
An Explicit Formula for Sorting and its Application to
Sorting in Lattices

Jens Gerlach

Fraunhofer FOKUS
jens.gerlach@fokus.fraunhofer.de

Abstract In a totally ordered set the notion of sorting a finite sequence is de-
fined through the existence of a suitable permutation of the sequence’s indices. A
drawback of this definition is that it only implicitly expresses how the elements
of a sequence are related to those of its sorted counterpart. To alleviate this situa-
tion we prove a simple formula that explicitly describes how the kth element of a
sorted sequence can be computed from the elements of the original sequence. As
this formula relies only on the minimum and maximum operations we use it to
define the notion of sorting for lattices. A major difference of sorting in lattices
is that it does not guarantee that sequence elements are only rearranged. To the
contrary, sorting in general lattices may introduce new values into a sequence or
completely remove values from it. We can show, however, that other fundamental
properties that are associated with sorting are preserved. Furthermore, we address
the problem that the direct application of our explicit formula for sorting leads to
an algorithm with exponential complexity. We present therefore for distributive
lattices a recursive formulation to compute the sort of a sequence. This alterna-
tive formulation, which is inspired by the identity

(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
that underlies

Pascal’s triangle, allows for sorting in lattices with quadratic complexity and is in
fact a generalization of insertion sort for lattices.

1 Introduction

In this paper we present the results of two preprints [1,2] where we outline basic prin-
ciples of a theory of sorting in lattices.

Sorting a sequence in a total order (X,≤) is typically defined through the existence
of a suitable permutation (cf. [3, p. 4]). There exists for each sequence x of length n in
a totally ordered set a permutation ϕ of [1, n] = {1, . . . , n} such that x ◦ ϕ is a increasing
sequence. If x is injective, then ϕ is uniquely determined, and vice versa. However,
regardless whether there is exactly one permutation, the rearrangement x↑ = x ◦ ϕ is
uniquely determined and we thus refer to it as the increasing sort of x.

Sorting defines a map x 7→ x↑ from Xn to the subset of increasing sequences. This
map has several interesting properties. First of all, it is idempotent(

x↑
)
↑ = x↑ (1)

and thus a projection. Secondly, for each permutation ψ of [1, n] we have

(x ◦ ψ)↑ = x↑ (2)

134 J. Gerlach

The definition of sorting through the existence of a suitable permutation only pro-
vides an implicit relationship between the elements of x and x↑. However, sometimes
we prefer explicit relationships.

If, for example, someone asked whether there is for the numbers a and b and the
exponent n a general relationship between the value (a + b)n and the powers an and bn,
then the (obvious) answer is that this relationship is captured by the Binomial Theorem

(a + b)n =

n∑
k=0

(
n
k

)
an−kbk (3)

which also shows that other powers of a and b are involved.
When looking for an explicit relationship between the elements of x and the ele-

ments of its increasingly sorted counterpart x↑ =
(
x↑1, . . . , x

↑
n

)
, one can provide an easy

answer for the first and last elements of x↑. In fact, we know that x↑1 is the least element
of {x1, . . . , xn}

x↑1 = x1 ∧ . . . ∧ xn =

n∧
k=1

xk, (4)

whereas x↑n is the greatest element of x

x↑n = x1 ∨ . . . ∨ xn =

n∨
k=1

xk. (5)

In Section 2 we prove Identity (7) that explicitly states how the elements x↑1, . . . , x
↑
n

are related to x1, . . . , xn. This formula only uses the minimum and maximum operations
on finite sets. Based on this observation, we define in Section 3 the notion of sorting of
sequences in a lattice through simply replacing the minimum/maximum operations by
the infimum/supremum operations, respectively. We also show that sorting in lattices in
general not just reorders the elements of a sequence but really changes them. However,
we are able to prove that our definition satisfies various properties that are associated
with sorting.

The direct application of Identity (7) leads to an algorithm with exponential com-
plexity (cf. Section 4). In order to address this problem, we prove the recursive Iden-
tity (19) for the case of bounded distributive lattices. This identity is closely related to
the well-known fact that the binomial coefficient(

n
k

)
=

n!
k! · (n − k)!

can be efficiently computed through the recursion(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
which underlies Pascal’s triangle.

Furthermore, we prove that a lattice, in which the recursive Identity (19) holds, is
necessarily distributive. The main advantage of our recursive identity is that it allows
for an algorithm for sorting in lattices with quadratic complexity. In fact, this algorithm
is a generalization of insertion sort for lattices (cf. Section 5).

