
Stochastic Performance Analysis of Distributed Activities

Toqeer Israr, Gregor v. Bochmann

Department of Electrical Engineering and Computer Science
University of Ottawa,

800 King Edward Ave. Ottawa Ontario K1N 6N5 Canada
{tisra051, bochmann}@eecs.uottawa.ca

Abstract. This paper analyzes stochastic performance of a distributed global
activity, composed of sub-activities sequenced serially, probabilistically, or
concurrently. We provide general formulas with which we calculate the per-
formance of a composite activity based on the performance of the constituent
sub-activities and the control structure. To do this, we model each sub-activity
as a Partially Ordered Specification (POS), where each sub-activity is character-
ized by independent input events, dependent output events and the stochastic
minimum delays between these events. This technique allows two or more sub-
activities to be combined hierarchically. Proofs of correctness for these formu-
las are given and a simple example is discussed throughout the paper.

Keywords: software performance, stochastic, modeling, partial order, collabo-
rations, UML Activity Diagrams, distributed services, web services

1 Introduction

Many workflows consist of distributed systems, with multiple communicating
components running on different processors or in different processes. For example, a
login workflow may start with a request from a Web Client that invokes a process in a
Retailer Server, which in turn makes calls to some “third party” Servers – components
involved would be the Client, Retailer Server and the “third party” Servers.

A number of models have been employed during the system design and devel-
opment process of such systems. These modeling paradigms include UML Activity
Diagram [5], UML Activities [5], Use Case Maps, the Process Definition Language,
Business Process Modeling Language, Business Process Execution Language, Web
Services Choreography Description Language, and Petri Nets. Most, if not all, of the
mentioned notations can potentially be decomposed in sub-activities and further sub-
sub-activities. These notations assume a single system component to be allocated to a
basic activity in the decomposition. However, this does not hold true anymore as
even the most basic activity may involve several components. Clearly, there is a need
to model when a component starts and ends its execution in a given workflow.

With the interaction of multiple components in a given workflow (activity), it is
imperative sometimes to be able to calculate the performance of the components i.e.
the delay from the beginning to the end of a component’s participation.

Proceedings of NiM-ALP 2013 24

To satisfy these needs to model activities, Bochmann et al. in [1] and [2] have
proposed a new modeling paradigm based on UML Activities and their orderings
whilst we represented this model in [3] as a partially ordered set of inputs and outputs,
called Partially Ordered Specification.

While the aforementioned paradigms model the activities and analyze the correct-
ness of the required communication protocols in [1] and [2], we analyzed the per-
formance of such activities in [3]. Using partial orders, we introduced a Partially
Ordered Specification (POS) to model the temporal relationships among the sub-
activities within a given activity. Inspired by Performance Evaluation and Review
Technique (PERT), with POS, we calculate the fixed completion time for each com-
ponent (actor) of a global activity based on fixed performance characteristics of the
sub-activities.

In this paper, we extend this work by assuming that delays are distributions, and
analyze the performance of a global scenario based on the stochastic performance
properties of the constituent sub-activities.

We start off by reviewing the composition rules for stochastic distributions in Sec-
tion 2. In Section 3, we discuss the modeling paradigm based on activities as well as
Partial Order Systems. We also describe the rules of strong and weak sequencing as
well as provide performance analysis for fixed delays from [3]. In Section 4, we pro-
pose formulas and provide proofs for calculating the performance of composite activi-
ties with distributions.

2 Composition of Distributions

Graph-based models are common modeling paradigms to represent system behav-
iours as UML Activities. An Activity is comprised of actions (nodes) and sequencing
operators (edges) such as sequence, alternative, concurrency, and loops to define the
relationship between these actions, as illustrated in Fig 1. These activities may have
constant or distribution time delays.

We analyzed in [3] the performance of a global activity, based on fixed time delays
of constituent sub-activities. However, when activity delays are statistically varying
and characterized by a time distribution, the analysis of a graph model can be quiet
challenging. If an event-precedence graph with random activity times is in se-
ries/parallel/alternative in nature, the distribution function of the completion of the
graph can be calculated by combining the distribution functions of the individual
activities using multiplication and convolution [6]. However, the following initial
assumptions are made:

 Parallel activities do not need to have identical distributions.
 Infinite resources are available for the activities and hence there are no re-

source contention issues.
We assume the duration of an activity, Ai, has an associated delay distribution

(probability density function) of fi(x). The cumulative distributive function (CDF) for

the delay of activity Ai is then defined by: Fi(t) = ݂
௧
ିஶ i(x) dx

The function Fi(t), associated with each activity Ai, represents the probability that
that activity Ai finishes by time t. While each sub-activity is assigned a cumulative

Proceedings of NiM-ALP 2013 25

distribution function (CDF) for the completion time of the activity it models, these
sub-activities may be composed to form a composite activity with a resultant CDF for
the completion time of the entire set of considered activities.

