
Semantic Complex Event Processing for Social
Media Monitoring - A Survey

Robin Keskisärkkä and Eva Blomqvist

Linköping University, 581 83 Linköping, Sweden,
{robin.keskisarkka|eva.blomqvist}@liu.se

Abstract. Semantic Complex Event Processing (CEP) is a promising
approach for analysing streams of social media data in crisis situations.
Traditional CEP approaches lack the capability to semantically interpret
and analyse data, which Semantic CEP attempts to address, but current
approaches have a number of limitations. In this paper we survey four
semantic stream processing engines, and discuss them with the specific
requirements of CEP for social media monitoring in mind. Current ap-
proaches assume well-structured data, known streams and vocabularies,
and mainly static event patterns and ontologies, neither of which are
realistic assumptions in our scenario. Additionally, the languages com-
monly used for event pattern detection, i.e., SPARQL extensions, lack
several important features that would facilitate more advanced statistical
and textual analyses, as well as adequate support for temporal and spa-
tial reasoning. Being able to utilize external tools for processing specific
tasks would also be of great value in processing social data streams.

Keywords: Complex Event Processing, Stream Reasoning, Social Me-
dia Monitoring

1 Introduction

To achieve situation awareness in crisis situations, traditionally, both authorities
(including emergency services) and citizens rely mainly on official communica-
tion channels. Today, citizens as well as authorities are increasingly using new,
and more direct, communication channels, such as social news media, e.g., Face-
book, Twitter etc. [11, 23]. Analysing such media have proved useful for detecting
earthquakes [20], assessing the spread of influenza [12], and assisting disaster re-
lief [21], just to name a few examples. However, so far, “monitoring” has either
been done more or less manually, e.g., by using native search interfaces of social
media sites, or by using highly specialized analysis models for mining data about
specific types of situations, e.g., earthquakes [20] or influenza outbreaks [12].

Although there are a few examples of recent systems that utilize Semantic
Web (SW) technologies, e.g., for named entity recognition and classification [2],
or geo-location and information extraction [13], these are usually highly depen-
dent on user intervention and hand-crafted rules (or queries) for the event type at
hand. SW technologies can support the analysis of data, and have the potential
to boost the effectiveness of current social media monitoring methods.



Complex Event Processing (CEP) [17], e.g., for recognizing and analysing the
current situation, is a task that the human mind performs with high precision,
due to our inherent pattern-recognition capabilities. However, when the amount
of data increases, e.g., on a Web scale, it is no longer feasible for a person to per-
form “situation recognition”, without some automated pre-processing for finding
the interesting patterns in data. The term Complex Event Processing originates
in the abstraction task, where sets of “low-level” events are aggregated (possibly
through several steps), by means of generalized event pattern descriptions, into
abstracted “high-level” events (i.e., complex events) that make sense to a user.
In this paper we use the term “event” in the sense of CEP events, i.e., elements
of a data stream, rather than denoting situations in the outside world.

Classical CEP technologies are not targeted at semantically interpreting and
analysing data, but commonly work on streams of highly structured data with
well-known interpretations. Recently, this challenge has been picked up by the
SW community [25, 4], in order to enhance CEP systems with SW technologies.
In this paper we focus on CEP approaches utilizing SW technologies for analysing
data, which we call Semantic CEP, and we review the current state of the art
in this field, with specific focus on social media monitoring requirements.

The paper starts with an analysis of social media monitoring requirements in
Section 2. In Section 3 we give an overview of the functionalities that the surveyed
stream processing engines provide, including their SPARQL extensions. Section
4 then provides a discussion of the engines and their capabilities, and analyses
their performance against our requirements from Section 2. Finally, in Section 5
we draw some conclusions and outline future challenges.

2 Social Media Monitoring Requirements

While CEP (and Semantic CEP) has so far mainly been employed on highly
structured data streams, such as sensor data, in social media monitoring we are
using humans as sensors, and the streams are beyond our control since they are
produced and made available on the Web. This presents several new challenges,
and results in a number of requirements that we summarize in Table 1.

Table 1. Semantic CEP requirements for social media monitoring scenarios.