An Explicit Formula for Sorting and its Application to Sorting in Lattices 135

2 A formula for sorting

Let (X,≤) be a totally ordered set, then each nonempty finite subset A of X contains a
least and a greatest element [4, R. 6.5]. We also speak of the minimum and maximum
of A and refer to these special elements as

∧
A and

∨
A, respectively. The following

inequalities hold for all a ∈ A ∧
A ≤ a ≤

∨
A (6)

For A = {x, y} we use the notation x∧ y and x∨ y to denote the minimum and maximum
of x and y, respectively.
The main results of this paper depend on a particular family of finite sets.

Definition 1. For k ∈ [1, n] we denote with N
(

n
k

)
B

{
A ⊂ [1, n]

∣∣∣ |A| = k
}

the set of

subsets of [1, n] that contain exactly k elements. The set N
(

n
k

)
consists of

(
n
k

)
elements.

Proposition 1. Let (x1, . . . , xn) be a sequence in a totally ordered set, then the following
identity holds for the elements of the sequence

(
x↑1, . . . , x

↑
n

)
x↑k =

∧
I∈N(n

k)

∨
i∈I

xi. (7)

Before we prove Proposition 1 we introduce an abbreviation for the right hand side
of Identity (7). For a sequence x of length n we define for 1 ≤ k ≤ n

xMk B
∧

I∈N(n
k)

∨
i∈I

xi. (8)

With this notation Proposition 1 reads

x↑ = xM. (9)

We remark that because (X,≤) is a total order, we know that each element of xM is also
an element of x. When applying Identity (8) it is sometimes convenient to use a slightly
more explicit way to write the elements of xM.

xMk =
∧

1≤i1<...<ik≤n

xi1 ∨ . . . ∨ xik (10)

We see then that xM1 is the least element of x and thus equals x↑1 (cf. Identity (4)), whereas
xMn is the greatest element of x and thus equals x↑n (cf. Identity (5)). This means that
Identity (7) is satisfied for k = 1 and k = n.

Lemma 1. If x is a sequence of length n in a totally ordered set (X,≤), then xM is a
increasing sequence.

136 J. Gerlach

Proof. Let 1 ≤ k < n and I be an arbitrary subset of [1, n] with k + 1 elements. If J is a
subset of I with k elements, then we have by Inequality (6) and J ⊂ I

xMk =
∧

L∈N(n
k)

∨
l∈L

xl ≤
∨
j∈J

x j ≤
∨
i∈I

xi.

Since I is an arbitrary set of k + 1 elements we obtain from here

xMk ≤
∧

I∈N(n
k+1)

∨
i∈I

xi = xMk+1,

which shows that xM is increasing. ut

Note that in the proof of Lemma 1 we have only used the fact that the minimum of a set
is a lower bound for all elements of that set (cf. Inequality (6)).

Proof (Proposition 1). We will show that for each k with 1 ≤ k ≤ n both xMk ≤ x↑k and
x↑k ≤ xMk hold. Let ϕ be a permutation of [1, n] with

x↑ = x ◦ ϕ (11)

and let J ⊂ [1, n] be the subset for which

J = ϕ ([1, k]) (12)

holds. From the fact that J contains exactly k elements we conclude

xMk =
∧

I∈N(n
k)

∨
i∈I

xi ≤
∨
j∈J

x j by Inequality (6)

=
∨
j∈J

x↑
(
ϕ−1(j)

)
by Identity (11)

=
∨

i∈[1,k]

x↑i by Identity (12)

= x↑k by monotonicity of x↑.

This finishes the first part of the proof.
Conversely, we conclude from the fact that (X,≤) is a total order and Identity (11) that
there exists a subset B of [1, n] with exactly k elements such that

xMk =
∧

I∈N(n
k)

∨
i∈I

xi =
∨
i∈B

xi =
∨
i∈B

x↑
(
ϕ−1(i)

)
=

∨
j∈ϕ−1(B)

x↑j

holds. Since x↑ is increasing we have
∨

j∈ϕ−1(B)

x↑j = x↑m where m =
∨

(ϕ−1(B)) is the

greatest element of ϕ−1(B). We have, thus,

xMk = x↑m. (13)

However, since
∨

(ϕ−1(B)) is a subset of [1, n] that contains exactly k elements we ob-
tain k ≤ m. Since x↑ is increasing we conclude x↑k ≤ x↑m. This inequality and Identity (13)
imply x↑k ≤ xMk , which completes the proof. ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 137

3 Sorting in lattices

Let (X,≤) be a partially ordered set that is also a lattice (X,∧,∨), then for each x, y ∈ X
there exists the infimum x ∧ y and the supremum x ∨ y (cf. [5, Chapter 3]). These
operations are commutative and associative and they satisfy for all x, y ∈ X the so-
called absorption properties x∨ (x∧ y) = x and x∧ (x∨ y) = x. If (X,≤) is a total order,
then ∧ and ∨ are the minimum and maximum operations of Section 2.

