
GFMed: Question Answering over BioMedical

Linked Data with Grammatical Framework

Anca Mărginean

Technical University of Cluj Napoca, 401446 Cluj-Napoca, Romania,
anca.marginean@cs.utcluj.ro

Abstract. This paper reports on the participation of the system GF-
Med in QALD-4 question answering challenge for Biomedical interlinked
data. GFMed introduces grammars for a controlled natural language tar-
geted towards biomedical information and the corresponding controlled
SPARQL language. The grammars are described in Grammatical Frame-
work and introduce linguistic and SPARQL phrases mostly about drugs,
diseases and relationships between them.

1 Introduction

Linked Data means using the Web to connect related data. A large number of
data from various domains such as government data, medicine, education, life
sciences, literature, art and others were made available in the context of the
Linked Open Data (LOD) initiative built around DBpedia.

One of the greatest challenges of this new big set of data is querying it. In
order to fill the gap between end users and formal languages like SPARQL more
approaches emerged: querying in full natural language [8], in Controlled Natural
Languages [4], or incremental query building [9].

The medical domain excels in the quantity of existing data, and lately, there
is a large interest in making biomedical data available in RDF format (Bio2RDF
project [2]). Task 2, Biomedical question answering over linked data, of the Ques-
tion Answering over Linked Data (QALD-4) lab, proposes querying of the fol-
lowing three biomedical datasets: DrugBank, Diseasome and SIDER. DrugBank
is part of the project Bio2RDF, while the other two are not. DrugBank gives
drug (chemical, pharmacological and pharmaceutical) data with comprehensive
drug target (sequence, structure, and pathway) information. Diseasome provides
information about human disease-gene network, while SIDER relates drugs to
their adverse reactions. The Linked Data version of Diseasome publishes a net-
work of 4300 disorders and disease genes, as well as possible drugs for diseases.
SIDER includes 4192 side effects, 996 drugs and 99423 drug/side-effect pairs.

The objective of Task2 of QALD-4 is to search solutions for querying these
three datasets considering also their integration. The key challenge, as stated
by the organizers, is to translate the users’ information needs into a form such
that they can be evaluated using standard Semantic Web query processing and
inferencing techniques. The current system proposes a natural language query

1224



Abstract Biomedical

Concrete English Grammar Concrete SPARQL Grammar

English Syntax English Lexicon SPARQL Lexicon SPARQL Syntax

SIDER Diseasome DrugBank

SPARQL ResourcesGF English lib

Fig. 1. Main GFMed grammars and used resources

approach based on translation from a controlled natural language to SPARQL.
The translation relies on grammars defined in Grammatical Framework [7]. Our
main objective was to test the semantic coverage of our application domain
grammar against the questions proposed in Task 2 of QALD-4.

2 System Overview

Grammatical Framework (GF) is a special-purpose programming language for
writing grammars based on a typed functional programming language. GF gram-
mars are divided into abstract and concrete grammars. An abstract grammar de-
fines categories and functions. Each category stands for a set of trees. Functions
produce trees of certain categories. The linearization types and functions are de-
fined in concrete grammars. For each category, a linearization type is needed and
each function requests a linearization function. Based on the abstract grammar
and the concrete grammars for each language, GF is able to translate a phrase
from one language to another by parsing it first into an abstract tree and then
linearizing it by means of the concrete grammars.

Description Logics (DLs) [1] are a family of knowledge representation lan-
guages that can be used to represent the knowledge of an application domain
in a structured and formally well-understood way. In the description logic ALC,
concepts are built using the set of constructors formed by negation, conjunction,
disjunction, value restriction, and existential restriction. Extensions of ALC in-
troduce inverse roles, number restrictions (N ,Q) and concrete domains(O). Even
though the three targeted datasets are not all providing for DLs descriptions or
ontologies, approaching them from a DLs perspective indicates ways to efficiently
split possible questions in semantic parts that have straightforward translations
to SPARQL and are highly composable.

