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Abstract. Mereotopology aims at a reconstruction of notions of set
topology in mereological universa. Because of foundational differences
between set theory and mereology, most notably, the absence of points
in the latter, the rendering of notions of topology in mereology faces
serious difficulties. On the other hand, some of those notions, e.g., the
notion of a boundary, belong in the canon of the most important notions
of mereotopology, because of applications in, e.g., geographic informa-
tion systems. Rough mereology allows for a formal theory of knowledge
granulation, and, granules may serve as approximations to open sets,
hence, it is reasonable to explore the possibility of their usage in buildup
of mereotopological constructs. This work is segmented into sections on
mereology, rough mereology, granule theory, mereotopology.
Keywords: spatial reasoning, mereotopology, rough mereology, bound-
ary, open set.

1 Standard Mereology

Under the term Standard Mereology we understand the theory of parts con-
structed by Stanislas Leśniewski, cf. [8], [10], [13]. Given some collection (a uni-
verse), say U , of things, a relation of part on them is a binary relation part which
is required to be

M1 Irreflexive: For each x ∈ U it is not true that part(x, x)
M2 Transitive: For each triple x, y, z of things in U , if part(x, y) and part(y, z),

then part(x, z)
Fig. 1 shows the chessboard with parts being white and black squares.
The relation of part gives rise to the relation of an ingredient, ingr, defined

as
ingr(x, y)⇔ π(x, y) ∨ x = y. (1)

Clearly, the relation of an ingredient is a partial order on things.
We formulate the third axiom of Standard Mereology which does involve the

notion of an ingredient. Before it, we introduce a property of things. For things
x, y, we let,
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Fig. 1. White and black squares as parts of the chessboard

I(x, y): For each thing t such that ingr(t, x), there exist things w, z such
that ingr(w, t), ingr(w, z), ingr(z, y)

Now, we can state an axiom.

M3 (Inference Rule) For each pair of things x, y, the property I(x, y) im-
plies that ingr(x, y)

The predicate of overlap, Ov in symbols, is defined by means of

Ov(x, y)⇔ ∃z.ingr(z, x) ∧ ingr(z, y). (2)

1.1 The class operator

Aggregation of things into a composite thing is done in set theory by means of
the union of sets operator. Its counterpart, and a generalization, in mereology,
is the class operator. For a non–empty property Φ of things, the class of Φ,
denoted ClsΦ, is defined by the conditions

C1 If Φ(x), then ingr(x,ClsΦ)

C2 If ingr(x,ClsΦ), then there exists z such that Φ(z) and I(x, z)

In plain language, the class of Φ collects in an individual object all objects
satisfying the property Φ.
The existence of classes is guaranteed by an axiom.

M4 For each non–vacuous property Φ there exists a class ClsΦ

The uniqueness of the class follows by M3.

In Fig. 1, we can discuss the class of white squares, the class of black squares,
or, the class of occupied squares.

Example 1. 1. The strict inclusion ⊂ on sets is a part relation. The corre-
sponding ingredient relation is the inclusion ⊆. The overlap relation is the
non–empty intersection. For a non–vacuous family F of sets, the class ClsF
is the union

⋃
F ;
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2. For reals in the interval [0, 1], the strict order < is a part relation and the
corresponding ingredient relation is the weak order ≤. Any two reals overlap;
for a set F ⊆ [0, 1], the class of F is supF .

The notion opposite to that of overlap is the notion of disjointness: its symbol
is extr, and, for things x, y,

extr(x, y)⇔ it is not true that Ov(x, y). (3)

The notion of a complement to an object, relative to another object, is rendered
as a ternary predicate comp(x, y, z), [8], par. 14, Def. IX, to be read:‘x is the
complement to y relative to z’, and it is defined by means of the following
requirements,

1. x = ClsEXTR(y, z);
2. ingr(y, z),

where EXTR(y, z)(t) holds if and only if ingr(t, z) and extr(t, y).
This definition implies that the notion of a complement is valid only when

there exists an ingredient of z exterior to y.
The notion of a class has been extensively studied motivated by its funda-

mental importance for foundations of mathematics, logics and mereology, cf.,
e.g., Lewis [9].

For the property Ind(x) ⇔ ingr(x, x), one calls the class ClsInd, the uni-
verse, in symbols V ,cf.,[8], par. 12, Def. VII. The complement with respect to
the universe of a thing serves as the complement in algebraic sense.

