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Abstract. We introduce a new approach for the automatic selection of
an optimal 3D ROI size for effective fitting of a deformable model for the
purpose of landmark localization. In addition, we propose an algorithm
to initialize the parameters of our previously introduced 3D ellipsoidal
intensity model. The newly developed approaches have been successfully
applied to 3D synthetic data as well as 3D MR images.

1 Introduction

Landmarks are important image features for the registration of 3D medical im-
ages. There exist two main approaches for the automated localization of 3D
anatomical point landmarks: one based on 3D differential operators (e.g., [1,2])
and the other based on deformable models (e.g., [3]). While being computation-
ally efficient, differential operators are relatively sensitive to noise, which leads
to false detections and also affects the localization accuracy. On the other hand,
approaches based on deformable models generally exploit contour information of
the anatomical structures. In [3], we described an approach based on parametric
intensity models. We considered tip-like anatomical structures and introduced
an ellipsoidal intensity model for landmark localization.

Model-based approaches for landmark localization need to choose a suitable
size of the region-of-interest (ROT). The ROI should be large enough to capture
enough image information to guarantee a successful localization of the landmark.
On the other hand, if the ROl is too large it might contain neighboring structures
which negatively influence the accuracy. In addition, for the fitting process we
also need starting values for the model parameters. An improper initialization
can lead to inaccurate localizations or false fitting results. Often, the ROI size
as well as the model parameters are initialized manually. Work on automatic 3D
ROI size selection can hardly be found. In [4], an approach is presented based
on the statistical uncertainty of a differential edge intersection approach. This
approach has been designed for ideally sharp tip-like landmarks, which is an
improper approximation of tip-like structures which are typically rounded.
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Fig. 1. Sketch of a (half-) ellipse with several image gradients and the resulting dom-
inant gradient direction highlighted (left) as well as with a neighboring structure
(hatched ellipse) and two different ROIs (center). The right sketch shows the surface
normal, the principal directions, and the principal curvatures at the tip of an ellipsoid.
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We have developed a new approach for the selection of an optimal 3D ROl size
for effective fitting of a deformable model. We exploit the dominant direction of
the image gradient in the neighborhood of the landmark position. In comparison
to the statistical uncertainty approach [4], the new approach 1) can cope with
rounded tip-like structures of ellipsoidal shape, 2) detects more effectively and
accurately the optimal ROI size in the presence of typical neighboring structures
(e.g., sulci close to the tips of the ventricular system), 3) is more robust against
image noise as well as variations of the initial position, and 4) is much simpler
and computationally less expensive. In addition, we developed an algorithm to
initialize the parameters of our 3D ellipsoidal intensity model [3].

2 ROI Size Selection

To select an optimal ROI size we determine the dominant gradient d, of a spheri-
cal 3D ROI of radius r. The dominant gradient is obtained by computing the sum
of the image gradients at all voxels within the ROI, i.e. d, = >, cror Vg (%) -
The main contribution to d, typically results from the boundary of the anatom-
ical structure itself and potential neighboring structures whereas homogenous
regions have only a small influence. For an isolated rounded tip-like structure
similar to a (half-) ellipsoid, summing up the image gradients results in a dom-
inant gradient pointing along the center line of the ellipsoid (see Fig. 1). The
reason is that the components of the image gradients pointing perpendicular to
the center line compensate each other over the boundary of the ellipsoid, while
only the components pointing along the center line contribute to the dominant
gradient. When a neighboring structure is additionally captured within the ROI,
then the direction of the dominant gradient is generally changed. In our approach
we exploit this observation. In order to select an optimal ROI size, we compare
for increasing radii r the direction of the dominant gradient d,_; of a spherical
ROI with the direction of the dominant gradient of an adjacent spherical shell
(thickness of 1 voxel). The dominant gradient of the spherical shell is given by
d, — d,_;. As a measure for the change of the direction, we compute the angle
4, between both dominant gradients d,_; and d, — d,_1, which is given by

dr—l dr - dr—l
4, = arccos << , >> (1)
lldr—l" [[dr — dpa|
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Table 1. Results of estimating the optimal ROI size in synthetic images for the statis-
tical uncertainty approach and the new approach for different neighboring structures.
The proportions of correct estimates within 1 and 2 voxels accuracy are given.

Distances: Accuracy|Sphere Ellipsoid | Average
5-14 voxel [voxel] 0° 45°  90°

Statistical uncertainty +1| 25.5%(15.8% 1.6% 0.1%| 10.8%
approach +2| 48.6%(16.0% 5.3% 17.9%| 22.0%
Dominant gradient +1| 84.7%(83.1% 84.2% 86.3%| 84.6%
approach +2| 96.3%(91.7% 95.1% 97.8%| 95.2%

where (-, -} denotes the inner product. The optimal ROI size is determined by
the largest ROI before a significant change of 4, occurs. A significant change is
detected when 6, exceeds a threshold T' (in our case we chose T = 22.5°) or
when ¢, has maximal increase before a local maximum of T'/2 < §pae < T

3 Parameter Initialization of the Ellipsoidal Model

For the automatic initialization of the 16 parameters of our ellipsoidal intensity
model (3D position and orientation, semi-axes, intensity levels, image smooth-
ing, tapering, and bending), we propose the following strategy. For a given coarse
position of the landmark, first the optimal ROI size is determined automatically
(see Sect. 2). Within this ROI for landmark detection, the 3D differential oper-
ator Op4d = detC, is applied [2], where C, is the averaged dyadic product of the
image gradient. To refine this position we apply the three-step procedure in [5],
which results in a sub-voxel position. The position closest to the coarse position
with a positive Gaussian curvature (for an isointensity surface) is used as the
initial position of the model.