GFMed consists mainly of a GF grammar for the application domain given
by SIDER, Diseasome and DrugBank datasets. GFMed also includes some mi-
nor preprocessing of questions and postprocessing of translation results, mainly
in order to deal with structures involving numeric values, e.g. values for water
solubility, or free text, like different names of foods. Figure 1 shows the main
grammars: an abstract grammar and two concrete grammars. For each concrete

1225



Table 1. Main categories of GFMed grammars

Category English Examples and Short Explanation
Category

X NP X ∈ {Drug, TargetConcept, Gene, Disease,
SideEffect, SiderDrug}

DrugBank-
Property

CN MeltingPoint, GeneralFunction, DosageForm, Predict-
edWaterSolubility, Manufacturers, Indication, Target,
Interacting, FoodInteraction,...

Sider-
Property

CN SideEffect

Diseasome-
Property

CN AssociatedGene, PossibleDrug, ClassDegree, Degree,
Class, Size, SubtypeOf, ChromosomalLocation

Property CN any kind of property from the above three

XClass NP classes formed of a single named X entity: Lepirudin,
or from drugs described by a criterion: drugs that target

Prothrombin

DrugClass, TargetClass, SideEffectClass, SiderDrug-
Class, DiseaseClass, GeneClass, PropertyClass

Criterion-
ForXClassY

criteria for getting a class of X, expressed by an Y syn-
tactic structure

NP Lepirudin as possible drug

Adv with Lepirudin as possible drug

AP treated with Lepirudin, indicated for Fever

VP treat Tuberculosis

RCl whose possible drug is Lepirudin, whose possible drugs

interact with Lepirudin

ClSlash Lepirudin is used for

Question QS which drugs interact with food

Utterance Utt utterances from affirmative clauses List the drugs that...

or from question clauses What are the drugs that ...

grammar, lexicons derived from SIDER, Diseasome and DrugBank were gener-
ated. Many syntactic structures in both English and SPARQL grammars were
driven by the datatsets’ terminology.

For domain-specific applications, the GF abstract grammar must state the
main semantic categories and trees of the language. For GFMed we introduced
the following categories: Drug, Target, Disease, Gene, SideEffect and SIDER
Drug corresponding to the main resources in the targeted datatsets. We also
introduced the categories DrugBankProperty, DiseasomeProperty and SIDER-
Property for describing the properties of the same datatsets. For each mentioned
resource category, classes of these semantic entities are described, resulting Drug-
Class, DiseaseClass, GeneClass, TargetClass and SideEffectClass. Trees for these
categories are built either from a single named resource, or from a restriction on a
property. For each XClass there are one or more CriterionForXClass categories,
where the class can be obtained from the Criteria for that class. For example,
drugs that interact with food is a DrugClass tree, while interact with food is

1226



a CriterionForDrugClass. In other words, trees of type CriterionForXClass are
subtrees of XClass trees. Table 1 depicts the main categories together with their
English linearization category and some examples or explanations.

The core of the abstract grammar consists of functions to build trees. GF-
Med’s functions can be categorized in (i) functions that describe property re-
strictions, (ii) functions for transforming a criterion of a class into a class or for
transformations between different types of classes and properties, (iii) functions
expressing queries.

2.1 Building Trees for Property Restrictions

In DLs, there are two types of roles or properties: object properties and datatype
properties. Object properties relate two concepts, while datatype properties re-
late one concept to a value of a certain datatype. For example, the object prop-
erty SideEffect connects the resources PenicillinG and Fever. Differently, the
Mechanism of Action property relates the drug Lepirudin to a string value.