Req# Description
1 Consumption of online streams with evolving structures (vocabularies) and content

that are not under our own control.
2 (Pre-)Processing of streams using external tools.
3 Filtering of data streams to focus CEP only on the relevant data.
4 Using information abundance to compensate for missing, incomplete, unreliable, or

ambiguous information.
5 Handling streams of RDF-graphs, rather than single triples.
6 Temporal reasoning, including time intervals and temporal relations between events.
7 Spatial reasoning, including spatial relations between events and objects.
8 Reasoning over streams combined with background knowledge.
9 On-the-fly query generation, and (semi-)automatic evolution of event patterns and

background knowledge.



The fact that streams are not under our own control pose challenges regard-
ing structural changes, e.g., if vocabularies change, and requires interpretation
of stream content at runtime (c.f. Req. 1). For pre-processing unstructured infor-
mation we may need to use external tools (c.f. Req. 2) to process text, identify
spatiotemporal anomalies [24], and deal with automated, relayed, and repeated
messages [22]. The amount of data also poses a challenge, often requiring irrele-
vant messages to be filtered out (c.f. Req. 3), and structured information to be
extracted before applying CEP methods.

When analysing sensor data, e.g., from physical sensors, we may be satisfied
with reports from a single sensor, if the sensor provides accurate and unambigu-
ous information. When dealing with social streams, on the other hand, data can
be incomplete, unreliable, incorrect, and is often expressed in natural language.
However, instead of one sensor we have millions, and the abundance of data can
facilitate dealing with incompleteness, and unreliable information (c.f. Req 4).

After pre-processing, the social streams need to be broken down into RDF-
data streams to allow for matching data to event patterns. As social media
streams typically consist of messages coupled with metadata, such as message
author, creation time, and geo-spatial information, each message results in mul-
tiple triples. This means that each message will be passed to the Semantic CEP
engine not as a single RDF-triple (which is often the case for sensor data) but
as an RDF-graph (c.f. Req 5). In order to detect sequences of events, compare
states evolving with time, or determine the order in which events occurred, the
ability to reason about temporal relations between events is essential (c.f. Req
6). In situation monitoring geo-spatial information is also of great importance,
since it enables locating events in the real world (c.f. Req 7).

In order to successfully monitor a situation it is typically necessary to inte-
grate streaming data, static data, and background knowledge, e.g., ontologies,
and to be able to reason on these sources in combination (c.f. Req 8). The chang-
ing nature of social streams additionally requires event patterns and queries that
can evolve or be replaced as needed. To support this type of dynamic queries
it must be possible to generate queries on the fly, based on rich descriptions
of event patterns, e.g., from an ontology, rather than using fixed hand-crafted
queries (c.f. Req 9).

3 Semantic CEP - State of the Art

SW technologies have until recent years operated mainly on static data and
ontologies, despite the fact that the Web is a rapidly changing source of data
[25]. Traditional SW techniques, e.g., query languages and automated reasoning,
commonly assume that a dataset is reset when updated with new data, and that
reasoning is performed from scratch before queries are executed again. However,
for streaming data, reasoning and result delivery are performed continuously
rather than in a “batch mode”. Also, traditional methods have not focused
on reasoning over time and space, which is necessary to capture some of the
important characteristics of streaming data and events.



Commonly streams are handled by observing them through windows. Triples
inside the window are assumed to be relevant, while triples outside the win-
dow are ignored. The window size is either defined in terms of the amount of
data (logical windows), or as physical windows defined in terms of time [5].
The predominant approach to Semantic CEP handle streams where individual
RDF-triples constitute “low-level” events, which are then matched to SPARQL
queries, i.e., “event patterns”. The output is a stream of query results (RDF-
triples), that may represent complex events.

For the purpose of this survey, we have selected four recent approaches to
focus on. The approaches described in the paper were chosen because they rep-
resent stream processing engines that are publicly accessible, make extensive use
of SW technologies, and can be regarded as representative of the state of the art
in the field. Other approaches exist, e.g., Streaming SPARQL [7], and classical
CEP tools, such as ESPER 1, but these will not be discussed in this paper.