We let for an object x,

−x = ClsEXTR(x, V ). (4)

It follows that

1. −(−x) = x for each object x;
2. −V does not exist.

In Fig. 1, the complement to the class of white squares is the class of black
squares (we assume that classes of squares are ingredients of the chessboard
as well). The operator −x can be a candidate for the Boolean complement in
a structure of a Boolean algebra within Mereology, constructed in [18], and
anticipated in [17]; in this respect, cf., [5]. This algebra will be obviously rid
of the null element, as the empty object is not allowed in Mereology , and the
meet of two objects will be possible only when these objects overlap. Under this
caveat, the construction of Boolean operators of join and meet proceeds as in
[18].

We define the Boolean sum x+ y by letting

x+ y = Cls(t : ingr(t, x) ∨ ingr(t, y)). (5)

In Fig. 2, we give an example of the sum which is the full moon as the sum
of the two quarters: 4th and 1st (’halves‘).
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Fig. 2. The 4th quarter of the moon =x; the 1st quarter of the moon =y; the full
moon= x+y

The product x · y, cf., [18] is defined in a parallel way,

If Ov(x, y) then x · y = Cls(t : ingr(t, x) ∧ ingr(t, y)). (6)

Operators +, ·,− and the unit V introduce the structure of a complete Boolean
algebra without the null element, cf., [18], [13].

An often invoked example of a mereological universe is the collection ROMn

of regular open sets in the Euclidean space En; we recall that an open set A is
regular open when

A = IntClA, (7)

where Int, Cl are , respectively, the interior and the closure operators of topology,
see, e.g., [10], Ch.2. In this universe, mereological notions are rendered as

1. ingr(A,B)⇔ A ⊆ B;
2. part(A,B)⇔ A ⊂ B;
3. Ov(A,B)⇔ A ∩B 6= ∅;
4. A ·B = A ∩B;
5. −A = Rn \ ClA;
6. A+B = A ∪B.

2 Rough Mereology

Rough Mereology, cf., , [10], [11], [12], introduces the notion of a part to a degree,
µ(x, y, r) read ‘x is a part in y to a degree of r’ with requirements

RM1 µ(x, y, 1)⇔ ingr(x, y)

RM2 µ(x, y, 1) ∧ µ(z, x, r)⇒ µ(z, y, r)

RM3 µ(x, y, r) ∧ s ≤ r ⇒ µ(x, y, s)

where ingr is the ingredient relation in an a priori assumed Mereology.

The relation µ called a rough inclusion in [11] can be induced in some ways
from t–norms, for t–norms, see, e.g., [6], [10], Ch. 4.
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2.1 Rough inclusions from residua of continuous t–norms

In the first case, for a continuous t–norm t, cf., e.g., [6], [10], Ch. 4, Ch. 6.2., the
residual implication x⇒t y defined as

x⇒t y = max{r : t(x, r) ≤ y}, (8)

yields the rough inclusion

µt(x, y, r)⇔ x⇒t y ≥ r. (9)

2.2 Rough inclusions from archimedean t–norms

In the other case, for the t–norm of  Lukasiewicz,

tL(x, y) = max{0, x+ y − 1}, (10)

or, the product t–norm,

tP (x, y) = xy, (11)

see, e.g., [10], Ch. 4, which admit representations,

tL(x, y) = gL(fL(x) + fL(y)), tP (x, y) = gP (fP (x) + fP (y)) (12)

with

gL(x) = 1− x = fL(x), gP (x) = exp(−x), f(x) = −lnx, (13)

cf., [6], [10], Ch. 4, one defines the rough inclusion

µL(x, y, r)⇔ gL(|x− y|) ≥ r, (14)

respectively,

µP (x, y, r)⇔ gP (|x− y|) ≥ r. (15)

The last formula can be transferred to the realm of finite sets, with g either gL
or gP , as

µL
s (X,Y ) = g(

|X 4 Y |
|X|

) =
|X ∩ Y |
|X|

, (16)

to the case of bounded measurable sets in En as

µL
G(X,Y ) = g(

||X 4 Y ||
||X||

) =
||X ∩ Y ||
||X||

, (17)

where a4 b denotes the symmetric difference of a, b, |a| is the cardinality of a,
and, ||a|| is the measure (area) of a.
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2.3 Transitivity of rough inclusions