Object properties and datatype properties are treated differently in the GF-
Med grammar. When it comes to object properties, the DL existential restric-
tion ∃R.C on property R describes the set of individuals having as value of
the property (role) R an individual from the concept C. For example, ∃ Pos-
sibleDrug.FeverInducingDrug is a restriction on property PossibleDrug whose
interpretation, if it exists, is the set of all diseases that have at least one possi-
ble drug from the class FeverInducingDrug. FeverInducingDrug stands for all
drugs that have fever as a side effect and it is a value restriction, with value
Fever, on the property SideEffect. We believe that even though the targeted
datasets are not described in DL, in order to have language constructors able to
be composed based on their type, the functions to build trees in either English
or SPARQL can be described similarly to DL constructors. This approach is also
justified by the functional style of the chosen grammatical framework.

Each DL constructor can be expressed in natural language in more ways,
either as noun phrase (NP), verbal phrase (VP), adjectival phrase (AP), verb-
phrase-modifying adverb (Adv), relative clause (RCl) or clause with some miss-
ing part (ClSlash). These syntactic categories are defined by GF library. To each
DL constructor identified at a conceptual level correspond more functions to
build trees at concrete English level, one for each possible syntactic structure.
Figure 2 shows functions that model restriction on the property PossibleDrug

with values in DrugClass. In a similar manner, functions for restriction on the
inverse property of PossibleDrug are defined. They allow statements about drugs
used to treat a certain disease or a disease class. For all object properties, the
abstract and concrete grammars include sets of functions to express existential
and value restrictions on them. Since classese formed from only one named drug
are allowed, value restrictions on object properties can be treated in the same
way as existential restrictions.

When it comes to restrictions on datatype properties, the English methods to
express them are not anymore particular to each property, therefore it is possible
to treat all with the same set of functions. Some examples are described in Fig. 3.

1227



WithPossibleDrug : DrugClass→ DiseaseClass; - - diseases treated with

WithPossibleDrugCriterion : DrugClass

→ CriterionForDiseaseClass; - - treated with Lepirudin;

WithPossibleDrugCriteriaClSlash : DrugClass

→ CriterionForDiseaseClassClSlash; - - Lepirudin is used for

WithPossibleDrugCriteriaNP : DrugClass

→ CriterionForDiseaseClassNP ; - - Lepirudin as possible drug

WithPossibleDrugCriteriaAdv : DrugClass

→ CriterionForDiseaseClassAdv; - - with Lepirudin as possible drug

WithPossibleDrugCriteriaRCl : DrugClass

→ CriterionForDiseaseClassRCl; - - whose possible drug is Lepirudin

WithPossibleDrugCriteriaRCl V P : CriterionForDrugClassV P

→ CriterionForDiseaseClassRCl; - - whose possible drug interacts with

WithPossibleDrugCriteriaRCl Adj : CriterionForDrugClassAdj

→ CriterionForDiseaseClassRCl; - - whose possible drug is associated with

WithPossibleDrugCriteriaRCl NP : CriterionForDrugClass

→ CriterionForDiseaseClassRCl; - - whose possible drug have NP

Fig. 2. Functions for diseases expressed as restrictions on the property PossibleDrug

The property becomes one of the functions’ parameters. The most important is-
sue is that it is not possible to include all actual values in the grammar, because
the set of values is not finite. This issue can not be completely solved in GF.
The proposed solution is to include in the grammar generic trees with a dummy
string. If the translation to SPARQL succeeds, the dummy value is replaced in
the generated query during postprocessing. Since the values for these restrictions
tend to appear at the end of the question, e.g. Give me the side effects of drugs
with a solubility of 3.24e-02 mg/mL, in the preprocessing phase the string value
is replaced with XX and the question to be parsed becomes Give me the side
effects of drugs with a solubility of XX. This is identified as [GiveSiderProperty
SideEffect [ToDrugClass [ValueRestriction Solubility]]], where SideEffect indi-
cates the object property whose value is asked for. The content of the innermost
brackets represents the drugs indicated by the transformation to DrugClass of a
value restriction on the datatype property Solubility. Another possible solution
for covering numerical values for these restrictions could be based on the GF
support for integers and floating point numbers.

