
Towards Usable Analysis, Design and Modeling Tools

Nuno Jardim Nunes
University of Madeira, DME

Campus da Penteada, 9000-390 Funchal,
Portugal

+1 351 291 705150
njn@uma.pt

Pedro Campos
University of Madeira, DME

Campus da Penteada, 9000-390 Funchal,
Portugal

+1 351 291 705150
pcampos@uma.pt

ABSTRACT
In this paper, we discuss the issues preventing adoption of
analysis, design and modeling (AMD) software
development tools. We argue that AMD tools are
experiencing the same problems observed with UI tools in
the past. We recall those problems and outline the major
developments that AMD tools should focus to achieve
stronger market acceptance, in particular we argue that such
an acceptance will only be possible with a new generation
of developer-centric tools that clearly support UI specific
activities.

Keywords
Guides, instructions, author's kit, conference publications

INTRODUCTION
Virtually all applications today are built using some form
of user interface (UI) tool [Myers et al., 2000].
Contributions from research on UI tools and technology
had a tremendous impact on the current practice of software
development – for instance object-oriented programming,
event languages and component-based development were all
contributions related to UI research. Moreover, UI tools are
an important segment of the tool market, accounting for
100 million USD per-year [Myers et al., 2000].

A user interface tool is any software aimed to help create
the part of a software intensive system that handles the
input and output between the user and the interactive
system (the user interface). User interface tools have been
called various names over the years. The most popular
terms are User Interface Management Systems (UIMS),
Toolkits, User Interface Development Environments
(UIDEs), Interface Builders, Interface Development Tools
and Application Frameworks.

User interface tools bring many advantages to interactive
system development. According to Myers [Myers, 1995]
the main advantages can be classified as follows:

• UI tools increase the quality of the user interfaces –
mainly because tools enable rapid prototyping of UIs and
subsequent incorporation of changes discovered through
user testing. They also leverage multi-UI creation, foster
consistency and enable different specialists (other than
programmers) to be involved in the UI design process;

• UI tools promote UI code that is easier and more
economical to create and maintain – because UI
specifications can be represented, validated, and evaluated
more easily. In addition, UI tools reduce the code to

write, better modularization, separation of concerns
(between internal functionality and UI), reduced
complexity, increased reliability, and increased
portability between platforms.

UI tools can be considered a specific class of Computer-
Aided Software Engineering (CASE) tools. Both are
expected to increase productivity, improve quality, easier
maintenance, and make software development more
enjoyable. However, while some UI tools had a tremendous
impact and acceptance on software development, several
published results suggest that other classes of CASE tools
are seldom adopted in software organizations, and fail to
deliver the benefits they promise. Kemerer, for example,
reports that one-year after introduction, 70% of the CASE
tools are never used, 25% are used only by a limited
number of people in the organization, and 5% are widely
used by only one group of people but not to capacity
[Kemerer, 1992]. Despite of limited CASE tool adoption,
there is evidence that the technology improves, to a
reasonable degree, the quality of documentation, the
consistency of developed products, standardization,
adaptability, and overall system quality [IIvari, 1996].

One of the major goals of the UML was to encourage the
growth of the object tool market, enabling tool
interoperability at semantic level and providing a common
language for specifying, visualizing and documenting
software intensive systems. According to [Robbins, 1999],
that goal is very close to a reality. The International Data
Corporation (IDC), a market research firm that collects data
on all aspects of the computer hardware and software
industries, has published a series of reports on analysis,
design and modeling tools (AMD tools): "IDC expects
revenues in the worldwide market for AMD tools to expand
at a compound annual growth rate of 54.6% from $127.4
million in 1995 to $1,125.2 million in the year 2000"
[Robbins, 1999]. Furthermore, IDC expects that much of
this growth to stem from adoption of AMD tools by
smaller software development organizations.

In a recent update of those studies IDC points out that
AMD tools market seems finally to have managed a
transition to more dynamic and developer-centered features
that help address the needs of rapidly changing business
and technology requirements [Kirzner, 2002]. According to
a recent report from IDC the AMD tools market revenue
declined 12,4% from $628.5 million in 2000 to 581.1
million in 2001 [Kirzner, 2002]. Although IDC expects a
small recovery in 2002 due to the introduction of a new

class of tools that are easier to use and teach and the
growing interest in the UML, there is a clash between the
expectations of IDC for this market in the late 90s and the
actual revenues in the early 2000s. From the enthusiastic
expectations of the late 90s IDC is now taking a more
conservative approach to this market. Worldwide revenues
are expected to stay flat, growing slowly from $598
million in 2001 to $1.1billion in 2006 [Kirzner, 2002].

To perform this recovery IDC points out that vendors must
focus on providing tools that help developers achieve time
to market at lower costs. Some of the requirements
specifically pointed out by IDC are: i) adding support for
web services; ii) include enhancements that allow
developers to separate business logic from process logic;
and iii) integrating modeling and design activities into
development tools.