In a lattice, the infimum and supremum exist for every finite subset A and are de-
noted by

∧
A and

∨
A, respectively (cf. [5, p. 49]). We therefore know that for a se-

quence x of length n the value

xMk =
∧

I∈N(n
k)

∨
i∈I

xi

from Identity (8) is well-defined in a lattice. This motivates the following definition.

Definition 2. If x is a sequence of length n in a lattice (X,∧,∨), then we refer to xM as
defined by Identity (8) as the increasing sort of x with respect to the lattice (X,∧,∨).

Before we start to investigate which properties that are traditionally associated with
sorting are maintained by our definition we want to point out a major difference: In a
lattice the value xMk might be different from the original values x1, . . . , xn. The reason
for this is the following: While in a lattice the inequalities x∧ y ≤ x, y ≤ x∨ y generally
hold, there might be also the case that the set {x∧ y, x∨ y} is different from the set {x, y}.
In a total order these two sets are always equal.

Examples of sorting in lattices As a first example we consider the finite set X =

{x, y, z}. Figure 1 shows the lattice of all subsets of X. Let x be the sequence a =(
{x}, {y}, {z}

)
, then aM =

(
∅, ∅, X

)
. Thus, aM is a increasing sequence that consists of

elements that are completely different from those of a.

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

∅

Figure 1. The lattice of {x, y, z}

x xM

(1) (1)
(1, 2) (1, 2)

(1, 2, 3) (1, 1, 6)
(1, 2, 3, 4) (1, 1, 2, 12)

(1, 2, 3, 4, 5) (1, 1, 1, 2, 60)
(1, 2, 3, 4, 5, 6) (1, 1, 1, 2, 6, 60)

(1, 2, 3, 4, 5, 6, 7) (1, 1, 1, 1, 2, 6, 420)
(1, 2, 3, 4, 5, 6, 7, 8) (1, 1, 1, 1, 2, 2, 12, 840)

Table 1. Sorting in the lattice (N, gcd, lcm)

As a second example we consider the lattice (N, gcd, lcm) where gcd(x, y) and
lcm(x, y) denote the greatest common divisor and least common multiple of x and y,

138 J. Gerlach

respectively. The associated partial order of this lattices is defined by divisibility of
natural numbers. Table 1 shows some examples of our definition of sorting for differ-
ent sequences in (N, gcd, lcm). Again we see that sorting in a lattice may change the
elements in a sequence.

Elementary properties of sorting in lattices The following lemma states that xM is in-
deed a increasing sequence with respect to the partial order (X,≤) of the lattice (X,∧,∨).

Lemma 2. If x is a finite sequence in a lattice (X,∧,∨) with associated partial order
(X,≤), then Identity (8) defines a increasing sequence xM.

Proof. In order to prove this lemma we can proceed exactly as in the proof of Lemma 1
where (X,≤) is a total order. As remarked on Page 2, we have used only the fact that∧

A is a lower bound of A which by definition also holds for lattices. ut

A simple consequence of Lemma 2 is the following Lemma 3 which states that sorting
in lattices respects lower and upper bounds of the original sequence.

Lemma 3. Let x be a sequence of length n in a lattice (X,∧,∨) with associated partial
order (X,≤). If for 1 ≤ i ≤ n holds a ≤ xi ≤ b, then a ≤ xMi ≤ b holds as well.

Proof. From Identity (10) follows that xMn is the supremum of the elements x1, . . . , xn.
Thus, we have xMn ≤ b. Lemma 2 ensures that xMn is the largest element of xM. Thus we
have xMi ≤ b for 1 ≤ i ≤ n. The case for the lower bound a is treated analogously. ut

The following lemma restates the idempotence of sorting for the case of lattices (cf. Iden-
tity (1)).

Lemma 4. If x is a finite sequence in a lattice (X,∧,∨), then
(
xM

) M = xM.

