
Analysis of Multilayer Neural Networks with
Direct and Cross-Forward Connection

Stanis law P laczek and Bijaya Adhikari

Vistula University, Warsaw, Poland
stanislaw.placzek@wp.pl,bijaya.adhikari1991@gmail.com

Abstract. Artificial Neural Networks are of much interest for many
practical reasons. As of today, they are widely implemented. Of many
possible ANNs, the most widely used ANN is the back-propagation model
with direct connection. In this model the input layer is fed with input
data and each subsequent layers are fed with the output of preceeding
layer. This model can be extended by feeding the input data to each layer.
This article argues that this new model, named cross-forward connection,
is optimal than the widely used Direct Conection.

1 Introduction

Artificial Neural Networks have broad implementation in Machine Learning,
engineering and scientific applications. Their abilities to provide solutions to
problems involving imprecisions and uncertainties with trivial implementation
have enabled us to find solutions to real life problems as [1]:

1. Result approximation and data interpolation
2. Pattern recognition nad feature classification
3. Data compression
4. Trend prediciton
5. Error identification
6. Control

The problems mentioned above are solved by implementing ANN as universal
approximator function with multidimensional variables. The function can be
represented as:

Y = F (X) (1)

where:

– X-input vector
– Y -output vector

Selecting a network to solve a specific problem is a tedious task. Decision
regarding following thing must be made prior to attempting a solution.

356 S. P laczek, B. Adhikari

– Structure of Neural Network, number of hidden layers and number of neurons
in each layer. Conventionally, the size of input and output layers are defined
by dimension of X and Y vectors respectively.

– Structure of individual neurons encompassing activation function, which
takes requirement of learning algorithm into account.

– Data transfer methods between layers
– Optimization criteria and type of learning algorithm

Structure of Network can be defined in arbitrary way to accomplish complex
tasks. The structure plays vital role in determining the functionality of ANN.
This paper will compare and contrast two multilayer network structures.

– Direct Connection: This structure consists of at-least one hidden layer. Data
tis fed from preceeding layer to succeeding one.

Fig. 1. Structure of Direct Connection ANN

– Cross Forward Connection. In this structure, the input signal is passed on
to every layer in the network. Therfore, a layer j=1,2,3.....W ,where W is
the output layer, has two inputs : vector X and Vector Vj−1, output of
preceeding layer.

Structure of Cross Forward Connection is simpler than that of Direct Connec-
tion, in terms of neuron distribution in hidden layers. Learning time, as second
parameter, is shorter for Cross Forward Connection . In later part of the paper,

Analysis of Multilayer Neural Networks with . . . 357

Fig. 2. Structure of Forward Connection ANN

we will analyze a particular optimization problem for ANN where total number
of neurons, N, and number of layers , W, are given. Our target is to maximize
the total number of subspaces which are created by neurons of every hidden
layers. We will solve this complex problem with respect to the relation between
dimensionality of feature space, N0, and neurons’ number in all hidden layers,
Ni. This problem can be divided into two sub-problems.

– Ni ≤ N0 – liner optimization problem,
– Ni > N0 – non-linear optimization problem.

Where: i= 1,2,3,. W-1.
We can solve liner target function using liner-programming method. The non-
linear task, with liner constrains, can be solved using Kuhn- Tucker conditions.
As examples, we solved both sub-problems and discussed different ANN struc-
tures. In conclusion, we summarize our results giving recommendation for dif-
ferent ANN structures.

2 Criteria of ANN Structure Selection

The threshold function for the each neuron is defined as follows:

g(x) =

{
1, if x > 0

−1, if x ≤ 0
(2)

358 S. P laczek, B. Adhikari

Fig. 3. Two Layer ANN with Cross Forward Connection

We say that the network in Fig. 3 has structure 2-3-1. Where:

– N0=2; number of neurons in input layer.
– N1=3; number of neurons in hidden layer.
– N2=1; number of neurons in output layer.

Signal transfer from input layer to output layer in this structure can be repre-
sented in the following way.