C-SPARQL Continuous SPARQL (C-SPARQL) [6] was developed within the
LarKC-project. C-SPARQL enables standing queries on streaming RDF-data
and static background knowledge, using a SPARQL syntax extension. Both phys-
ical windows, defined in terms of time, and logical windows, defined in terms of
number of triples, can be applied to individual streams. C-SPARQL reports du-
plicate triples when the windows of two executions of a query overlap; this has
the benefit of always providing the full result of the query upon execution, rather
than requiring the user to keep track of the state, but can also cause delays.

ETALIS The ETALIS engine is an open source system for complex event pro-
cessing that uses two languages to describe event patterns: ETALIS Language
for Events (ELE), and Event Processing SPARQL (EP-SPARQL) [8, 3]. ETALIS
is based on declarative semantics, grounded in logic programming, and imple-
mented in Prolog. The EP-SPARQL language supports both static background
knowledge and streaming RDF-data. It extends the standard SPARQL syntax
with a number of binary operators; namely, SEQ, EQUALS, OPTIONALSEQ, and
EQUALSOPTIONAL. These operators work much like the standard operators UNION
and OPTIONAL in SPARQL. The operators can be seen as left, right, or full joins
based on temporal aspects. Also, functions can be used to access duration, start
time, and end time for results. EP-SPARQL also supports CONSTRUCT queries,
allowing for streams of data to be used in recursive production rules.

CQELS Continuous Query Evaluation over Linked Streams (CQELS) is an
engine that focuses on continuous queries (expressed in a SPARQL extension),
which executes every time new data is introduced that matches the query in
question [16, 14]. Matching triples are returned immediately when they arrive,
i.e., queries fire in a data driven fashion rather than based on predefined time
intervals. This has an important implication; a query will not return duplicates

1 http://esper.codehaus.org/



of results. The benefit of this type of implementation is that the processing can
be spread out over time, and event patterns can be fired in near real-time, rather
than being executed as a batch of queries at predefined time intervals.

CQELS was created to address the problem of scalable query processing of
linked stream data, tightly integrated with traditional linked data [16]. It makes
use of various optimizations techniques, such as caching of intermediate query
results, and continuous reordering of operators according to heuristic rules. In
the tests carried out in [14] the CQELS engine outperforms C-SPARQL and
ETALIS in terms of speed, at least for certain query types.

INSTANS In contrast to the other three solutions, INSTANS [19, 1] is a query
engine capable of continuous and incremental execution of standard-compliant
SPARQL. Like CQELS and ETALIS it avoids repeated computation of the same
data, and makes results available immediately when event patterns are matched.
The engine supports SPARQL Update and can therefore use both INSERT, to add
triples into existing graphs, and DELETE, to remove triples. INSTANS processes
incoming triples based on the Rete-algorithm, which means that each triple
is processed when it becomes available and intermediate matches are cached
into the Rete-net. Identical parts of queries are merged in the Rete structure.
INSTANS supports the detection of missing events by employing a timer that
can be registered for events that are to be monitored. At present the engine
does not directly support complex reasoning on data in the past. As suggested
in [9] the modelling of time could be expressed completely in RDF, although the
effects in terms of query complexity and performance in the case of streaming
RDF-data has not been evaluated.

4 Discussion

In this section we analyse general properties of the engines, and proceed to dis-
cuss to what extent the engines support requirements of social media monitoring.

4.1 Comparison of the Approaches

Expressivity There are two primary ways of dealing with information that
changes over time; either saving a snapshot of the graph every time it changes, or
adding timestamps to the triples represented in the graph [9]. Storing snapshots
of graphs every time they change is often not a scalable solution when dealing
with streaming data. A variation of the snapshot approach is instead to keep
only the most recent graph in memory, i.e., to update the current state with
the new information only, but this approach greatly limits the possibilities for
temporal reasoning. To instead annotate triples with timestamps increases the
expressive power considerably.