Other described constructors include HighestNumber, LowestNumber, ZeroN-
umber, which are focused on the number of properties, or HighestValue, and
LowestValue which are focused on values of properties. For example, the least
common chromosome location is interpreted as [LowestValue ChromosomeLoca-
tion], where ChromosomeLocation is a DrugBank property.

1228



V alueRestriction : DrugBankProperty→ CriterionForDrugClass

- - solubility of XX

V alueRestrictionAdj → CriterionForTargetClass

- - involved in XX

V alueRestrictionRCl : DrugBankProperty→ CriterionForDrugClassRCl

- - whose route of elimination involves XX

DiseaseV alueRestriction : DiseasomeProperty→ CriterionForDiseaseClassNP

- - chromosomal location of XX

DiseaseV alueRestrictionRCl : DiseasomeProperty→ CriterionForDiseaseClassRCl

- - whose subtype involves XX

LowestNumber : Property → CriterionForDrugClass

- - lowest number of side effects

DiseaseWithLowestV alue : DiseasomeProperty→ CriterionForDiseaseClassNP ;

- - with lowest size

LowestNumberV alue : Property → PropertyClass;

- - least common chromosome location

Fig. 3. Functions for Value Restrictions

2.2 Transformation Functions

For composability reasons, transformation functions are defined for getting from
a criterion to a class, or for getting from one dataset to another. The former are
important for English linearization, while the latter play an important role in
SPARQL linearization.

The first transformation functions take criteria and build on them the up-
per level linguistic structures needed in queries. For example, in order to get to
the Noun Phrase drugs used for Rickets from the Adjectival Phrase used from
Rickets, there is a transformation from CriterionForDrugClassAdj to DrugClass
that adds the noun drugs to linearization of the AP. When building SPARQL
queries, these transformation functions do not alter the linearization of the Cri-
terion, because the corresponding SPARQL triplets are already completely built.
All the English alternatives for expressing a conceptual DL constructor have the
same SPARQL linearization. This is somehow expected, as SPARQL is a formal
language tightly related to DLs.

The second type of transformations deals with queries requesting access to
more datasets. In this case, English linearization does not alter the object of
transformation, while the SPARQL linearization introduces new variables and
sameAs statements. For example, the function DBToSiderDrug converts the
class of DrugBank drugs to the class of Sider drugs. Its SPARQL linerization
introduces a new variable ?siderdrug that is related with a sameAs statement

1229



WhichDisease2 : DiseaseClass→ Question;

- - which are the diseases caused by Lepirudin?

WhichDisease : CriterionForDiseaseClass→ Question;

- - which diseases are caused by Lepirudin?

WhichTargetAdj : V alueRestrictionAdj → Question;

- - which targets are involved in XX?

WhatPropertyV alue : PropertyClass→ Question;

- - which is the least common chromosome location?

Fig. 4. Functions for queries

to the variable of the function’s parameter. addStatement2 and mkSameAsState-
ment are operators introduced in the proposed SPARQL resource library:

DBToSiderDrug : DrugClass -> SiderDrugClass;

DBToSiderDrug d={var="?siderdrug"; /* concrete SPARQL */

body=addStatement2 (mkSameAsStatement "?siderdrug" d.var)

d.body};

DBToSiderDrug d=d; /* concrete English */

2.3 Functions for Queries

Several types of queries were identified: give, list, which, what, for/with which,
and is/are there. They are applied on one class, one criterion, or on a list of classes
or criteria for classes (see Fig. 4). The questions deal mostly with resource classes
and criteria for these classes and less with properties. An exception to this rule
is the question WhatPropertyValue. This question treats PropertyClass instead
of a resource class, because it queries for information about a property class
and not about a property of some resource. For example, the question which
is the least common chromosome location is parsed to the abstract tree [What-
PropertyValue [LowestNumberValue [DBToProperty ChromosomeLocation]]]. Its
SPARQL linearization requires aggregation and sort operations.