Proof. We know from Lemma 2 that xM is a increasing sequence in the partial order
(X,≤). Thus, the relation ≤ is a total order on the set

{
xM1 , . . . , x

M
n

}
⊂ X. In other words

we can sort xM in the classical sense. From this follows by Identity (7)

xM =
(
xM

)↑
=

(
xM

) M.
ut

We can also show the invariance of sorting in lattices under permutations (cf. Iden-
tity (2)).

Lemma 5. If x is a sequence of length n in a lattice and ψ a permutation of [1, n], then
(x ◦ ψ)M = xM holds.

Proof. We have for 1 ≤ k ≤ n

(x ◦ ψ)Mk =
∧

A∈N(n
k)

∨
i∈A

(x ◦ ψ)i =
∧

A∈N(n
k)

∨
j∈ψ(A)

x j =
∧

B∈ψ(N(n
k))

∨
j∈B

x j

Because ψ is a permutation of [1, n] we find that ψ
(
N
(

n
k

))
= N

(
n
k

)
and conclude

(x ◦ ψ)Mk =
∧

B∈N(n
k)

∨
j∈B

x(j) = xMk .

ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 139

4 Recursive sorting in lattices

The definition of xM through Identity (8) is nice and succinct, but it is also quite imprac-
tical to use in computations. Table 2 shows simple performance measurements (con-
ducted on a notebook computer) for computing (1, . . . , n)M in (N, gcd, lcm). The reason
for this dramatic slowdown is of course the exponential complexity inherent in Iden-
tity (8): In order to compute xM from x it is necessary to consider all 2n − 1 nonempty
subsets of [1, n].

sequence length 20 21 22 23 24 25 26
time in s 0.6 1.3 2.7 5.8 11.8 25.5 51.6

Table 2. Wall-clock time for computing (1, . . . , n)M according to Identity (8)

For the remainder of this paper we assume that (X,∧,∨,⊥,>) is a bounded lattice.
Here ⊥ is the least element of X and the neutral element of join, that is,

x = ⊥ ∨ x = x ∨ ⊥ ∀x ∈ X (14)

whereas > is the greatest element of X and the neutral element of meet, that is,

x = > ∧ x = x ∧ > ∀x ∈ X. (15)

We now introduce a notation that allows us to concisely refer to individual elements
of both (x1, . . . , xn)M and (x1, . . . , xn−1)M. Here again, it is convenient to employ the no-
tation for the binomial coefficient

(
n
k

)
in the context of sorting in lattices. For a sequence

x of length n we define for 0 ≤ m ≤ n

xM
(

m
k

)
B


⊥ k = 0
(x1, . . . , xm)M(k) k ∈ [1,m]
> k = m + 1

(16)

We know from Identity (8) that (x1, . . . , xm)M(k) =
∧

I∈N(m
k)

∨
i∈I

xi holds for 1 ≤ k ≤ m.

We therefore have

xM
(

m
k

)
=

∧
I∈N(m

k)

∨
i∈I

xi. (17)

In particular, the following identity holds for 1 ≤ k ≤ n

xM
(

n
k

)
= xMk . (18)

The main result of this section is Proposition 2, which states in Identity (19), how
the kth element of (x1, . . . , xn)M can be computed from (x1, . . . , xn−1)M and xn by simply
applying one join and one meet. The proof of Proposition 2 relies on the fact that the
lattice under consideration is both bounded and distributive.

140 J. Gerlach

Proposition 2. If (X,∧,∨,⊥,>) is a bounded distributive lattice and if x is a sequence
of length n, then for 1 ≤ k ≤ n holds

xM
(

n
k

)
= xM

(
n−1

k

)
∧

(
xM

(
n−1
k−1

)
∨ xn

)
(19)

Proof. For k = 1, we have

xM
(

n
1

)
=

n∧
i=1

xi by Identity (17)

=

n−1∧
i=1

xi

 ∧ xn by associativity

= xM
(

n−1
1

)
∧ xn by Identity (17)

= xM
(

n−1
1

)
∧

(
⊥ ∨ xn

)
by Identity (14)

= xM
(

n−1
1

)
∧

(
xM

(
n−1

0

)
∨ xn

)
by Identity (16).

We deal similarly with the case k = n (cf. [2, p. 5]). In the general case of 1 < k < n,
we first remark that if A is a subset of [1, n], which consists of k elements, then there
are two cases possible:

1. If n does not belong to A, then A is a subset of N
(

n−1
k

)
.

2. If n is an element of A, then the set B B A \ {n} belongs to N
(

n−1
k−1

)
.