U = W1 ·X (3)

V = F1(U) (4)

E = W2 · V + C2 ·X (5)

Y = F2(E) (6)

Where,

– X[0 : N0] -input signal
– W1[1:N1;0:N0] - weight coefficients matrix of hidden layer
– U [1:N1]-analog signal of hidden layer
– V [1:N1]-output signal of hidden layer

Analysis of Multilayer Neural Networks with . . . 359

– W2[1:N2;0:N1] - weight coefficients matrix of output layer
– E[1:N2]-analog signal of output layer
– Y [1:N2]-output signal of output layer
– C2[1 : N2; 0 : N0] -weight coefficients matrix of Cross connection

This network will be used for pattern recoginition after being trained by
teacher datas.

The architecure of ANN in fig(3) could be represented using hyper-spaces.
Lets imagine a hyperspace having dimension of the number of neurons in the
input layer. The first hidden layer, depicted in equation (3) and (4), divides
feature space, X, into subspaces.

Fig. 4. Structure of division of two dimensional input space by three neurons of the
first hidden layer.

Two dimensional feature space is divided into seven sub-spaces. These sub-
spaces correspond to internal structure of input data.

The function Φ (p,q) gives the maximum number of p dimensional sub-spaces
formed q number of p− 1 dimensional hyper-planes. The function has following
recursive form.[3]

Φ(p, q) = Φ(p− 1, q) + Φ(p− 1, q − 1) (7)

By definition of φ(p, q), it is clear that

Φ(p, 1) = 2 (8)

360 S. P laczek, B. Adhikari

and
Φ(1, q) = q + 1 (9)

In context of Neural Networks, q – number of neurons in the first hidden layer,Ni,
and p – dimension of input vector, N0.

Table 1. Number of sub spaces formed by division of p dimensional input Vector by
q neurons present in the first hidden layer

q \ p 1 2 3 4 5 6 7 8 9 10

1 2 2 2 2 2 2 2 2 2 2

2 3 4 4 4 4 4 4 4 4 4

3 4 7 8 8 8 8 8 8 8 8

4 5 11 15 16 16 16 16 16 16 16

5 6 16 26 31 32 32 32 32 32 32

6 7 22 42 57 63 64 64 64 64 64

7 8 29 64 99 120 127 128 128 128 128

8 9 37 93 163 219 247 255 256 256 256

9 10 46 130 256 382 466 502 511 512 512

10 11 56 176 386 638 848 968 1013 1023 1024

Now, re-writing (7), we get:

Φ(p, q) = Φ(1, q) +

p−1∑
k=1

Φ(k, q − 1) (10)

Solving recursion (10), we get :

Φ(p, q) = Cpq−1 + 2

p−1∑
k=0

·Ckq−1 (11)

where,

Ckn =
n!

k! · (n− k)!
(12)

In the equations above:

– p-dimension of input vector.
– q- number of neurons in hidden layer

Lets consider an example, for a network having three neurons in first hidden
layer and input vector of dimension 2. From (11), We get Φ(2,3)=7.

The number of subspaces formed due to division of the neurons in input
layer by the the neurons in the first hidden layer depends solely on the number
of neurons. The table presented above shows number of subspaces for different
values of p and q.

Coming back to the structure of Cross-Forward Connection, according to
Fig.3, input signals to the second hidden layer can be divided into two subsets:

Analysis of Multilayer Neural Networks with . . . 361

– input received from the output of previous layer-Vector V
– raw input received - vector X

All input signals are multiplied by the adjustable weights of associated neu-
rons i.e. matrices W2 and C2 respectively.

For ANN presented in fig.3, we can write:

ek =

N1∑
i=1

W2k,i · Vi +

N0∑
j=0

C2k,j ·Xj (13)

And, finally,
For ek=0,

N0∑
j=0

C2k,j ·Xj = −
N1∑
i=1

W2k,i · Vi (14)

The input space, X, in (14) represents the set of parallel hyper-planes. The
number of hyper-planes depend on Vi. For two dimension space, the second layer
of ANN is composed of four parallel lines formed by all possible combination of
values of Vi and Vj i.e.,0,0; 0,1; 1,0; 1,1.