An important property of rough inclusions is the transitivity property. For rough
inclusions of the form µt with t being L or P , as well as for rough inclusions of
the form µt this property has the form, see Polkowski [10], Props. 6.7, 6.16,

µt(x, y, r) ∧ µt(y, z, s)⇒ µt(x, z, t(r, s)). (18)

In case of rough inclusions of the form µt, it becomes,

µt(x, y, r) ∧ µt(y, z, s)⇒ µt(x, z, t(r, s)). (19)

3 Granules as weakly open sets in rough mereology

We begin our study of mereotopology in a rough mereological universe U with
a given rough inclusion µ. In order to introduce topological structures, we first
introduce a mechanism of granulation in U . For a thing x in U and a real number
r in the interval [0, 1], we define the granule g(x, r, µ), about x of radius r, as

g(x, r, µ) is ClsM(x, r, µ), (20)

where
M(x, r, µ)(y)⇔ µ(y, x, r). (21)

Granules can be characterized in terms of rough inclusions as follows, see
Polkowski [10], Ch. 7, Props. 7.1, 7.2.

Proposition 1. For granules induced by rough inclusions of the form µt as well
as for granules induced by the rough inclusion µM , we have for each pair x, y of
things, ingr(y, g(x, r, µ)) if and only if µ(y, x, r).

For granules induced by rough inclusions µL, µP , the situation is more compli-
cated, see Polkowski [10], 7.3.

3.1 Open sets

We apply the granules to define neighborhoods of things in U . To this end, we
define a property N(x, r, µ) by letting,

N(x, r, µ)(y)⇔ ∃s > r.µ(y, x, s). (22)

The neighborhood n(x, r, µ) of a thing x of radius r relative to µ is defined as

n(x, r, µ) is ClsN(x, r, µ). (23)

The neighborhood system has properties of open sets, viz., see [10], Ch. 7,

1. If ingr(y, n(x, r, µ)), then ∃s.ingr(n(y, s, µ), n(x, r, µ));
2. If s > r, then ingr(n(x, s, µ), n(x, r, µ));
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3. If ingr(y, n(x, r, µ)) and ingr(y, n(z, s, µ)), then

∃q.ingr(n(z, sq, µ), n(x, r, µ)) and ingr(n(z, q, µ), n(y, s, µ)).

We define an open set as a collection of neighborhoods; the predicate open(F )
is therefore defined as,

open(F )⇔ ∀z.[z ∈ F ⇔ z is n(x, r, µ) for some x, r ]. (24)

It is now possible to define open things as classes of open collections,

open(x)⇔ ∃F.open(F ) ∧ x is ClsF. (25)

Closed things are defined as complements to open things,

closed(x)⇔ open(−x). (26)

We may need as well the notion of a closed collection, as the complement to
an open collection,

closed(F )⇔ open(−F ), (27)

where, clearly, the complement −F is the collection obtained by applying the
mereological complement − to each member of F .

4 Boundaries

The practical importance of boundaries stems from their role as separating re-
gions among areas of interest like roads, rivers, fields, forests etc., and this causes
the theoretical interest in them. The notion of a boundary has been studied in
philosophy, mathematics, computer science by means of mereology. Mathemat-
ics resolved the problem of boundaries by topological notion of the boundary
(frontier) BdX of a set X in a topological space (U, τ) which was defined as

BdX = ClX \ IntX, (28)

i.e., any point x ∈ U satisfies

x ∈ BdX ⇔ ∀P.P open ∧ x ∈ P ⇒ P ∩X 6= ∅ 6= P ∩ (U \X).

It is evident from this definition that the notion of the boundary of X involves
in the symmetrical way the complement:

BdX = Bd(U \X). (29)

It also follows that the notion of a boundary is of infinitesimal character as
detecting whether x ∈ BdX involves neighborhoods of x of arbitrarily small
size.
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Philosophers noticed this duality of boundaries between things and their
complements and went even further, in the extreme cases, assigning the bound-
ary character to any thing by considering it as a potential boundary (the phe-
nomenon of plerosis, e.g., a point in the open disc can be the end point of any
radius from it to the perimeter of the disc, a fortiori, in the boundary of contin-
uum many segments. Moreover, e.g., the perimeter of the planar disc, considered,
e.g., in 3D space, can be the boundary of continuum many bubbles spanned on
the perimeter , see [2], [3], [15]).