All of the engines surveyed use the timestamp approach for handling stream-
ing data, but for CQELS, C-SPARQL, and EP-SPARQL the timestamps are han-
dled by the systems internally and not made available as RDF-triples. CQELS



does not make the timestamp information available to the user at all from within
queries. C-SPARQL allows timestamps to be accessed for individual triples, e.g.,
making it possible to determine the order of events, but windows in the past are
not well supported. EP-SPARQL supports reasoning with time through func-
tions that can be used inside queries to access timestamps and durations, and
provides operators to define temporal ordering. EP-SPARQL additionally allows
windows to be defined in the past.

INSTANS differs from the other approaches in that it handles RDF-streams
using standard compliant SPARQL, and like EP-SPARQL, it does not rely on
windows over individual streams for performing stream processing and event
detection [19, 1]. It is not discussed explicitly how INSTANS would deal with
events that, e.g., must be defined as a sequence of events, but since INSTANS
supports both DELETE and INSERT it would be possible to use a model of time
in RDF as suggested in [9].

Standard SPARQL queries miss the timeout aspect of events, that is, the
detection of anticipated but absent events, since the language is designed for
querying finite datasets. INSTANS supports the timeout aspect by employing a
timer functionality, making it possible to generate events after a predetermined
time interval. C-SPARQL has some support for the detection of missing events,
since queries can be evaluated periodically.

Support for OPTIONAL constructs is important since all variables returned by
a query are not always bound to values. Support for the features introduced in
SPARQL 1.1 is limited in CQELS, C-SPARQL, and EP-SPARQL, which makes
the function BOUND important in terms of expressive power, as it allows queries
to express the absence of patterns using SPARQL 1.0. All the surveyed engines
support both operators.

CQELS, C-SPARQL, and EP-SPARQL support SPARQL CONSTRUCT to pro-
duce new RDF-streams, which could be fed back into the engines to support
recursive reasoning. However, neither C-SPARQL nor CQELS have built-in sup-
port for interconnected queries and layering, thus it would require some workaround.
Also, there are no evaluations showing how well this approach would perform.
Similar reasoning can be applied in INSTANS by using INSERT instead of CONSTRUCT.
Table 2 summarizes some of the features of the systems.

Performance Measuring performance for the different engines is not completely
straightforward. CQELS, ETALIS, and INSTANS use an eager execution strat-
egy, where queries are executed as soon as new triples arrive. C-SPARQL queries
could define windows that slide for every triple but it is not optimized to do so
because it reports duplicates of results when windows overlap, and the execution
rate of queries would still be handled internally.

In [15, 14] the performance of CQELS, ETALIS, and C-SPARQL was evalu-
ated in terms of, e.g., execution throughput, and scalability in terms of number
of queries and static data size. Their findings show that the periodical execution
of C-SPARQL results in a considerably lower throughput compared to the other
two engines. Only CQELS scaled well with growing static data, both because it is



Table 2. Summary of the expressiveness of the four engines.

CQELS C-SPARQL EP-SPARQL INSTANS
Static RDF-data yes yes yes yes
Streams of RDF-triples yes yes yes yes
Streams of RDF-graphs no1 no no1 no3

Windows over streams yes yes yes2 yes2,3

Multiple windows over the same stream yes no1 no yes3

Timestamps available in queries no for triples for results as triples
Windows in the past no limited yes yes3

Support for RDFS/OWL reasoning no no no no
Support for detection of missed events no limited no yes
1 No explicit support, although workarounds may be possible.
2 Not defined for individual streams.
3 Must be defined “manually” within queries.

the only native implementation and because it pre-computes and indexes inter-
mediate results. None of the engines employ optimization techniques for multiple
queries, which could avoid redundancy of computations, and they therefore did
not scale well with multiple parallel queries in this evaluation.

The performance of INSTANS was compared to C-SPARQL in [18]. Results
show that while the average processing delay for INSTANS was around 12 ms,
C-SPARQL needed between 12–253 ms for the same queries (windows sizes of
5–60 events). Higher window repetition rates favoured INSTANS even more.