Every subspace which is formed by the hidden layer is further divided into
two smaller sub-spaces by output neuron. For N0, dimensional input space and
N1 number of neurons in the first hidden layer, the maximum number of sub-
spaces is given by:

Ψ(N0, 2) = Φ(N0, N1) · Φ(N0, N2) (15)

For, W>2 ,number of sub-spcaes is:

Ψ(N0,W) =

W∏
i=1

Φ(N0, Ni) (16)

The number of subspaces of initial feature space in fig 3 is:

Ψ2,2 = Φ(2, 3) · Φ(2, 1) = 7 ∗ 2 = 14

For example, to divide input space into 14 subspaces, we require 3 neurons
in the first hidden layer and 1 in output layer. Whereas, we need 5 neurons in
the first hidden layer and 1 neuron in output layer to obtain the same number
of subspaces in the standard Direct Connection. It could be concluded that the
ANN with cross forward connection is more optimal than the regular straight
Forward Fonnection.

3 Learning Algorithm for Cross Forward Connection
Network

Less number of neurons helps convergence of algorithm during learning process.
We use standard back propagation algorithm. Aim function(goal of learning

362 S. P laczek, B. Adhikari

process) is defined as

e2 =
1

2
·
Nw∑
k=1

(yi − zi)2 (17)

where, zi is the value provided by the teacher and yi is the output computed
by the network.

And new value of weight coefficient is:

Wij(n+ 1) = Wij(n)− α · ∂e
2

∂Wij

∣∣∣
n

+ β[Wij(n)−Wij(n− 1)] (18)

and

Cij(n+ 1) = Cij(n)− α · ∂e
2

∂Cij

∣∣∣
n

+ β[Cij(n)− Cij(n− 1)] (19)

4 Structure Optimization of Cross Forward Connection
Network

ANN structure optimization is very complicated task and can be solved in dif-
ferent ways. Experience has taught us that ANN with 1 or 2 hidden layer is
able to solve most of the practical problems. The problem of ANN optimization
structure can be described as :

– maximizing number of subspaces, Ψ(N0,W).

when total number of neurons,N , and number number of layers, W , are given.

4.1 Optimization task for ANN with one hidden layer

For ANN with 1 hidden layer, the input neurons’ number,N0,is defined by the
input vector structure X and is known as apriori. The output neurons’ number
N2 is given by the output vector structure, Y - known as task definition. We
can calculate the neurons’ numbers in the hidden layer N1 using equation 16.
According to the optimization criterion and formula 16, the total number of
subspaces for ANN with one hidden layer is given by:

Φ(N0,W) = Φ(N0, 2) = Φ(N0, N1) · Φ(N0, N2) (20)

Finally we can calculate number of neurons in one hidden layer N1.

4.2 Optimization task for more than one hidden layer

For ANN with 2 or more hidden layers, optimization is more complicated. As
the first criterion, we assume that:

– the number of layers W is given and,
– total number of neurons N is given for all hidden layers.

Analysis of Multilayer Neural Networks with . . . 363

N can be calculated using:

N =

W−1∑
i=1

Ni = N1 +N2 +N3 ++NW−1 (21)

In practice we have to calculate neuron’s distribution between {1 : W −
1} layers. To find neuron’s distribution, we have to maximize the number of
subspaces according to the equation 22 with 23 as constraint.

ψ(N0,W − 1)opt = max
N1,N2...NW−1

w−1∏
i=1

Φi(N0, Ni) (22)

N =

W−1∑
i=1

Ni = N1 +N2 +N3 ++NW−1 (23)

From 11 and 22,

Φ(N0, Ni) = CN0

Ni−1 + 2

N0−1∑
k=0

·CkNi−1

for i ε [1;W − 1]

(24)

Please note that:

CN0

Ni−1 = 0

when Ni − 1−N0 < 0

Ni ≤ N0

(25)

Taking 22, 23, 24, and 25 into account, our optimization task can be written
as:

Ψ(N0,W − 1)opt = max
N1,N2...NW−1

{
W−1∏
i=1

[CN0

N1−1 + 2

N0−1∑
k=0

CkNi−1]