4.1 Mereoboundaries

Topological definition of boundary led Smith [14] toward a scheme for defining
mereoboundaries. First, He proposes an axiomatic introduction of open sets as
interior parts, IP in symbols. In this context, the notion of straddling, Str in
symbols, is defined as,

Str(x, y)⇔ [∀z.IP (x, z)⇒ Ov(z, y) ∧Ov(z,−y)]. (30)

The notion of a boundary part is introduced in Smith [14] by means of an auxiliary
predicate

B(x, y)⇔ ∀z.ingr(z, x)⇒ Str(z, y). (31)

Boundary Bd(y) of a thing y is defined as

Bdy(y) = Cls{x : B(x, y))}. (32)

It is a straightforward task to verify that in the space ROMn of regular open
sets, each set x is an interior set of each of its supersets and requirements for
IP are fulfilled, Str(x, y) is satisfied in case Ov(x, y)∧Ov(x,−y) and B(x, y) is
satisfied for no x, y hence the boundary is not defined being empty. The reason
is a too liberal definition of straddling, allowing mere ingredients of a given thing
x.

4.2 Granular mereoboundaries

For this reason, we re–model the approach by Smith in [14] by allowing granular
neighborhoods as open things, a fortiori interior parts, and by restricting interior
parts to granular neighborhoods about the same thing. In detail, our approach
presents itself as follows.

We say that a granular neighborhood n(x, r, µ) granular straddles a thing y
if and only if the following property GStr(x, r, y) holds,

GStr(x, r, y)⇔ ∀s ∈ (r, 1).Ov(n(x, s, µ), y) ∧Ov(n(x, s, µ),−y). (33)

Let us observe that the notion of granular straddling is downward hereditary in
the sense that

GStr(x, r, y) ∧ s > r ⇒ GStr(x, s, y). (34)
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Also, it is manifest that this notion is upward hereditary, i.e.,

GStr(x, r, y)⇒ ∀s < r.GStr(x, s, y). (35)

With each granule g(x, r, µ), we associate the collection GN(x, µ) = {n(x, s, µ) :
s ∈ (0, 1)}, which we call the x − ultrafilter base. We say that an x-ultrafilter
base GN(x, µ) granular straddles a thing y if and only if there exists an s ∈ (0, 1)
such that GStr(x, s, µ), y) holds. We denote this fact with the symbol B(x, y).

We regard the collection GN(x, µ) as a point at infinity and, according to the
topological nature of boundary, we assign to the thing x such that the x-ultrafilter
base GN(x, µ) granular straddles a thing y this point at infinity as the boundary
point of y. Hence, we define the boundary of y, in symbols Bdy, as the collection
of those points,

Bdy is {x : B(x, y)}. (36)

Boundaries defined in this way are ingr−upward−hereditary in the sense,

ingr(z, x) ∧B(z, y)⇒ B(x, y). (37)

The proof follows from definitions by M3 and transitivity of the applied rough
inclusion. In view of the correspondence between things and ultrafilter bases,
we may say that the thing x is a boundary point of the thing y in case the
x–ultrafilter base granular straddles y. This approach does satisfy philosophical
postulates about boundary like

1. The boundary of a thing may not belong in the universe of considered things;
in other words, the boundary is of different topological type then the thing;

2. in order to preserve the typology of the boundary one has to preserve its
infinitesimal character;

3. the boundary of a thing may be a boundary of a plethora of other things ,
in particular, by necessity, it has to be the boundary of each complement to
the thing.

Let us observe that the set–theoretic complement to Bdy is open as it is the
collection,

{z : ∃s.ingr(n(z, s, µ), y) ∨ ingr(n(z, s, µ),−y)}, (38)

hence, Bdy is a closed collection for each thing y.
It is a straightforward task to check that in the space ROMn, for a regular

open set A, the granular boundary is defined by

B(Z,A)⇔ ClZ ∩A 6= ∅. (39)

5 Conclusion

We admit an infinitesimal nature of boundaries along with the fact that their
nature is distinct from the nature of things they bound, like it happens to closed
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nowhere dense boundaries of regular open sets, and we represent them by means
of ultrafilters constructed in the meta–space of collections of things. We have
aimed at giving a definition of boundary in purely mereological terms, without
any resort to augmentations which are necessary for a more exact description,
like geographic directions, notions of touching, contact, beacons, in a word many
other than mereological primitive notions, see, e.g., [1], [7].
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