In this paper we argue that AMD tools are experiencing the
same problems observed with UI tools in the past. In the
next section we recall those problems and in the following
section outline the major developments that AMD tools
should focus to achieve stronger market acceptance, in
particular we argue that such an acceptance will only be
possible with a new generation of developer-centric tools
that clearly support UI specific activities.

TRENDS IN UI TOOLS
In a recent survey on the Past, Present and Future of User
Interface Tools, Myers and colleagues identified some
issues that are important for evaluating, which approaches
were successful and which ones are promising in the future
[Myers et al., 2000]:

• The parts of the UI the tools address – the tools that
succeeded in the past contributed significantly in one part
of UI development. The majority of the successful tools
and technologies focused on a particular part of the UI
that was a significant problem, and which could be
addressed thoroughly and effectively. Examples of
successful approaches include [Myers et al., 2000]:
Window managers and toolkits, event languages,
interactive graphical tools, component systems, scripting
languages, hypertext and object-oriented programming.
Examples of approaches that failed to receive commercial
success due to issues involved with trying to address the
whole problem include UIMSs and Model-based and
automatic generation techniques;

• Threshold and Ceiling – the threshold is related to the
difficulty of learning a new system and the ceiling is
related with how much can be done using the system.
Successful approaches in the past are usually low
threshold and low ceiling (e.g. interactive graphical tools,
hypertext and the www) or high threshold and high
ceiling (windows managers, toolkits and object-oriented
programming). Examples of unsuccessful approaches that
suffered from the high threshold problem include formal
languages and constraints. Although different attempts
have been made to lower the threshold of some of those
approaches, they are done at the expense of powerful
features that allow for a high-ceiling, thus become less
attractive for developers;

• Path of Least Resistance – tools and technologies
influence the kinds of UIs that can be created, therefore
successful tools lead to good UIs. Examples of successful
approaches that provided a path of least resistance are
window managers and toolkits. Those approaches are
mainly responsible for the significant stability of the
current desktop UI, which highly contributed for the
consistency in today’s UI and the possibility of users to
build and transfer skills within different applications and
platforms. Counter-examples include formal languages,
which promoted rigid sequences of actions that are highly
undesirable in modern non-modal UIs, thus the path of
least resistance of these tools is detrimental to good UI
design;

• Predictability – developers typically resist tools that
can provide unpredictable results in the final systems.
Most successful approaches provided predictability and
control over the resulting UI, conversely the majority of
tools employing automatic techniques (e.g. model based
systems and constraints) made the connection between
the specification and the final result difficult to
understand and control;

• Moving Targets – as with any interactive system, it is
very difficult to develop tools without having a
significant experience and understanding of the tasks they
support. Conversely, the time it takes to understand a
new implementation task can lead that good tools
become available when that task is less important or even
obsolete. Most successful approaches took advantage of
the high stability of today’s standard GUI. On the
contrary, nearly all-unsuccessful approaches succumbed to
the moving-target problem. UIMSs, language-based
approaches, constraints and model-based systems were
designed to support a flexible variety of interaction styles
and became less important with standardization of the
desktop UI.

The discussion of the above issues for UI tools makes clear
that successful approaches focused on a particular part of
the user interface that was a significant problem and which
could be addressed effectively reducing the development
effort, allowing UIs to be created quickly and promoting a
consistent look and feel. The long stability of the GUI
desktop and direct-manipulation user interface style has
enabled the maturing of the successful tools, alleviating the
moving-target problem that affected the earliest research
approaches [Myers et al., 2000].

REQUIREMENTS FOR THE NEXT GENERATION
OF AMD TOOLS
In this paper we argue that the next generation of AMD and
UI tools should evolve along the successful path of the
existing UI tools.

The UML, and the related tool interchange formats (XMI),
were expected to encourage the growth of AMD tool usage,
however there is little evidence that the UML enabled the
predicted explosion in the AMD tool market. It is without
question that UML enabled access to a standard non-
proprietary modeling language; therefore vendors can focus
on a single language and take advantage of flexible

interoperability that permits loss-less information
exchange. There is now consensus that we have access to
the standards and technology that could improve the
effectiveness of AMD tool usage in modern software
engineering. However, software development has changed
significantly in the past years, thus tools must comply
with the new challenges that software developers face
today. The same principles that underlie user-centered
design also apply to AMD tools. Hence, the new tools
must focus on the real world tasks that are ultimately
important for software developers. Particularly, tools
should support, not only the “hard” aspects, but also the
“soft” aspects of software development. These include
support for creativity, improvisation and design assistance
over a process-oriented framework.