}
(26)

with constraints

N =

W−1∑
i=1

Ni (27)

CN0

Ni−1 = 0 for Ni ≤ N0 (28)

CkNi−1 = 0 for Ni ≤ k (29)

The optimization problem in 26 is non-linear and solution space can be di-
vided into :

364 S. P laczek, B. Adhikari

1. For all hidden layers Ni ≤ N0 and Ni ≤ k — linear task
2. For all hidden layers Ni > N0 and Ni > k — non-linear task

Set of hidden layers can be divided into two subspaces:

– S1 = {N1, N2, N3,, Nj} where j ≤W − 1.For S1, N ≤ N0 and Ni ≤ K
– S2 = {Nj+1, Nj+2, Nj+3,, NW−1}.For S1, Ni > N0 and Ni > K

Where W = number of layers and W-1 = number of hidden layers. This is
a mixed structure, for which final solution can be found using mixture of both
methods from point 1 and 2.

4.3 Neuron distribution in the hidden layers, where neurons’
number for all hidden layers is less or equal than initial feature
space

In this case, we have

Ni ≤ N0 for i ε{ 1;W − 1} (30)

So, the total number of subspaces is defined by

Φ(N0, Ni) =
(Ni − 1)!

N0!(Ni − 1−N0)!
+ 2 ·

N0−1∑
k=0

(Ni − 1)!

k!(Ni − 1− k)!
(31)

or,

Φ(N0, Ni) = 0 + 2 · 2Ni−1 = 2Ni (32)

Our optimization target can be written as,

Ψ(N0,W − 1)opt = max
Ni ε [1,W−1]

{
W−1∏
i=1

2Ni

}
= max
Ni ε [1,W−1]

{
2
∑W−1

i=1 Ni

}
for N =

W−1∑
i=1

Ni

Ni ≤ N0 and Ni, N0 ≥ 0

(33)

Equation 33 is monotonously increasing and can be written as

Ψ(N0,W − 1)opt = max
Ni ε [1,W−1]

{
W−1∑
i=1

Ni

}

For N =

W−1∑
i=1

Ni

Ni ≤ N0 and Ni, N0 ≥ 0

(34)

Analysis of Multilayer Neural Networks with . . . 365

Under the given number of layers, total number of neurons have to satisfy
the new constraints

Ni ≤ N0 and N ≤ (W − 1)N0 (35)

Example:
For ANN with N0 = 3, N1 ≤ 3, N2 ≤ 3, N3 = 1, W = 3, find optimum neurons
distribution between two hidden layers N1, N2.

It is known that for output layer N3 = 1 and therefore we will only consider
two hidden layer for optimization process. For allNi, where i = 1, 2 andNi ≤ N0,
using 35 we can write:

N ≤ (W − 1) ·N0 = (3− 1) · 3 = 6

Taking N0 = 3 using 34 we achieve

Ψ(N0,W − 1) = Ψ(3, 2) = max{N1 +N2}
and constraints

N1 ≤ 3

N2 ≤ 3

we use N1 +N2 = 4 < 6

(36)

To solve this optimization task, we can use linear programming methods or
use figure 5.

Using only discrete values of N1, N2 for N=4, we can find three solutins
(N1, N2) = {(1, 3), (2, 2), (3, 1)}

The following equations indicate the number of subspaces for different num-
ber of neurons.

Φ(N0, N1) = Φ(3, 1) = 21 = 2

Φ(N0, N1) = Φ(3, 2) = 22 = 4

Φ(N0, N1) = Φ(3, 3) = 23 = 8

(37)

Finally, we have three optimal solutions with three different ANN structure.
Every structure generates 16 subspaces and are euqivalent. Table 2.

Table 2. Solution of linear programming for N=4

N0 N1 N2 Φ(N0, N1) Φ(N0, N2) Ψ(N0,W − 1)

3 1 3 2 8 16

3 2 2 4 4 16

3 3 1 8 2 16

In conclusion, we can say that for every given total number of neurons,N ,
we have many possible neurons distribution between layers. Optimal number of
subspaces in the initial feature space has the same value, Ψ .