Reasoning None of the engines reviewed here integrates a standard reasoning
engine, i.e., for RDFS/OWL reasoning. Automated reasoning typically involves
materializing graphs based on RDFS/OWL semantics. For streaming data this is
usually not feasible, i.e., to perform the materialization from scratch every time.
There are, however, alternative strategies that maintain a materialized graph
by updating only those parts that are affected by a change. For example, the
DRed algorithm tracks changes in materializations by storing expiration times
for inserted triples [6]. In [6] the authors also suggest a different approach based
on monitoring the triples inserted and keeping track of the entailments resulting
from each inserted triples. A maintenance program would tag each inserted and
entailed triple with an expiration time, and in addition every entailed triple is
valid only if there still exists some justification for that particular triple. This
scales well compared to the naive approach, i.e., to recompute the complete
materialization, but as the percentage of background information subject to
change increases the time needed to maintain the materialization increases and
eventually favours the naive approach.

Handling unscheduled changes also needs to be dealt with when maintaining
a materialization. If an event is triggered it will be valid for a predefined amount
of time, but it may also be invalidated at any given time. A possible strategy
is to remove entailed triples if no valid justification for the entailment remains,
similar to the strategy used in the DRed algorithm [6].

Another way of handling reasoning is to use rewriting, to incorporate reason-
ing into queries instead of using RDFS/OWL reasoners. In CQELS, C-SPARQL,



and EP-SPARQL recursive relationships could be described using CONSTRUCT to
create new streams. ETALIS explicitly supports this type of recursive production
rules. INSTANS could accomplish this in a similar way using INSERT. Another
possible way of supporting reasoning has been implemented in a system called
Sparkwave [10]. Similar to INSTANS, it is based on the Rete-algorithm, but sup-
ports partial RDFS/OWL reasoning by using a pre-processing epsilon network.

4.2 General Limitations and Challenges

Before proceeding to analyse specific requirements, we discuss some general chal-
lenges within Semantic CEP. First, we note that there are no standards, nor
de-facto ones, for how data streams should be represented, accessed online, and
referred to, nor are there any standards for the representation of timestamps. In
the surveyed approaches streaming RDF-triples are usually represented as tuples
(in all engines but INSTANS), consisting of an RDF-triple and a timestamp, but
there is no agreement on how to handle such RDF-streams within queries.

All approaches, except INSTANS, extend the SPARQL query syntax, but as
there are no predefined standards they differ somewhat. Each syntax has dif-
ferent expressive power, e.g., EP-SPARQL cannot refer to individual streams
(true also for INSTANS that uses standard SPARQL), while CQELS cannot ac-
cess timestamps for triples or windows, and neither C-SPARQL nor CQELS can
adequately handle windows in the past. There are, however, many similarities
between the extended query languages, e.g., they all include support for ag-
gregate functions within query windows, which can significantly simplify some
common query expressions. In INSTANS aggregates must be computed from
scratch, using only the primitive mathematical functions allowed in SPARQL,
which makes such operations very complex and require several aggregation steps.
In our opinion, the specific aggregate functions that are particularly useful in the
context of analysing streaming data should be proposed for inclusion in future
standards. A standardized query language would also make it easier to compare
the performance and limitations of different engines.

Being able to compare current and historical states is fundamental in many
CEP applications. But querying past events has so far not received proper at-
tention. EP-SPARQL supports states defined in the past primarily by allowing
events to be ordered chronologically. In CQELS and C-SPARQL all windows are
defined up to the current time, making it difficult to define windows in the past
at all. In INSTANS information from past events is cached into the Rete-net,
provided that there are queries utilizing it, and all removals of triples must be
done explicitly using DELETE operations, making past events available by default.
The authors of INSTANS have also used timestamps as triggers to inform the
system that a certain triple is no longer valid [18]. Time represented in RDF
could be used to reason over windows in the past without dedicated functions
for handling time, but this requires that time is managed explicitly in queries.
In [9] the authors present two ways in which time can be represented in RDF
format using either point-based labelling, or interval-based labelling. Both so-
lutions provide support for more complex reasoning than the solutions used in



either of the engines surveyed in this paper, but scalability and performance of
such a solution remains to be tested.

