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Abstract. We introduce a new approach for 3D segmentation of arter-
ies. The approach is based on a cylindrical parametric intensity model,
which is directly fit to the image intensities through an incremental pro-
cess based on a Kalman filter. The new model has been successfully
applied to segment arteries from 3D MRA image data. In addition, we
developed a model which describes a stenosis in an artery. The applica-
bility has been demonstrated using images of a human leg.

1 Introduction

Heart and vascular diseases are one of the main causes for the death of women
and men in modern society. In Germany, for example, about 45% of all cases of
death in 2001 were related to these diseases. An abnormal narrowing of arteries
(stenosis) caused by atherosclerosis is one of the main reasons for these diseases
as the essential blood flow is hindered. Especially, the blocking of a coronary
artery can lead to a heart attack. Moreover, a stenosis in arteries of other organs
or limbs can also have severe consequences. In clinical practice, images of the
human vascular system are acquired using different imaging modalities, for ex-
ample, ultrasound, magnetic resonance angiography (MRA), X-ray angiography,
or ultra-fast CT. Segmentation and quantification of arteries (e.g., estimation of
the diameter) from these images is crucial for diagnosis, treatment, and surgical
planning.

The segmentation of arteries from 3D medical images, however, is difficult
and challenging. The main reasons are: 1) the thickness (diameter) of arteries
depends on the type of artery (e.g., relatively small for coronary arteries and large
for the aorta), 2) the thickness typically varies along the artery, 3) the images are
noisy and partially the boundaries between the arteries and surrounding tissues
are difficult to recognize, and 4) in comparison to planar structures depicted in
2D images, the segmentation of curved 3D structures from 3D images is much
more difficult. Previous work on the segmentation of vessels from 3D image data
can be divided into two main approaches, one based on differential measures
(e.g., [1,2]) and the other based on deformable models (e.g., [3,4,5]). The main



86

Fig. 1. Intensity plot of a 2D slice (19 x 19 pixels) of the artery iliaca communis in a
3D MRA image (left) and fitting result of the cylindrical model (right).
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disadvantage of differential measures is that only local image information is taken
into account, and therefore these approaches are relatively sensitive to noise.
On the other hand, approaches based on deformable models generally exploit
contour information of the anatomical structures, often sections through vessel
structures, i.e. circles or ellipses. While these approaches include more global
information in comparison to differential approaches, only 2D or 3D contours
are taken into account. In [6] we described an approach for the segmentation
of coronary arteries based on a parametric model (Gaussian line model). The
model assumes a Gaussian shaped intensity function along the cross-section of
an artery. For thin arteries (diameter below ca. 4 voxels) this model works very
well. However, for arteries of medium size (diameter of ca. 4 to 8 voxels) this
model needs a calibration in order to estimate the diameter of the vessel. For
larger arteries (diameter above ca. 8 voxels) this model is not suitable.

We have developed a new 3D parametric intensity model for the segmentation
of arteries from 3D image data. This analytic model is based on a cylindrical
structure of variable diameter and directly describes the image intensities of
arteries and the surrounding tissue. In comparison to previous contour-based
deformable models much more image information is taken into account which
improves the robustness and accuracy of the segmentation result. In comparison
to our previously proposed Gaussian shaped model, the new model represents a
Gaussian smoothed cylinder and yields superior results for arteries of medium
and large size. In addition, a calibration of the model is not necessary. The new
model has been successfully applied to segment arteries from 3D MRA image
data. Moreover, as an extension we developed a model which describes a stenosis
where the artery is blocked for a variable length. The applicability of this model
has been demonstrated using images of a human leg.

2 Parametric Intensity Models for Tubular Structures

The intensities of an artery segment and its neighborhood can be well modeled
by a Gaussian smoothed 3D cylinder, specified by the radius R (thickness) of the
artery segment, the intensity levels ag (surrounding tissue) and ay (artery), and
Gaussian smoothing . Unfortunately, the exact solution of a Gaussian smoothed
cylinder cannot be expressed analytically and thus is computationally expensive.
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Based on [7], we have developed an accurate approximation which involves the

Gaussian error function & (z) = f_xoo (271')_1/2 e=€°/2d¢ and can be written as
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and x = (2, v, z)T. This approximation models the plateau-like intensity profile
of medium and large arteries very well (see Fig. 1), which is not possible with a
Gaussian function. In addition, we include a 3D rigid transform R with rotation
parameters o = (a,ﬁ,'y)T and translation parameters t = (a:o,yo,zo)T. This
results in the parametric intensity model with a total of 10 parameters p:

IM,Cylinder (Xa p) = gcCylinder (R (Xa «, t) 9 Ra ao, dq, 0-) (3)

Our new intensity model for a stenosis is an approximation of a Gaussian
smoothed cylinder which is interrupted for a certain length d, where the slope
of the transition is controlled by o,. The sizes of the semi-axes of the elliptical
cross-section are specified by the parameters o, and o,. The model is based on
the Gaussian function and the Gaussian error function and can be written as

R L _d L d
gStenosis (X) = ag + (Cll — ao) e 207 203 4] - 2 + P ~ 2 (4)

In addition, we include a 3D rigid transform. The translation parameters define
the position of the center of a stenosis in the 3D image.

3 Incremental Artery Segmentation

To segment an artery we utilize an incremental process which starts from a given
point of the artery and proceeds along the artery. In each increment, the param-
eters of the cylinder segment are determined by fitting the cylindrical model to
the image intensities g(x) within a region-of-interest (ROI), thus minimizing

ZXEROI (931 (x,p) — g ()’ (5)

by applying the Levenberg-Marquardt optimization method. The length of the
segment is defined by the ROI size which typically is 9-19 voxels. Initial param-
eters for the fitting process are determined from the estimated parameters of
the previous segment using a linear Kalman filter, thus the incremental scheme
continuously adjusts for varying thickness and changing direction. Since we use
a Kalman filter, the incremental scheme is highly robust.

4 Experimental Results

We have applied our new cylindrical model using 3D synthetic as well as 3D
MRA image data.



88

Fig. 2. The differences of the estimated radius (mean, minimum, and maximum for ca.
55 segments) and the true radius of a synthetic cylinder are shown for different radii
for the uncalibrated (left) and calibrated Gaussian line model (center), and for the new
cylindrical model (right). Note, the missing values in the left and center diagram are
far outside of the shown range.
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3D Synthetic Data In total 432 synthetic 3D images of straight and curved
tubular structures have been generated by using the cylindrical model itself as
well as Gaussian smoothed discrete cylinders and tori (with different parameter
settings, i.e. radil of R = 1,...,9 voxels, smoothing values of o = 0.5;1;1.5;2
voxels, and a contrast of 100 grey levels) with added Gaussian noise (o, =
153; 5; 10 grey levels). From the experiments we found that the approach is quite
robust against noise and produces significantly more accurate results in compar-
ison to the previous Gaussian line model for all experiments except for relatively
thin radii of less than 3 voxels. For example, the maximal error of the estimated
radius of a straight tubular structure (smoothed discrete cylinder) for a radius
of 3 voxels turned out to be 0.30 voxels and for a radius of 9 voxels only 0.09
voxels. In contrast, the previous Gaussian line model yields for a radius of 3
voxels a maximal error of ca. 1.5 voxels (0.80 voxels calibrated) and for a radius
of 9 voxels more than 6 voxels (with and without calibration). Fig. 2 shows the
result for the estimated radius of the smoothed discrete cylinder for a noise level
of ¢, = 10 and a smoothing value of ¢ = 1. It can be seen that the cylindrical
model is superior for all radii larger or equal than 3 voxels.

The new stenosis model has been applied to about 500 3D images generated
by the model itself with added Gaussian noise. The experiments verify that the
model is robust against noise and the choice of initial parameters.

3D Medical Images With our approach both position and shape information
(diameter) are estimated from the 3D image data. Fig. 3 shows segmentation
results of applying the new cylindrical model and the stenosis model to 3D
MRA images of the human pelvis and leg. It can be seen that the cylindrical
model successfully segments arteries of different sizes and high curvatures. The
successful application of the stenosis model to a real stenosis demonstrates the
applicability of this new model.

5 Discussion

The new 3D cylindrical intensity model yields robust and accurate segmentation
results comprising both position and thickness information. In combination with
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Fig. 3. Segmentation results of applying the cylindrical model (left image and left
artery in center image) and the Gaussian line model (smaller arteries in center image)
to arteries of the pelvis. In addition, the fitting result of the stenosis model for a stenosis
in an artery of a leg is shown (note, only a part of the artery close to the stenosis is
segmented). For visualization we used 3D Slicer [8].

the previously proposed Gaussian line model, we are now able to accurately
segment 3D arteries of a large spectrum of sizes, i.e. from very thin coronary
arteries (e.g., a diameter of only 2 voxels [6]) up to very large arteries (e.g., a
diameter of 26 voxels). The new stenosis model is a first step to provide additional
information about abnormalities to the physician.
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