366 S. P laczek, B. Adhikari

Fig. 5. Graphical solution of linear programming when total number of neurons, N=6
and N=4

4.4 Neurons distribution in the hidden layers, where neurons’
number for all hidden layers is greater than initial feature space

Lets assume number of layers, W=3. It implies that we have only two hidden
layers. According formula 24.

Φ(N0, Ni) =CN0

Ni−1 + 2

N0−1∑
k=0

CkNi−1

for i ε [1 : W − 1] and Ni > N0

For whole ANN, total number of subspaces is given by

Ψ(N0,W − 1) =Ψ(N0, 2) = Φ1(N0, N1) · Φ2(N0, N2)

and N1 +N2 = N

so, N1 +N2 > 2N0

(38)

Taking all assumptions into account we can write,

Φ(N0, N1) = CN0

Ni−1 + 2 · (C0
Ni−1 + C1

Ni−1 ++ CN0−1
Ni−1) for N0 < Ni

Φ(N0, N1) < CN0

Ni−1 + 2 · 2Ni−1 < 2Ni
(39)

In this situation we do not know how many suspaces there are for Φ(N0, N1).
To find neurons distribution between the hidden layers we should know relations
between N0, Ni and N .

Analysis of Multilayer Neural Networks with . . . 367

Example:
For N0=3, W=3 N=8, and N=10, N=12 find neuron distribution in the layers,
were Ni > 3. We should maximize the quality criterion

Ψ(N0,W − 1)OPT = max
N1,N2....NW−1

W1∏
i=1

[
CN0

Ni−1 + 2 ·
N0−1∑
k=0

CkNi−1

]
(40)

For example,

Ψ(3, 2)OPT = max
N1,N2

2∏
i=1

[
C3
Ni−1 + 2 ·

2∑
k=0

CkNi−1

]
(41)

After simple algebraic operations, we achieve

Ψ(3, 2)OPT = max
N1,N2

{
N3

1 + 5N1 + 6

6
· N

3
2 + 5N2 + 6

6

}
N1 > 3

N2 > 3

N1 +N2 = 8 > 6

(42)

We solve the equation using Kuhn-Tucker conditions. Taking 42 into account.
we can write the following Lagrange equation

Table 3. Solution for non-linear Kuhn Tucker conditions for total number of neurons,
N=8–12

N N1 > 3 N2 > 3 Φ(3, 21) Solution

8 4 4 225 max

9
5 4 390 max
4 5 390 max

10
6 4 630
5 5 676 max
4 6 630

11

4 7 960
5 6 1092 max
6 5 1092 max
7 4 960

12

4 8 1395
5 7 1664
6 6 1774 max
7 5 1664
8 4 1395

368 S. P laczek, B. Adhikari

Fig. 6. Graphical solution of Kuhn Tucker conditions. Line N = N1 +N2 is a solving
line with one or more solutions. Only one point is max. Figure shows three solution
lines for N1 +N2 = 8, N1 +N2 = 10, N1 +N2 = 12

L =
N3

1 + 5N1 + 6

6
· N

3
2 + 5N2 + 6

6
−λ1 · (N1 − 4)− λ2 · (N2 − 4)− λ3 · (N1 +N2 − 8)

N1 − 4 ≥ 0

N2 − 4 ≥ 0

N1 +N2 − 8 = 0

(43)

5 Conclusion

For most practical purposes, ANNs with one hidden layer are sufficient. Learning
Algorithms for the networks are time consuming and depend on number of layers
and number of neurons in each layer. The running time of learning algorithm has
dependency, greater than linear, on the number of neurons. Hence, the running
time increases faster than the total number of neurons.

Cross Forward connection provides us an opportunity to decrease the number
of neurons and thus, the running time of learning algorithm.

We implemented both Direct Connection Neural Networks and Cross For-
ward Neural Networks with one hidden layer and used them for pattern recog-
nition.

Analysis of Multilayer Neural Networks with . . . 369

Our implementation required three input neurons and two output neurons.
We varied the number of neurons in hidden layer and trained both networks for
limited number of epoches and noted the sum of squared errors of each output
neurons. The procedure was repeated 20 times and the average sum of square of
errors were recorded. Datas for two cases are presented in table 4 and 5.