None of the engines surveyed support any RDFS or OWL reasoning, i.e.,
using a standard reasoning engine. This makes it difficult to formulate questions
that rely on such things as subclass or equivalence axioms, and it considerably
restricts the way in which background knowledge (in the form of ontologies and
static data) can be exploited.

4.3 Analysis of Social Media Monitoring Requirements

The requirements for social media stream monitoring, discussed in Section 2, are
here reviewed with regard to the approaches discussed in this survey. Overall
results are summarized in Table 3.

All the surveyed approaches use local streams in their implementations, i.e.,
streams are not being retrieved and consumed online, and vocabularies are known
beforehand (c.f. Req. 1). These approaches require new hand-crafted queries to
be registered if vocabularies change. The (pre-)processing of streams using ex-
ternal tools (c.f. Req. 2) can be achieved if streams can be created and added
to the engine on the fly from outside the engine environment, and if the system
can handle several parallel streams. The engines discussed in this paper use two
different approaches for handling streams; data from streams are added to a
repository but the streams are never referenced directly, or streams are stored in
a repository but must be referenced explicitly in queries. The first approach en-
ables simple collaboration between queries, but keeping the contents of different
streams apart can be difficult. The second approach enables referencing specific
streams directly, but makes communication between queries complicated.

To the best of our knowledge, all current Semantic CEP approaches are based
on SPARQL, which makes it easy to use triple patterns for filtering data (c.f.
Req. 3). However, the engines lack support for combining SW technologies with
external tools, making it difficult to analyse semi-structured data streams, e.g.,
textual information in Tweets, as well as statistically aggregating and combin-
ing data from a large numbers of streamed objects (c.f. Req. 4). Aggregate func-
tions, such as MIN, MAX, and AVG, are supported in CQELS, C-SPARQL, and
EP-SPARQL, and can to some extent also be calculated in INSTANS through
various workarounds. However, new aggregate functions and operators should
be considered, for handling important relationships when managing social data
streams, e.g., for analysing geo-spatial relationships (c.f. Req. 7), or for applying
statistical filters. Also, temporal reasoning is a common task when working with
streaming data (c.f Req. 6). INSTANS makes timestamps available as triple pat-
terns, which allows for complex temporal reasoning [9], but introducing operators
to support the most commonly used tasks, as has been done in EP-SPARQL,
can greatly simplify the process of writing queries involving temporal aspects.

All the surveyed systems process events represented as RDF-triples, but en-
suring that the boundaries of events represented as RDF-graphs are respected is
not straightforward (c.f. Req 5). One solution is to use a common triple subject
for each event, but more elaborate structures are sometimes required, e.g., when



Table 3. Summary of current support and open challenges.

Requirement Current support
1. Online streams and vocabularies Systems assume local streams, mostly with a fixed vocabulary
2. External stream (pre-)processing Diverse solutions (partial support), several steps of stream

processing is a prerequisite
3. Filtering Simple filters through SPARQL queries supported,

statistical filtering and NLP filters largely unsupported
4. Using information abundance Not natively supported, can be achieved to some extent

through tailored queries
5. Streams of RDF-graphs Not explicitly supported
6. Temporal reasoning Partially supported (through diverse approaches)
7. Spatial reasoning No native support, can partially be solved through queries
8. Reasoning with background knowledge Background knowledge supported, but standard RDFS/OWL

reasoning is not supported
9. Query generation Event patterns represented as hand-crafted queries,

query generation from declarative patterns not supported

a query results in a “false match” if triggered based on only a subset of the
RDF-triples of that event. We may also receive data about an event from multi-
ple sources, e.g., a Twitter stream may be delivered first in its original form, but
additional triples could arrive later on, after messages have been analysed by
an external service. The periodical execution strategy employed by C-SPARQL
seems to make it more or less impossible to fully respect event boundaries. In
addition, there are currently no standardized Web protocols for streaming RDF-
data, making the task of appropriately handling RDF-streams more difficult.