The advantage of taking the described approach is the flexibility in com-
position of trees/constructors, based on their types and transformation func-
tions. For example, drugs that interact with the drugs used for diseases treated
by tetracycline is parsed to the abstract tree t3=[ToDrugClass withThatVP
[DDrugClassCriterionVP t2]], where t2=[AdjToDrugClass [PossibleDrugsForCri-
terionAdj t1]] is the tree for the class of drugs that are used for diseases in t1.
t1=[ToDiseaseClass [WithPossibleDrugsCriterion [SingleDrug DB00759]]] stands
for a DiseaseClass of diseases treated by tetracycline. DB00759 is the DrugBank
ID for tetracycline. The abstract tree t3 is linearized in the SPARQL concrete
grammar. By running the query, we get drugs which interact with tetracycline,
and also other drugs used to treat the same diseases as tetracycline.

1230



Algorithm 1 English2SPARQL

toLowerCase(question)
replacedText=””
answer=translation(question)
if !(answer contains FAIL) then

Find Abstract T reek with minimal length
return SPARQL Linearizationk of Abstract T reek

else

while (answer contains FAIL) && !empty(question) do

replacedText+=lastWord(question)
question=removeLastWord(question)
answer=translation(question+XX)

end while

end if

if !(answer contains FAIL) then

Find Abstract T reek with minimal length
query ← substitute(XX, replacedText,SPARQL Linearizationk)

return query
end if

function translation(EN phrase) ⊲ GF Rest Service
Abstract T reei ← PARSE(ENphrase)
SPARQL Linearizationi ← LINEARIZE(Abstract T reei)

return (i > 0) ?
S

i

{SPARQL Linearizationi, Abstract T reei} : FAIL

end function

2.4 Pre- and Post-processing

GF comes with an HTTP server that supports REST services for its main func-
tionality, as translation or parsing. GFMed includes (i) the abstract grammar
and the concrete grammars for English and SPARQL described previously, and
(ii) a Java standalone application that consumes GF translation service based
on these grammars.

The standalone application includes a preprocessing module, a module for
consuming the translation service, and a post-processing module. Algorithm 1
describes the main steps of the translation from a natural language to SPARQL.

Preprocessing includes a simple transformation of the question to lowercase,
and a failure handling method. When the translation module gets a failure from
the server, the failure handling method repeatedly trims the last word of the
question and replaces the trimmed sequence with the dummy string XX . This
is done in order to deal with value restrictions, for example drugs with water
solubility of 3.24e-02 mg/mL. It can be observed that the part which represents
the value is formed by the last two words, and not only the last one.

A special case of this trimming is done for situations where a list of free text
values is included in the question. Question 13 from the QALD test set is an ex-
ample for this situation: it includes the phrase drugs whose mechanism of action

1231



involves norepinephrine and serotonin, with mechanism of action as a datatype
property. In this case, the preprocessing includes a step where the question is
split by the string and. Thus, the previously mentioned phrase becomes drugs
whose mechanism of action involves XX and YY. In case the translation works,
XX is replaced with norepinephrine in the resulting query, and Y Y with sero-
tonin. It must be mentioned that in case one of the free text values includes
more than one word, this method fails.

After a successful translation, the postprocessing module searches for the
abstract tree with the smallest length. This is needed because is is possible to
have more alternatives for translating the questions, mainly due to the transfor-
mation functions. Once the tree is found, its SPARQL linearization is extracted.
In case it was a value restriction, solved by the failure handling method, some
replacements are done.

3 Employed Resources

3.1 Language Resources

GFMed is built mainly as a domain-specific application grammar described in
GF. The GF services of parsing, linearization, translation and completion based
on two concrete grammars and an abstract grammar are employed. The comple-
tion service supports assisted query building by suggesting at each step possible
words to continue.

GF has support for syntax, lexicon and inflections in 36 languages. It comes
with a comprehensive library for the English language [7]. GFMed English con-
crete grammar relies on this library when it comes to syntax, morphological
paradigms used to introduce new elements in the lexicon, and coordination.