We consider activities composed with the following 3 operators: series, alternative
and concurrency. We assume all activities start with a single activity, called an initial
activity. Activities are in series when a single activity succeeds the initial activity
such as shown in Figure 1a. Alternate activities may exist when a single activity may
execute amongst multiple activities such as shown in Figure 1b. Concurrent activi-
ties exist when multiple activities may execute simultaneously succeeding the initial
activity.

Various compositions of these sub-activities A1...An, each activity Ai with inde-
pendent CDF Fi(t) can be abstracted by a global activity G with a CDF, FG(t).

a) series b) alternative c) concurrency

Fig. 1. Various Operators

2.1 Series

If any two sub-activities, Aj and Ak, with CDF of Fj(t) and Fk(t) are combined in series
such as shown in Figure 1a, the CDF of the combined activities is [6]:

 FSUM(t) = Fj(t) ⊗ Fk(t) (1)

where ⊗ represents convolution, defined as:

 Fj(t) ⊗ Fk(t) = F
୲
 k(t – x) dFj(x) (2)

2.2 Alternatives

If there is a probability pi for the execution of activity Ai, such as in Figure 1b, the
model represents a scenario with multiple possible paths. Then the distribution for
the global activity G is [6]:
 FG(t) = ∑

ୀଵ i(t) Fi(t) (3)

2.3 Concurrency

If the sub-activities in the global activity G execute concurrently, such as in Figure
1c, then the following two cases can be considered.

Suppose there is a parallel search for an item in a distributed database, where the
earliest concurrent search to finish, will terminate the overall search. We would be

A1

A2

F1(t)

F2(t)

S0

A1

A2

An

...

p1

p2

pn

Fn(t)

F2(t)

F1(t)

A0

A1

A2

An

...

F1(t)

F2(t)

Fn(t)

Proceedings of NiM-ALP 2013 26

interested in the time it would take for the earliest search to finish. A scenario with
the earliest or “minimum” CDF of a global activity G composed of parallel sub-
activities Ai, can be modeled by [6]: minFG(t)= 1 – ∏ ሺ1 െ

ୀଵ Fi(t)) (4)
Now suppose there are parallel sub-activities, Ai, composing the global activity G

again, but the completion of this global activity G requires all of the sub-activities to
complete. This can be accomplished by calculating the delay of the activity with the
maximum time delay by [6]: maxFG(t)= ∏ F

ୀଵ i(t) (5)
Note: For the activity distributions in (4) and (5), the Fi(t) need not to be the same for
different i.

3 Modeling Distributed Activities

Based on [2], we introduced in [3] a Partially Ordered Specification (POS), which
allows modeling of a UML activity with a partial ordered set of input and output
events, as shown in Figure 2. This modeling paradigm shows the dependencies be-
tween various events and is used in analyzing performance of activities with various
operators.

For a given activity, we suggested
the input and the output of each in-
volved role to be modeled by a starting
and an ending event [3]. These events,
belonging to various components, form
a partially ordered set, where a causal
relationship may exists between some
of these events, shown by arcs “” in
the figure. The ending

Figure 2 – Activity represent as a POS

events are not ordered relative to one another, but each ending event has a depend-
ency on its corresponding starting event (local sequencing). An initiating event, be-
longing to an initiating role (represented by dark circles “●”), is a specialized starting
event in this partially ordered set of events, for which there are no other events in that
set which precedes that event. Similar holds for the terminating events corresponding
to terminating roles.
 Figure 2 illustrates an activity, with input events i1 and i2 and output events o1 and
o2. As i1 and o1 are input and output events of the same role R1, o1 must occur after i1

due to local sequencing. Furthermore, since i1 is the only initiating event, all events in
the activity, including, i2, must occur after i1. Due to the relationship i1 i2 and i2
o2, there is an indirect dependency from i1 to o2, shown by the dashed arrow “-->.”
Terminating events o1 and o2 are not ordered and may occur in parallel.

3.1 General Formulas for Standard Sequencing Operators with Fixed Delays

We introduced Nominal Execution Time Delay (NETD) written as Δix
om, between

input ix and output om, where NETD is the the delay between the time instance of the
occurrence of input event ix and the occurrence of a dependent output event om, pro-
vided all the other events on which om depends have occurred long time ago [3].