Table 4. Comparision for Direct Connection and Cross Forward Connection with
N0 = 3, N1 = 1,NW = 2

Epoches 10 50 100 500 1000 5000 10000 50000∑
ε2 for Direct

Connection
12.40415 9.10857 8.58351 8.48001 8.38696 8.260625 8.14166 8.0152∑

ε2 for Cross
Forward

2.22719 0.33131 0.12325 0.02912 0.00808 0.00148 0.00076 0.00014

Table 5. Comparision for Direct Connection and Cross Forward Connection with
N0 = 3, N1 = 4,NW = 2

Epoches 10 50 100 500 1000 5000 10000 50000∑
ε2 for Direct

Connection
6.91134 0.28018 0.11306 0.01864 0.00542 0.000092 0.000052 0.00009∑

ε2 for Cross
Forward

1.02033 0.12252 0.064224 0.01945 0.00441 0.000823 0.000381 0.00007

Table 4 and 5 clearly demonstrate that for the given number of neurons in
the hidden layer, Cross-Forward Connection are optimal. If we closely examine
the error term in table four for Direct Connection and the same in table 5 for
Cross Forward Connection we will notice that they are fairly comparable. It
demonstrates that Cross Forward Connecton Structure with one neuron neuron
in hidden layer is almost as good as Direct Connection with four neurons in
hidden layer. Thus, Cross-Forward connection reduce the required number of
neurons in ANNs.

In addition using optimizations criterion for Cross Forward Connection struc-
tures, we have solved two different tasks. For linear one , where Ni ≤ N0 for
i=1,2,. . . W-1, we e achieved an equivalent ANN structures with the same num-
ber of total subspaces Ψ(N0,W − 1). This means that for given total number
of neurons ,N , and number of layers W , there are multiple equivalent ANN
structures (Table 2). In practice this ANN structures can be used for tasks with
very big dimensionality of input vector X (initial feature space). For nonlinear
optimization task, where Ni > N0 for i=1,2,3. W-1, the target function
is nonlinear with liner constraints. There could be one or more optimum solu-
tions. Final solution depends on dimensionality of feature space N0 and relation
between N, Ni and W. In our example, for ANN with N0 = 3 , W=3, and

370 S. P laczek, B. Adhikari

N=8,9,10,11,12,. we achieved one optimum solution for even N0s and two
solutions for odd N0s (Table 3).

References

1. Stanisaw Osowski, Sieci Neuronowe do Przetwarzania Informacji. Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa 2006.

2. S. Osowski, Sieci neuronowe w ujeciu algorytmicznym.WNT, Warszawa 1996.
3. O.B.Lapunow, On Possibility of Circuit Synthesis of Diverse Elements, Mathemat-

ical Institut of B.A. Steklova, 1958.
4. Toshinori Munakate, Fundationals of the New Artificial Intelligence. Second Edition,

Springer 2008.
5. Colin Fyle, Artificial Neural networks and Information Theory, Departmeeent of

Ciomputing and information Systems, The University of Paisley, 2000.
6. Joarder Kamruzzaman, Rezaul Begg, Artificial Neural Networks in Finance and

Manufacturing, Idea Group Publishing, 2006.
7. A. Mariciak, J. Korbicz, J. Kus, Wstepne przetwarzanie danych, Sieci Nuronowe

tom 6, Akademicka Oficyna Wydawnicza EXIT 2000.
8. A. Marciniak, J. Korbicz, Neuronowe sieci modularne, Sieci Nuronowe tom 6, Aka-

demicka Oficyna Wydawnicza EXIT 2000.
9. Z. Mikrut, R. Tadeusiewicz, Sieci neuronowe w przetwarzaniu i rozpoznawaniu obra-

zow, Sieci Nuronowe tom 6, Akademicka Oficyna Wydawnicza EXIT 2000.
10. L. Rutkowski, Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe

PWN, warszawa 2006.
11. Juan R. Rabunal, Julian Dorado, Artificial Neural Networks in Real-Life Applica-

tions, Idea Group Publishing 2006.