The situation is different for SPARQL. GF does not provide a library for it,
even though there are applications using GF for querying Linked Data in Nat-
ural Language [3]. Therefore, GFMed proposes a resource library for SPARQL1

which defines categories and operators for dealing with RDF resources and prop-
erties, with partial or complete triplets, and with aggregation, filtering, and sort
operations.

In the concrete SPARQL grammar built on top of this library, each property
from the targeted datasets is linearized to a triplet structure that has null object
and subject. These two are completed within linearization of different restriction
functions: one of them must be a resource or a previously introduced variable,
case in which there must exist a triplet where this variable is bound. The other
one is completed with a newly introduced variable that will be either included
in the SELECT clause of the query, or will become the subject or the object
of another triplet, when more functions are composed. In order to be able to
do this, the linearizations of XClass or of the associated criteria are structures
consisting of the name of the new variable and the body that includes complete
triplets and possible aggregations or filters.

1 It can be accessed at http://cs-gw.utcluj.ro/%7Eanca/GFMed

1232



Table 2. Number of distinct resources described in lexicon

Dataset Resource Distinct Distinct Considered properties
Type IDs names

DrugBank Drug 1470 22872 drugbank : name, drugbank : synonym,
drugbank : brandName

DrugBank Target 4553 3784 drugbank : name

Diseasome Disease 4213 3642 diseasome : name

Diseasome Gene 3919 4328 rdfs : label, owl : sameAs

SIDER SideEffect 1737 2398 sider : sideEffectName

When dealing with value restrictions, the SPARQL linearization must include
different types of filters according to the datatype of the property: regex-based
filters for string, and equality for integer or real datatypes. In order to identify
the correct filter, SPARQL linearization of each DrugBank, Diseasome, Sider
property includes also the type, Number or String, in addition to its complete
name.

3.2 Generated Lexicons

It must be emphasized that GF grammars must know, at compilation time,
all the tokens that are part of the analyzed text. Therefore, GFMed includes
lexicons for both SPARQL and English formed of all drugs, targets, diseases,
genes, and side effects extracted from the three datasets (see Fig. 1).

In the early stages of GFMed’s development, these lexicons where generated
from data sources available on the sites of the three datatasets, either by using
SPARQL endpoints, or by parsing RDF files. In the end, the lexicons where gen-
erated by executing SPARQL queries on the QALD-provided endpoint. Special
attention was given to side effects, drugs, and genes. For the same ID of a side
effect more synonym names are known, expressed through the property sideEf-
fectName. For one drug ID in DrugBank, there are more names and synonyms.
Furthermore, as the name, the synonyms and the brand names of a drug can
appear in a question, English linearization of each drug includes alternatives
expressed by values of properties name, synonym, and brandName. For Genes,
besides the property rdfs : label, it was considered the property owl : sameAs

that relates some genes to DBpedia resources. Extended names for genes are
extracted from these resources.

Table 2 shows the number of resources identified in this way, giving both
the number of distinct IDs and distinct names for each category. Even though
the number of elements in lexicons is not small, the time of compilation to
PGF (Portable Grammar Format) and the running time are not significantly
increased. But, if it were to take the same approach for DBPedia for example,
the size of the lexica and of the grammars could become a problem.

1233



4 Results and Their Analysis

The system was evaluated against training and test questions of Task 2 in QALD.
GFMed had the best results, with the overall evaluation from table 3.

Table 3. Results for GFMed in Task2

Total Processed Right Partially Recall Precision F-measure

25 25 24 1 0.99 1 0.99

GFMed correctly parsed all the questions, except one. It partially parsed
question 21, Give me the drug categories of Desoxyn, for which it obtained
0.85714 recall and precision 1, meaning that all the answers retrieved by the
proposed query were correct, but they were not complete. The reason for this is
that Desoxyn is a brand name for drugs with DrugBank IDs DB00182, DB01576,
DB01577. We wrongly assumed that one brand name can be associated either
to only one drug, or to several drugs but with consistent descriptions. The
drug DB00182 has one more category compared to the other two drugs: am-
phetamines. GFMed identified the drug as being DB01577 so it missed this
category. Given the fact that more drugs with different names and different de-
scriptions can have the same brand name, we think that the lexicon should treat
the names differently in comparison to the brand names. Instead of having one
drug with alternative linearizations for both name and brand name, it would be
better to linearize in English a drug ID only to its name and synonyms. A new
category for brand names is required, and consequently, a new transformation
function from brand name to drug IDs. Thus, the generated Where clause would
become:

{?drug drugbank:brandName "Desoxyn". ?drug drugbank:drugCategory ?categ}

instead of currently generated

{drugbank:DB01577 drugbank:drugCategory ?categ}

5 Perspectives for Future Work

The set of described abstract and concrete structures can be extended to other
DL constructors. Furthermore, transformation functions are valuable for a uni-
form treatment of different types of resources, properties or restrictions, but they
introduce on one hand (i) the possibility to generate incorrect English questions,
as List Lepirudin, where Lepirudin is transformed to a drug class, and on the
other hand (ii) the parsing of a question into several alternative abstract trees
which introduce unnecessary sameAs statements in the SPARQL linearization.
The current solution to take the shortest abstract tree works well, but we plan
to investigate ways to avoid the enumerated issues of transformation functions
from the grammar itself.

Starting from the GFMed experiment, a general methodology to build such
grammars from ontologies in a semi-automatical manner is to be investigated,
similar to the approach taken in [5].

1234



Support for multilinguality is one of the GF strengths that we intend to
exploit in future work. In order to support querying of the Task2 datasets in
a GF recognised language other than English, GFMed English concrete gram-
mar can be moved almost entirely to an incomplete grammar. Querying in a
different language can be obtained by extending this incomplete grammar with
language-specific exceptions, together with the language-dependent lexicon. A
similar experiment to GFMed, but for Romanian language, is described in [6]
where DBpedia information about cultural personalities are searched.

6 Conclusions

We consider that our DL-based methodology for building Controlled Natural
Language for querying Linked Data was validated by this experiment. The de-
scribed grammars are expressive enough to cover questions proposed in Task 2 of
QALD, addressing querying over more datasets, complex queries with different
linguistic structures, and queries that involve lists and free text. By its intrinsic
definition, the semantic of any Controlled Natural Language is limited, so our
language is also limited. Nethertheless, the DL approach can guide its extension
in a structured way.

References

1. Baader, F.: The description logic handbook: theory, implementation, and applica-
tions. Cambridge university press (2003)

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: To-
wards a mashup to build bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5), 706–716 (2008)

3. Dannells, D., Enache, R., Mateva, M., Ranta, A.: Natural Language Interaction with
Semantic Web Knowledge Bases and LOD. Towards the Multilingual Semantic Web,
Paul Buitelaar and Philip Cimiano, eds., Springer, (2014)

4. Ferré, S.: Squall: A controlled natural language as expressive as sparql 1.1. In:
Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds.) NLDB. Lec-
ture Notes in Computer Science, vol. 7934, pp. 114–125. Springer (2013)

5. van Grondelle, J., Unger, C.: A three-dimensional paradigm for conceptually scoped
language technology. In: Buitelaar, P., Cimiano, P. (eds.) Towards the Multilingual
Semantic Web. Springer (2014)

6. Marginean, A., Groza, A., Slavescu, R.R., Letia, I.A.: Romanian2SPARQL: A Gram-
matical Framework approach for querying Linked Data in Romanian language. In:
Proceedings of 12th International Conference on Development and Application Sys-
tems, Suceava, Romania, May 15-17 (2014)

7. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

8. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: Aqualog: An ontology-
driven question answering system for organizational semantic intranets. Journal
Web Semantics 5(2), 72–105 (2007)

9. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic
queries - incremental query construction on the semantic web. Journal Web Semantic
7(3), 166–176 (2009)

1235