R1 R2initiating
event

terminating events

direct
dependency

indirect
dependency

input
event

i1 i2

o1 o2

Proceedings of NiM-ALP 2013 27

Based on NETD, we derived the following general performance formula which can
then be applied to sequencing operators of sub-activities to yield the performance
metrics of a global activity:
 tom = max x (tix + Δix

om) (6)
where tom is the time of the output event om, tix is the time of the input event ix on
which om depends, and Δix

om is the NETD from input event ix to the output event om.
We assumed shared resources are not involved in these activities. Furthermore, we

assumed that there is a dependency, and hence a delay, from each input to each output
of an activity.

An activity may be comprised of sub-activities sequenced with strong or weak se-
quencing, parallel operators, alternatives and interruptions. In this paper, we limit our
scope to strong and weak sequencing.

Strong sequencing, sometimes called global sequencing, between two activities A1
and A2 means that all sub-activities of A1 must be completed before any sub-activity
of A2 may start. In contrast, weak sequencing between A1 and A2 (only) means that
each system component locally applies sequencing to the local sub-activities of A1
and A2, that is, a component may start with sub-activities that belong to A2 as soon as
it has completed all its local sub-activities that are part of A1. Strong sequencing im-
plies weak sequencing, but not inversely. In particular, if a component is not involved
in A1, it may start with sub-activities of A2 even before A1 begins its execution.

A strong sequence is modeled in Figure 3.0 between two sub-activities, A and B,
and as discussed, all the initiating events in activity B may occur, only if all the ter-
minating events of the previous activity, activity A, have occurred. This is repre-
sented by a Final Action event - when all the terminating events have occurred, de-
noted by AOF (Final Output of sub-activity A). The time of all the initiating events
for the next activity, activity B, is the time of the Final Action event of the previous
activity, activity A.

Fig. 2. Strong Sequencing

We also proposed and proved for two sub-activities, sub-activity A with k inputs
and k’ outputs and sub-activity B with h inputs and h’ outputs, that are strongly se-
quenced, with known NETD for each sub-activity (ΔAIx

AOy and ΔBIs
BOm), that the

NETD for the composite activity (ΔAIx
BOm) is given by the formula:

AI1 AIk

AO1 AOk'

AOFs

Strong Sequence POS Equivalent

A

BI1 BIh

BO1

B

BOh'

ΔAIx
AOy

ΔAIx
AOF

ΔBIs
BOm

A

B

Proceedings of NiM-ALP 2013 28

 ΔAIx
BOm = maxy=1..k’(Δ

AIx
AOy) + maxs=1..h(Δ

BIs
BOm) (7)

Fig. 3. Weak Sequencing

Similarly for two activities A and B weakly sequenced which have roles c..c’ com-
mon to both A and B, it was shown that the NETD for the composition is:

 ΔAIx
BOm = maxs=c..c’ (Δ

AIx
AOs + ΔBis

BOm) (8)

4 General Formulas for Standard Sequencing Operators with
Delay Distributions

So far we somewhat summarized the modeling and performance analysis of com-
posite activities as described in [3]. The remainder of this paper is new material. In
the following, we analyze the performance of activities composed of strong and weak
sequences where the NETDs of activities are characterized by time distributions.

4.1 Strong Sequence

Proposition:
If two sub-activities, sub-activity A with k inputs and k’ outputs and sub-activity B
with h inputs and h’ outputs, are strongly sequenced and the NETD for each sub-
activity, ΔAix

AOy and ΔBIs
BOm, are known and characterized by cumulative distributive

functions (CDF) FAix
AOy(t) and FBIs

BOm(t), respectively, then the CDF, FAIx
BOm(t), of

the NETD for the composite activity is:

 FAIx
BOm(t) = ∏ F´

௬ୀଵ
Aix

AOy(t) ⊗ ∏ F
௦ୀଵ

BIs
BOm(t) (9)

Proof:
Figure 2 shows strong sequencing between two activities A and B and its resultant

Weak Sequence POS Equivalent

AIc
AIc’

AOa
AOc

w

A

BIc BIb

BOc

B

BOc'

A

B

AOa’

BIc’

FAIxAOy

FBIgBOm

FAIxBOm

AIa AIa’

AIc’

BOb’

BIb’

BOb

Proceedings of NiM-ALP 2013 29

POS. We assume FAix
AOy(t) and FBIs

BOm(t) are known, either given or measured using
the testing methodology described in [3].

