have been carried out on the
aforementioned KDD Cup data set as well as on two self-
made data sets for which the authors attacked a server within

Algorithm 1 LCFS algorithm based on [11].

Require: the initial set of all features I,
the class-outputs y,
the desired number of features n

Ensure: the dimension reduced subset F ⊂ I

1: for all fi ∈ I do
2: compute corr(fi, y)
3: end for
4: f := max{correlation(fi, y)|fi ∈ I}
5: F := {f}
6: I := I \ {f}
7: while |F | < n do

8: f := max

{
corr(fi, y)− 1

|F |
∑
fj∈F

corr(fi, fj)

∣∣∣∣∣ fi ∈ I
}

9: F := F ∪ {f}
10: I := I \ {f}
11: end while
12: return F

the university’s campus. The presented results show that
on all data sets the DDoS detection accuracy varies in the
range of 99.683% to 99,986% if all of the traffic’s attributes
are used. When reduced to three or five attributes, accuracy
stays high with DDoS detection of 99.481% to 99.972%. At
the same time, the computation time shrinks by a factor of
two leading to a per instance computation time of 0.0116ms
(three attributes) on the KDD Cup data set and 0.0108ms
(three attributes) and 0.0163ms (five attributes) on the self-
recorded data sets of the authors.

Taking into account the 53568 packets in a four second
interval we recorded, the computation time during this in-
terval would be about (53568 · 0.0163ms ≈) 0.87 seconds.
However, there is no information about the machine that
carried out the computations given in the paper such that
this number appears to be rather meaningless. If we suppose
a fast machine with no additional tasks, this computation
time would be relatively high.

Nevertheless, the results presented in the paper at hand
are promising enough to consider a future re-evaluation on a
known machine with our recorded trace and simulated DDoS
attacks.

5. CONCLUSION
We have seen that distributed denial of service attacks are,

in comparison to the age of the internet itself, a relatively
old threat. Against many of the more sophisticated attacks
specialised counter measures exist, such as TCP SYN cook-
ies in order to prevent the dangers of SYN flooding. Thus,
most DDoS attacks nowadays are pure bandwidth or brute
force attacks and attack detection should focus on this types
of attacks, making outlier detection techniques the method
of choice. Still, since many DDoS toolkits such as Stachel-
draht allow for attacks like SYN flooding properties of this
attacks can still indicate an ongoing attack.

Also, albeit much research on the field of DDoS detection
has been done during the last two decades that lead to a
nearly equally large number of possible solutions, in section
3 we have seen that one of the biggest problems is the un-
availability of recent test traces or a simulator being able
to produce such traces. With the best known test series

having an age of fourteen years, today, the results presented
in many of the research papers on this topic are difficult to
compare and confirm.

Even if one can rate the suitability of certain approaches in
respect to detect certain approaches, such as seen in section
4, a definite judgement of given methods is not easy. We
therefore, before starting to implement an own approach to
distributed denial of service detection, want to overcome this
problem by implementing a DDoS simulator.

With the help of this tool, we will be subsequently able to
compare existing approaches among each other and to our
ideas in a fashion reproducible for others.

6. REFERENCES
[1] CERT CC. Smurf Attack.

http://www.cert.org/advisories/CA-1998-01.html.

[2] The Homepage of Tcpdump and Libpcap.
http://www.tcpdump.org/.

[3] KDD Cup Dataset.
http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, 1999.

[4] F. Amiri, M. Rezaei Yousefi, C. Lucas, A. Shakery,
and N. Yazdani. Mutual Information-based Feature
Selection for Intrusion Detection Systems. Journal of
Network and Computer Applications, 34(4):1184–1199,
2011.

[5] R. Barr, Z. J. Haas, and R. van Renesse. JiST: An
Efficient Approach to Simulation Using Virtual
Machines. Software: Practice and Experience,
35(6):539–576, 2005.

[6] A. M. Batishchev. Low Orbit Ion Cannon.
http://sourceforge.net/projects/loic/.

[7] D. Bernstein and E. Schenk. TCP SYN Cookies.
on-line journal, http://cr.yp.to/syncookies.html, 1996.

[8] K. A. Chrysafis and B. K. Papadopoulos.
Cost–volume–profit Analysis Under Uncertainty: A
Model with Fuzzy Estimators Based on Confidence
Intervals. International Journal of Production
Research, 47(21):5977–5999, 2009.

[9] D. Dittrich. The ‘Stacheldraht’ Distributed Denial of
Service Attack Tool.
http://staff.washington.edu/dittrich/misc/
stacheldraht.analysis, 1999.

[10] T. Henderson. ns-3 Overview.
http://www.nsnam.org/docs/ns-3-overview.pdf, May
2011.

[11] H. J. Kashyap and D. Bhattacharyya. A DDoS Attack
Detection Mechanism Based on Protocol Specific
Traffic Features. In Proceedings of the Second
International Conference on Computational Science,
Engineering and Information Technology, pages
194–200. ACM, 2012.

[12] M. Lesk. The New Front Line: Estonia under
Cyberassault. Security & Privacy, IEEE, 5(4):76–79,
2007.

[13] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and
K. Das. The 1999 DARPA Off-line Intrusion Detection
Evaluation. Computer networks, 34(4):579–595, 2000.

[14] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines,
K. R. Kendall, D. McClung, D. Weber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham, et al. Evaluating
Intrusion Detection Systems: The 1998 DARPA

Off-line Intrusion Detection Evaluation. In DARPA
Information Survivability Conference and Exposition,
2000. DISCEX’00. Proceedings, volume 2, pages
12–26. IEEE, 2000.

[15] G. Loukas and G. Öke. Protection Against Denial of
Service Attacks: A Survey. The Computer Journal,
53(7):1020–1037, 2010.

[16] J. R. Quinlan. C4.5: Programs for Machine Learning,
volume 1. Morgan Kaufmann, 1993.

[17] S. N. Shiaeles, V. Katos, A. S. Karakos, and B. K.
Papadopoulos. Real Time DDoS Detection Using
Fuzzy Estimators. Computers & Security,
31(6):782–790, 2012.

[18] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani.
A Detailed Analysis of the KDD CUP 99 Data Set. In
Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence
Applications 2009, 2009.

[19] A. Varga and R. Hornig. An Overview of the
OMNeT++ Simulation Environment. In Proceedings
of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks
and Systems & Workshops, Simutools ’08, pages
60:1–60:10, ICST, Brussels, Belgium, Belgium, 2008.
ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

[20] E. Weingartner, H. vom Lehn, and K. Wehrle. A
Performance Comparison of Recent Network
Simulators. In Communications, 2009. ICC ’09. IEEE
International Conference on, pages 1–5, 2009.