In addition, the image gradient and the principal curvatures 1 and &, of the
local isointensity surface at this point (see Fig. 1) are computed to determine the
initial orientation as well as the size of the three semi-axes (ry, ry, ;). Here, we
face the problem that we have three semi-axes but only two relations between
the curvatures and the semi-axes: k1 = rz/rg and ko = rz/rz. In our case we
initialize 7, with the radius of the ROI (note, the tip of the ellipsoid w.r.t. r,
is the landmark position). The initial values for the intensity levels of the sur-
rounding tissue and the anatomical structure are determined using the minimal
and maximal intensities of the ROT (after median filtering). The initial value for
the smoothing parameter is always set to 1 and the remaining model parameters
for the global deformations are always set to zero, thus the ellipsoidal model is
always initialized as an (undeformed) ellipsoid.

4 Experimental Results: ROI Size Selection

Our approach for selecting an optimal ROI size (Sect. 2) has been applied to 3D
synthetic data as well as to 3D MR images of the human head. We generated in
total 5600 different 3D synthetic images. Each image contains a tip-like struc-
ture of varying orientation and size (generated by our ellipsoidal model) and a



336

neighboring structure in a varying distance and orientation (either a smoothed
thin ellipsoid or sphere) as well as added Gaussian noise (o, = 3 grey levels). We
simulated neighboring structures at distances between 5 and 14 voxels and, in
case of the thin ellipsoid, at different angles of 0°, 45°, and 90°. The contrast for
both the ellipsoid and the neighboring structure was 100 grey levels. Since the
distances are between b and 14 voxels, the optimal ROI radii are also between
5 and 14 voxels. From the experiments we found that the new approach is quite
robust against noise and successfully estimates the optimal ROI size: for ca. 85%
of the images, the correct ROI size has been detected within 1 voxel accuracy.
For a comparison we also applied the statistical uncertainty approach [4], which
yielded only ca. 11% (see Table 1). We also applied our approach to real 3D MR
images of the human head (see Sect. 5) and obtained quite good results.

5 Experimental Results: Parameter Initialization

Our approach for automatic parameter initialization of the ellipsoidal intensity
model has been applied to 3D synthetic data as well as to two 3D MR images
of the human head. In the synthetic experiments we applied model fitting using
automatic parameter initialization (including the selection of the ROI size) given
3D image data generated by the model itself with added Gaussian noise. For 1000
experiments with different parameter settings but without global deformations,
model fitting succeeded in 99.5% of the cases with an average localization error
of 0.12 voxels. In comparison, the 3D differential operator Op4 in conjunction
with the three-step refinement yielded an average error of 1.65 voxels. For 1000
similar experiments including global deformations, automatic initialization with
subsequent model fitting succeeded in 99.2% of the cases with an average local-
ization error of 0.33 voxels. In comparison, the refined 3D differential operator
Op4 yielded 1.64 voxels.

In addition, we applied our approach to two 3D MR images (data sets C06
and Woho). Table 2 shows the fitting results for the tips of six ventricular horns
(left and right frontal, occipital, and temporal horns). Note, model fitting was
not successful for the right frontal and the left temporal horn in the C06 data set
(because of a relatively poor estimate of the initial orientation and position) and
for both occipital horns in the Woho data set (the reason is a rather untypical
anatomical structure). For the remaining 8 landmarks it turned out that the au-
tomatic initialization is quite reliable and allows quite good fitting results. The
average distance between the estimated landmark positions and ground truth
positions computes to € = 1.63mm. In comparison, using the refined 3D differ-
ential operator Op4, we obtain an average distance of €op4, refine = 2.33mm.
Fitting results are visualized in Fig. 2 using 3D Slicer (SPL, Boston).

6 Discussion

The experiments verify the applicability of our new approach, which estimates
an optimal ROI size such that neighboring structures are not captured. In com-
bination with the initialization of the parameters of our ellipsoidal model this
allows a fully automated localization of landmarks.
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Table 2. Fitting results for the ventricular horns in two 3D MR images (C06 and
Woho). The selected radius r of the ROI, the estimated landmark position, intensity
levels, and the distance e to the ground truth position are given. For comparison, the
distance of the refined differential operator Op4 to the ground truth position is listed.

xo Yo 20 ao ai €|€0p4, refine

Left frontal horn
Left occipital horn
Right occipital horn
Right temporal horn

149.44 7858 70.16 92.6 19.6 1.52mm| 2.97Tmm
144.30 200.79 52.53 84.6 156 0.65mm| 3.21mm
107.33 19592 57.00 87.3 19.8 1.23mm| 1.73mm

98.79 112.15 40.59 79.7 20.2 0.84mm| 1.83mm

Left frontal horn
Right frontal horn
Left temporal horn
Right temporal horn

111.27  78.22 101.83 126.3 21.8 2.25mm| 1.98mm
111.50 7545 131.20 126.3 23.8 2.6lmm| 1.93mm
136.45 111.59 89.59 115.1 18.2 2.18mm| 1.25mm
130.48 113.52 147.38 110.8 26.1 1.76mm| 3.74mm

(o> e>RNoRNe o] LN B e> B er RN I |

Mean 1.63mm 2.33mm

Fig. 2. Fitted ellipsoidal model for the left and right frontal ventricular horn within
the MR image Woho (left) and the left (center) and right occipital horn (right) within
the MR image C06. The marked axes indicate the estimated landmark positions.
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