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Abstract. Percutaneous transluminal coronary angioplasty (PTCA) re-
quires both pre-interventional cine-angiograms showing the contrasted
vessel tree over several heart cycles, and live X-ray monitoring (flu-
oroscopy) during the catheterization. Navigation during the interven-
tion can be facilitated by fusing the automatically synchronized cine-
angiogram with the interventional images, e.g. by overlaying the syn-
chronized angiogram over the interventional images. Clearly, this fusion
should be limited to those frames of the angiogram which show the full
contrasted vessel tree. Conversely, if contrast agent appears in the fluo-
roscopy images, overlay is not required and should be switched off. To
these ends, we describe approaches for the detection and processing of
contrast agent injections in cardiac X-ray image sequences.

1 Introduction

Treatment of coronary heart disease needs both pre-interventional and inter-
ventional X-ray images. In the pre-interventional coronary angiograms, a radio-
opaque contrast agent injected into the coronaries serves to make the respective
part of the arterial tree visible. The angiograms is recorded and used for di-
agnosis of, e.g., stenoses, and as roadmap for the subsequent catheterization
procedure. During the intervention, a catheter or a guide-wire is advanced un-
der X-ray monitoring (fluoroscopy) through the vessels to the lesion. During this
procedure, contrast may only be given in occasional bursts. To help navigation,
a single frame showing the entire vessel tree filled with contrast agent is selected
manually from the pre-interventional angiogram and displayed as roadmap on a
screen next to the interventional fluoroscopy images. This static roadmap image
is, however, generally not consistent with the instantaneous heart and respiration
movements in the fluoroscopy images.

To improve guidance during catheter placement, we developed methods to
overlay motion compensated roadmap information from the angiogram onto the
fluoroscopic images [1] (cf. also [2]). This fusion of pre-interventional and in-
terventional data should be restricted to those frames of the pre-interventional
coronary angiogram in which the complete vessel tree is filled by contrast agent



(“filled state”, [3]). Furthermore, the selected and geometrically pre-processed
roadmap has to be enhanced to allow the simultaneously overlaid display of
roadmap and fluoroscopy image on one screen. When a burst of contrast agent
appears in the interventional images, the overlay should be switched off since
the vessels are then visible in the interventional data.

In [3], we have described two-step algorithms to identify and separate the
“filled state”-frames in angiograms from the inflow and washout phases of the
contrast agent. In the first step, contrasted vessels are enhanced and background
is equalized. From the resulting vessel maps, a histogram-based feature is calcu-
lated. Analysis of the behavior of this feature over frame index (i.e. time) yields
the “filled-state”-frames.

In this paper, we focus on the detection of contrast agent in fluoroscopy
images. Unlike for pre-interventional angiograms which can be processed off-line,
interventional image analysis requires a strictly causal processing. Furthermore,
fluoroscopy images are acquired with less dose than angiograms, and therefore
exhibit a lower signal-to-quantum noise ratio [4].

As for angiograms, we first compute a vessel feature map such that its his-
togram can be assumed to consist of two distributions, one from background and
one from potentially occurring contrasted vessels. To make these distributions
as disparate as possible, we seek to equalize non-vessel background information,
thus reducing its standard deviation. The additional absorption of contrasted
vessels is then transformed such that its mean is considerably larger than the
background mean. Since we seek to detect the presence of contrast agent from
the vessel map histograms rather than accurate segmentation or enhancement
geared towards the human observer, issues like border accuracy and preservation
of a certain “harmony” in the processed images are of less concern [5,6,7].

Since enhanced contrasted vessels show up with high intensities in the vessel
maps, we analyse their histograms and use the 98-percentile as a measure of
presence of contrast agent. In the beginning, our algorithm first learns how the
98 percentile behaves when no contrast agent is given (null hypothesis). It then
sets a threshold for the percentile via a significance test [8]. If the 98 percentile
obtained for frames after the learning phase is larger than the threshold, they
are classified as containing contrast agent.

2 Feature Extraction

2.1 Vessel Enhancement

In order to equalize (or “flatten”) background, the interventional frame is tophat-
filtered [9,10]. A tophat-filter first removes vessels — which always absorb stron-
ger than their immediate neighbourhood [5] — by a local sliding maximum
filter followed by a local minimum. The result is subtracted from the original,
yielding predominantly vessel information. The size of the sliding window is
chosen such that it slightly exceeds the diameter of the largest vessel sought to
be preserved. Optionally, vessel motion may be used for further enhancement:



Fig. 1. Original interventional frame (a), showing partly contrasted vessels, a catheter,
a guide wire and sewing wires, and its vessel map (b).
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In the pixel-wise differences between the current tophat-filtered image and its
tophat-filtered predecessor, clipping the positive values and adding the result
to the current tophat-filtered image tends to increase the contrast for locally
dark, moving structures, i.e. vessels. A subsequent gradient-magnitude operation
applied to the tophat-filtered images responds to the slopes at vessel borders.
This operator is additively complemented by a second-derivative filter in the
form of a difference-of-Gaussians (DoG), which responds to the middle of the
vessels. Finally, to compensate the blurring of vessel boundaries introduced by
the finite-sized derivative operators, we then multiply the vessel-filtration result
with the grey-level inverted tophat-filtered image in which the boundaries are
better preserved. A result is shown in Fig. 1.