The delay from the Final Action event (AOF) relative to the input event x of A, is
the maximum of all the paths’ delays from event x to event AOF:

 ΔAIx
AOF = maxy=1..k’(Δ

AIx
AOy) (10)

Since the maximum CDF is required of all the delays involved, we use (5) and obtain:

 FAIx
AOF(t) = ∏ Fᇱ

௬ୀଵ
Aix

AOy(t) (11)

The NETD for activity B for an input s to an output m is ΔBIs
BOm. To calculate the

maximum delay to produce the output m, the maximum is taken over all the given
inputs of activity B:

 ΔBIj
BOm = maxs=1..h(Δ

BIs
BOm) (12)

Using (5), this formulas leads to:

 FBIj
BOm(t) = ∏ F

௦ୀଵ
BIs

BOm(t) (13)

The delays for activity A and B are represented by (11) and (13), respectively. Since
activity A and activity B are in sequence, using (1), the total time delay FAIx

BOM is the
convolution of FAIx

AOF(t) and FBIj
BOm(t):

 FAIx
BOM(t)= FAIx

AOF(t) ⊗ FBIj
BOm(t) (14)

 = ∏ Fᇱ
௬ୀଵ

Aix
AOy(t) ⊗ ∏ F

௦ୀଵ
BIs

BOm(t) (15)

4.2 Weak Sequence

Weak sequencing between two activities A and B is illustrated in Figure 3. It is as-
sumed that roles c…c’ are participating in both activities A and B, while roles a…a’
participate only in activity A and not in B and roles b…b’ participate only in activity
B and not in A.

To calculate the NETD between any two events, we assume all the remaining in-
put events have occurred long time ago and any executions precipitated by these input
events would have also completed long time ago as discussed in the testing methodol-
ogy of [3]. Roles a…a’ are involved only in activity A and no dependency exist from
activity B to the output of roles a…a’. Hence, the NETD for roles a…a’ is that of
activity A, FAIx

AOy. Similar is true for activity B.
We are interested in the NETD between the output events of activity B relative to

the input events of activity A, given the NETDs are delay distributions.
Proposition:

If two activities, A and B, are weakly sequenced then the NETD between the out-
put events of activity B relative to the input events of activity A is:

 FAIx
BOm(t) = ∏ ሺ´

௦ୀ FAIx
AOs(t) ⊗ FBis

BOm(t)) (16)
Proof:

The NETD of activity A and B is ΔAIx
AOy and ΔBig

BOm, respectively, which have
the CDFs FAIx

AOy(t) and FBIg
BOm(t), respectively.

Proceedings of NiM-ALP 2013 30

From the right side of Figure 3, it’s evident that the NETD of the composed activ-
ity is the maximum of the NETD of both activities A and B in series with the common
role s, i.e. s being the ending role of activity A and also the starting role of activity B.
 Activity A, with input event x in series with activity B with output event m, is
represented by ΔAIx

BOm with the CDF FAIx
BOm(t). As two activities are in series, equa-

tion (1) can be used to calculate the NETD for a single s:

 Fsingle
AIx

BOm(t) = FAIx
AOs(t) ⊗ FBis

BOm(t) (17)

And to take the maximum over the inputs s=c…c’, we obtain:

 FAIx
BOm(t) = ∏ ሺ´

௦ୀ FAIx
AOs(t) ⊗ FBis

BOm(t)) (18)

5 Conclusion

In this paper, we have considered the delay distributions of composite activities
sequenced with strong and weak sequencing. Similar to analysis done in [4] for fixed
delays, we plan to consider other composition operators such as parallel, alternatives,
loops, etc for delay distributions. We have implemented a tool that takes as input an
Activity Diagram including sub-activities with defined performance characteristics
and provides as output the NETDs of the global collaboration for fixed delays. We
plan on extending this tool to support delay distributions.

We believe that this approach to performance modeling of distributed systems is
useful in many fields of application, including distributed work flow management
systems, service composition for communication services, e-commerce applications,
and Web Services.

References
1. Bochmann, G.V. Deriving component designs from global requirements, in: Proceedings

on International Workshop on Model Based Architecting and Construction of Embedded
Systems (ACES), Toulouse, 2008, pp 55-69

2. Castejón, H.N, Bræk, R., and Bochmann, G. v., “Realizability of Activity-based Service
Specifications”. Journal of Software and Systems Modeling(to be published), 2011

3. Israr, Bochmann, Performance Modeling of Distributed Activity Services, Proceedings of
the 2nd ACM/SPEC International Conference on Performance Engineering, Karlsruhe,
Germany, 2011, pp 475-480

4. Israr, Bochmann, Performance Modeling of Distributed Collaboration Services with Inde-
pendent Inputs/Outputs, Proceedings of 5th International Workshop on Non-functional
Properties in Modeling: Analysis, Languages, Processes, Miami, USA, 2013

5. OMG, Unified Modeling Language (UML), Version 2.1.1, February 2007
6. R.A. Sahner and K.S. Trivedi, Performance and reliability analysis using directed acyclic

graphs. IEEE Trans. Software Eng., (1987), pp. 1105–1114.

Proceedings of NiM-ALP 2013 31