User-interface design is irrefutably one of the most creative
activities in software development. Despite that, user
interface tools are one of the most successful market
segments in the industry. The relative stability of the
current desktop graphical user interface enabled user
interface tools to reach a sophistication level that virtually
any interactive system today is built using some form of
UI tool. We claim that for AMD tools to achieve the same
level of ubiquity that UI tools accomplished they should
concentrate on:

• The parts of software development the tools address –
UI tools that succeeded in the past contributed
significantly in one part of UI development. AMD tools
should also focus on significant parts of software
development in detriment of trying to solve the whole
problem. In particular AMD tools should concentrate on
issues like traceability between different models at
different levels of abstraction and specific design issues
such as refactoring; instead of trying to generate
executable code in a way that is inflexible and prevents
developers to contribute creatively to development. AMD
tools should support software development in a way
similar to interactive graphical tools and interface
builders.

• Threshold and Ceiling – successful approaches in UI
tools are usually low threshold and low ceiling, meaning
they are easy to learn but don’t support much. The UML
is a very complex language and provides too much
diagrams and modeling constructs than the average
developer can cope with. AMD tools should concentrate
on specific diagrams and modeling constructs that are
particularly effective in supporting important
development activities. AMD tools should support
software development using a clearly focused subset of
the UML, while also support specific extensions to the
language where they are most effective (including UI
design, business process modeling and known patterns
such as entity-boundary-control). AMD tools should also
enable different syntaxes to the UML, leveraging the
existing knowledge of developers and the collaboration
between developers, end-users and other stakeholders (for
instance enabling UML diagrams to be depicted as index
cards and other low-tech materials that leverage
communication with non-developers).

• Path of Least Resistance – tools and technologies
influence the kinds of UIs that can be created (successful
tools lead to good UIs). AMD tools should support
pattern based analysis and design, and frameworks that
are well known to leverage good practices in software
development. Like window managers and toolkits
enabled consistency in today’s UI, patterns, components
and development frameworks (EJB, .NET and others)
should be seemliness supported in AMD tools in a way
that helps developers practice reuse.

• Predictability – developers typically resist tools that
can provide unpredictable results in the final systems.
AMD tools should avoid automatic techniques that make
the connection between high-level specifications and the
final result difficult to understand and control. Instead
AMD tools should concentrate on generating artifacts that
are capable of being evaluated by developers and end-
users and different levels of abstraction. The focus should
be on maintaining traceability between the high level
models and the lower level models and also in helping
developers incorporate feedback introduced by continuous
evaluation.

• Moving Targets – it is very difficult to develop tools
without having a significant experience and
understanding of the tasks they support. Existing AMD
tools concentrate on generating code and depicting
artifacts that correspond to executables (whether runtime
or not). A great deal of effort in modern development is
devoted to other tasks: requirements gathering,
management and assessment, prioritizing development,
evaluating design alternatives, prototype evaluation, etc.
All of those activities belong to different levels of
abstraction than code and are not supported effectively (or
at all) in current AMD tools. Moreover, they are mostly
activities that require co-evolution of development
artifacts and communication with non-developers.

CONCLUSION
Current UML modeling tools are not focused on the
requirements of software developers. There is substantial
empirical evidence that combining process (or method)
information in modeling tools could highly contribute for
increased AMD tool adoption. Carefully integrating
modeling features in development tools seams an obvious
solution to this problem. Again we take on UID as an
example, the only successful tools that are highly
integrated with coding activities are interface builders.
AMD tools should leverage the previous experience with
those tools in order to achieve adoption levels that are
predicted for a long time.

Conventional AMD tools don’t support the thought
process of developers; they should concentrate on specific
tasks that are ultimately important to developers instead of
attempting to generate code all the way into
implementation. The next generation of AMD tools should
support process management, communication with non-
developers, traceability, pattern-based design, refactoring
and evaluation. All of these important issues are absent
from conventional AMD tools; they usually required a

complex set of weakly integrated tools that are a burden to
developers. We need better user-centered tools that leverage
software development, not complex and feature blot
archeology instruments that only serve documentation
purposes.

REFERENCES
1. IIvari, J., Why are CASE Tools Not Used?,

Communications of the ACM, 39, 94-103, 1996.

2. Kemerer, C. F., How the Learning Curve Affects CASE
Tool Adoption, IEEE Software, 9, 23-28, 1992.

3. Kirzner, R., Worldwide Analysis, Modeling and Design
Tools Forecast and Analysis. Available at
http://www.rational.com/products/rose/idc.jsp

4. Myers, B. User Interface Software Tools, ACM
Transactions on Computer-Human Interaction, 2, 64-
103. 1995.

5. Myers, B., Hudson, S. and Pausch, R., Past, Present,
and Future of User Interface Software Tools, ACM
Transactions on Computer-Human Interaction, 2000, 7,
3-28.

6. Robbins, J., Cognitive Support Features for Software
Development Tools, PhD Thesis, University of
California Irvine, 1999.