2.2 Histogram Based Feature and Feature Curve

We seek a feature related to the surface covered by contrasting vessels, which is
robust with respect to noise as well as to other ever-present, vessel-like structures
like sewing wires. While ideally one would analyse the maximum grey level, the
98-percentile of the histogram is such a robust feature. The evolution of this ves-
sel surface-linked feature over frame index generates a feature curve (Fig. 3(a)),
where the frames with contrast agent can already visually be easily identified.
Since we must decide on the presence of contrast agent based on past frames
only, we apply a causal recursive first-order low-pass filter to this curve. The
filtered curve is shown in Fig. 3(b). The difference equation characterizing this
filter is:

y(n) = ax(n) + (1 —a)y(n — 1) (1)
O<a<life(n)—xn—-1) <dog(x
where: {a:l else( ) ( )< ()

where oo(#) is the standard deviation estimated for the null hypothesis from
the first frames of the sequence. The filter thus smoothes within stationary time
intervals, but preserves what it assumes to be a transition.



Fig. 2. Initial feature curve a) and feature curve after filtration b). Also the segmen-
tation results are shown. Detected contrast burst frames are marked with stars.

0 50 100 150 200 250 0 50 100 150 200 250

3 Feature Curve Segmentation

From the learning phase, over the first contrast agent-less seconds of the inter-
vention, we can describe the distribution p(y(n)|Hp) of the unfiltered or filtered
feature y(n) given the null hypothesis Hg by a Gaussian with estimated mean
and variance 03. As Fig. 2 illustrates, detection of frames with contrast agent is
possible by thresholding the feature curve. Ideally, finding the optimal threshold
requires feature distributions for both null hypothesis and opposite hypothesis
Hj. Practically, we can only estimate the parameters for Hg, and therefore set
the threshold by a significance test. The threshold T is determined such that
the probability of y(n) exceeding T given Hy is «, which is the so-called sig-
nificance level, which is equivalent to the false positive rate. T' is thus given by
inverting Pr(y(n) > T|Ho) = « based on p(y(n)|Ho). Whenever the (filtered)
98-percentile y(n) exceeds this threshold, the corresponding frame is classified
as containing contrast agent.

4 Results

We have processed a total of six sequences recorded during catheter interven-
tions. All sequences have been processed with the same parameter set both for
the computation of the vessel map (cf. [3]) and for the significance test. The
parameters o and o2 are estimated from the first 70 interventional images. The
significance level was determined empirically, and set to o = 10~* for the re-
cursively filtered percentile feature. Fig. 2 and Fig. 3 show the segmentation
results for two of the sequences in our data base. It may be observed that the
segmentation results improve once the IIR low-pass filter is applied.

5 Discussion

As a complement to an earlier algorithm to identify contrasted frames in an-
giograms [3], we have described methods for the identification of cardiac fluo-



Fig. 3. Segmentation results on the initial a) and filtered b) feature curve for a sequence
in our data base. Detected contrast burst frames are marked with stars.
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roscopy images showing contrast agent bursts. In a first step, vessel information
is enhanced and non-vessel background flattened. A histogram-based feature is
then derived, which is thresholded. The threshold is set by a significance test.
Initial tests on routine clinical data gave satisfactory results, even in the presence

of other vessel-like structures, like sewing wires. Further tests on a demonstrator
in a clinical environment are envisaged [11].

References

1.

2.

3.

10.

11.

B.Martin-Leung, K.Eck, [.Stuke, et al.: Mutual information based respiration de-
tection. Proc. CARS:1085-1092, 2003.

D.W.Ro, L.Axel, G.T.Herman, et al.: Computed masks in coronary subtraction
imaging. [EEE Trans Med Imaging, 6(4):297-300, 1987.

T.Aach, A.Condurache, K.Eck, et al.: Statistical-model based identification of com-
plete vessel-tree frames in coronary angiograms. to appear in Electronic Imaging,

5299, 2004.

. T.Aach, U.Schiebel, G.Spekowius: Digital image acquisition and processing in med-

ical x-ray imaging. J Electronic Imaging, 8:7-22, 1999.

T.Aach, C.Mayntz, P.Rongen, et al.: Spatiotemporal multiscale vessel enhancement
for coronary angiograms. Med Imaging 4684:1010-1021, 2002.

Z.Chen, S.Molloi: Multiresolution vessel tracking in angiographic images. Comp
Med Imaging and Graph, 26:419-428, 2002.

A.F.Frangi, W.J.Niessen, K.L.Vincken, et al.: Multiscale vessel enhancement fil-
tering. Med Image Comput and Comp-Assisted Interv, 1496:130-137, 1998.
A.Papoulis: Probability & Statistics. Prentice-Hall International, Englewood Cliffs,
1990.

E.R.Dougherty: Math Morphology in Image Processing. Marcel Dekker, New York,
1992.

M.Pakura, O.Schmitt, T.Aach: Segmentation and analysis of nerve fibers in histo-
logic sections of the cerebral human cortex. 5th IEEE Southwest Symp on Image
Analysis and Interp:62-66, 2002.

J.Bredno, B.Martin-Leung, K.Eck: Software architecture for live enhancement of
medical images. to appear in Electronic Imaging 5297, 2004.