In other words, N
(

n
k

)
can be represented as the following (disjoint) union

N
(

n
k

)
= N

(
n−1

k

)
∪

{
B ∪ {n}

∣∣∣ B ∈ N
(

n−1
k−1

)}
. (20)

We obtain therefore

xM
(

n
k

)
=

∧
I∈N(n

k)

∨
i∈I

xi by Identity (17)

=
∧

I∈N(n−1
k)

∨
i∈I

xi ∧
∧

I∈N(n−1
k−1)

∨
i∈I∪{n}

xi by Identity (20)

= xM
(

n−1
k

)
∧

∧
I∈N(n−1

k−1)

∨
i∈I∪{n}

xi by Identity (17)

= xM
(

n−1
k

)
∧

∧
I∈N(n−1

k−1)

∨
i∈I

xi ∨ xn

 by associativity

= xM
(

n−1
k

)
∧


 ∧

I∈N(n−1
k−1)

∨
i∈I

xi

 ∨ xn

 by distributivity

= xM
(

n−1
k

)
∧

(
xM

(
n−1
k−1

)
∨ xn

)
by Identity (17)

which completes the proof. ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 141

The following Proposition 3 states that the converse of Proposition 2 also holds.

Proposition 3. Let (X,∧,∨,⊥,>) be a bounded lattice which is not distributive. Then
there exists a sequence x = (x1, x2, x3) in X such that Identity (19) is not satisfied.

Proof. According to a standard result on distributive lattices [5, Theorem 4.7], a lattice
is not distributive, if and only if it contains a sublattice which is isomorphic to either N5
or M3 (cf. Figure 2).

e

a

b

c

d

a

b c d

e

M3N5

Figure 2. The non-distributive lattices N5 and M3

From Identity (10) follows for the elements of xM =
(
xM1 , x

M
2 , x

M
3

)
xM1 = x1 ∧ x2 ∧ x3 (21a)
xM2 = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) (21b)
xM3 = x1 ∨ x2 ∨ x3. (21c)

If X contains the sublattice N5, then we consider the sequence x = (c, d, b) and its
subsequence (c, d). From Identity (21) then follows

(c, d, b)M = (a, d, e) and (c, d)M = (a, e).

Thus, we have

xM
(

3
2

)
= d xM

(
2
2

)
= e xM

(
2
1

)
= a.

However, applying Identity (19) we obtain

xM
(

3
2

)
= xM

(
2
2

)
∧

(
xM

(
2
1

)
∨ x3

)
= e ∧ (a ∨ b) = e ∧ b = b

instead of d.
If X contains the sublattice M3, then we consider the sequence x = (b, c, d) and its

subsequence (b, c). From Identity (21) then follows

(b, c, d)M = (a, e, e) and (b, c)M = (a, e).

142 J. Gerlach

We therefore have

xM
(

3
2

)
= e xM

(
2
2

)
= e xM

(
2
1

)
= a.

Again, applying Identity (19) we obtain

xM
(

3
2

)
= xM

(
2
2

)
∧

(
xM

(
2
1

)
∨ x3

)
= e ∧ (a ∨ d) = e ∧ d = d

instead of e. ut

Using Identity (19), we can prove the following Lemma 6, which generalizes a
known fact known from sorting in a total order: If one knows that xn is greater or equal
that the preceding elements x1, . . . , xn−1 then sorting the sequence (x1, . . . , xn) can be
accomplished by sorting (x1, . . . , xn−1) and simply appending xn.

Lemma 6. Let (X,∧,∨,⊥,>) be a bounded distributive lattice and x be a sequence of
length n. If the condition xi ≤ xn holds for 1 ≤ i ≤ n − 1, then the identities

xM
(

n
i

)
= xM

(
n−1

i

)
xM

(
n
n

)
= xn

hold.

Proof. The first equation follows directly from the fact that xMn is the supremum of the
values x1, . . . , xn. Regarding the second equation, we know from Lemma 2 that if for
1 ≤ i ≤ n − 1 the inequality xi ≤ xn holds, then

xM
(

n−1
i

)
≤ xn.

This inequality is also valid for i = 0 because xM
(

n−1
0

)
= ⊥ holds by Identity (16). From

general properties of meet and join then follows that

xM
(

n−1
i

)
∨ xn = xn

xM
(

n−1
i

)
∧ xn = xM

(
n−1

i

)
holds for 0 ≤ i ≤ n − 1. We can therefore simplify Identity (19) as follows

xM
(

n
i

)
= xM

(
n−1

i

)
∧

(
xM

(
n−1
i−1

)
∨ xn

)
= xM

(
n−1

i

)
∧ xn

= xM
(

n−1
i

)
.

ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 143

xM
✓
2

2

◆
xM

✓
2

1

◆

xM
✓
1

1

◆

?

?

>
x1

x2

xM
✓
3

1

◆
xM

✓
3

2

◆
xM

✓
3

3

◆
? >x3

↙

↙

↙ ↙

↙

↙

↙ ↙

↙↙

>

Figure 3. Graphical representation of Identity (19)

5 Insertion sort in lattices

Figure 3 graphically represents Identity (19) in a form that emphasizes its close rela-
tionship to Pascal’s triangle. Whenever an arrow↘ and and arrow↙ meet, the values
are combined by a meet. In the case of an arrow↘, however, first the value at the origin
of the arrow is combined with the sequence value xn through a join.

Formula (22) outlines an algorithm that is based on Identity (19). The algorithm
starts from x1 = (x1)M and successively computes

(x1, . . . , xi−1)M, xi 7→ (x1, . . . , xi−1, xi)M. (22)

From Identity (19) follows that in step i exactly i joins and i meets must be performed.
Thus, altogether there are

n∑
i=2

2 ∗ i = n(n + 1) − 2

applications of join and meet. In other words, such an implementation has quadratic
complexity. This algorithm can be considered as insertion sort [3, § 5.2.1] for lattices
because one element at a time is added to an already “sorted” sequence. Table 3 shows
some performance measurements for this algorithm in the bounded and distributive
lattice (N, gcd, lcm, 1, 0).

sequence length 100 1000 10000 100000
time in s 0 0 3.4 420

Table 3. Wall-clock time for computing (1, . . . , n)M according to Identity (19)

These results show that sorting in lattices can now be applied to much larger se-
quences than those shown in Table 2 before the limitations of an algorithm with quadratic
complexity become noticeable.

144 J. Gerlach

6 Conclusions

Proposition 1 states through Identity (7) a simple explicit relationship between the ele-
ments of a finite sequence in a totally ordered sets to its sorted counterpart.

A sorting algorithm that directly uses Identity (7) would have exponential complex-
ity. Thus, Identity (7) appears not relevant for implementing computationally efficient
algorithms. The reader should bear in mind, however, that this is also true for the Bi-
nomial Theorem. In fact, directly computing (x + y)n is normally more efficient than
computing the expansion

xn + nxn−1y +
n(n − 1)

2
xn−2y2 + . . . + yn

A more interesting aspect of Identity (7) is therefore that it allows to generalize the
notion of sorting finite sequences to lattices. Compared to sorting in a totally ordered
set, sorting in lattices is a more invasive procedure because it may change sequence
elements. While this may be considered as a major drawback one should bear in mind
that generalizations often lead to surprising properties. The real criterion for accepting
a generalization is whether it provides new insights or has useful applications. With
respect to sorting in lattices, the latter question has not been addressed in this paper and
remains a topic of future research.

We are able to show that our definition of sorting in lattices maintains many proper-
ties that are associated with sorting. Another important results of this paper are Propo-
sition 2, which proves Identity (19) for bounded distributive lattices, and Proposition 3,
which shows that the distributivity is necessary for Identity (19) to hold. The remarkable
points of Identity (19) are that it

– exhibits a strong analogy between sorting and Pascal’s triangle,
– allows to sort in lattices with quadratic complexity, and that it
– is in fact a generalization of insertion sort for lattices.

I would like to thank the reviewers for their comments. I am also very grateful for
the many corrections and valuable suggestions of my colleagues Jochen Burghardt and
Hans Werner Pohl: Jochen Burghardt’s suggestion to investigate whether the distributiv-
ity in Proposition 2 is really necessary led to Proposition 3. Hans Werner Pohl pointed
out the analogy of the algorithm in Equation 22 to insertion sort.

References

1. J. Gerlach. Sorting in Lattices. ArXiv e-prints, March 2013.
http://arxiv.org/abs/1303.5560.

2. J. Gerlach. Recursive Sorting in Lattices. ArXiv e-prints, May 2013
http://arxiv.org/abs/1306.0019.

3. Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

4. Bourbaki, N., Elements of Mathematics, Theory of Sets, Addison-Wesley, Reading, MA,
1968.

5. S. Roman. Lattices and Ordered Sets. Springer-Verlag New York, 2008.