None of the surveyed engines support RDFS/OWL reasoning (c.f. Req 8), a
powerful tool that would allow Semantic CEP systems to take full advantage of
ontologies as background knowledge, and to declaratively express event patterns.
Reasoning capabilities could also increase the support for both temporal and spa-
tial reasoning. However, RDFS/OWL reasoning comes with its own challenges
of scalability and efficiency. Replacing queries at runtime allows for queries to
be updated, however, today queries are mainly assumed to be hand-crafted. To
define queries that evolve, based on changes in background knowledge or declar-
ative descriptions of event patterns (c.f. Req 9), is currently not supported. In
INSTANS there is no real difference between “facts” (static data) and events in
the event stream. It would therefore be possible to update a static vocabulary
based on queries over the event stream.

5 Conclusions and Future Research Challenges

In this paper we have discussed Semantic CEP as a promising technology for
analysing streams of social media data in crisis situations. Traditional CEP ap-
proaches, although usually very efficient, lack the capability to semantically in-
terpret and analyse data. Semantic CEP adds such capabilities, but current
approaches focus more on simple stream processing rather than identifying com-
plex events, and therefore have a number of limitations; for example, they as-
sume well-structured data, known vocabularies, and static queries and ontolo-



gies. Additionally, the languages commonly used for event pattern detection, i.e.,
SPARQL extensions, lack several important features that would facilitate more
advanced statistical and textual analyses, as well as better support for temporal
and spatial reasoning. RDFS/OWL reasoning is not supported by any of the
current approaches, although inference rules can usually be expressed as queries
if static background knowledge can be taken into account.

Future challenges for Semantic CEP, in general, include standardization ef-
forts, concerning both how RDF-streams should be represented, advertised and
accessed over the Web, as well as how event patterns should be expressed and
executed, e.g., in a standardized query language, such as SPARQL or an ex-
tension thereof. More specifically for a social media monitoring scenario, future
Semantic CEP engines must allow for accessing online streams, with vocabular-
ies that evolve along with the outside world. Such systems also need to view the
information abundance as an asset, which can be statistically analysed and from
which new structured information can be retrieved.

References

1. Abdullah, H., Rinne, M., Törmä, S., Nuutila, E.: Efficient matching of SPARQL
subscriptions using rete. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing. pp. 372–377. ACM, New York, USA (2012)

2. Abel, F., Hauff, C., Houben, G.J., Stronkman, R., Tao, K.: Twitcident: fighting
fire with information from social web streams. In: Proc. of the 21st international
conf. companion on World Wide Web. pp. 305–308. ACM, New York, USA (2012)

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proceedings of the 20th international
conference on World Wide Web. pp. 635–644. ACM, New York, NY, USA (2011)

4. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream Rea-
soning: Where We Got So Far. In: Proc. of the 4th Intl. Workshop on New Forms
of Reasoning for the Semantic Web: Scalable and Dynamic (NeFoRS) (2010)

5. Barbieri, D., Della Valle, E.: A Proposal for Publishing Data Streams as Linked
Data - A Position Paper. In: Proc. of the LDOW2010 workshop, co-located with
WWW2010. CEUR Workshop Proceedings, vol. 628 (2010)

6. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: Proceedings of the7th
Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May
30 –June 3, 2010, Proceedings, Part I. pp. 1–15. LNCS, Springer (2010)

7. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - Extending SPARQL to
Process Data Streams. In: 5th European Semantic Web Conference, ESWC 2008,
Tenerife, Canary Islands, Spain, June 1-5, 2008 Proceedings. LNCS, vol. 5021, pp.
448–462. Springer (2008)

8. Fodor, P., Darko, A., Rudolph, S., Ding, J., Hafsi, A., Sthümer,
R.: The etalis system version 1.1 manual (draft) (August 2010),
http://ewl.cewit.stonybrook.edu/pfodor/misc/etalis manual/

9. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing Time into RDF. IEEE
Trans. on Knowl. and Data Eng. 19(2), 207–218 (2007)

10. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over rdf data streams. In: Proc. of the 6th ACM Intl. Conference
on Distributed Event-Based Systems. pp. 58–68. ACM, New York, USA (2012)



11. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th international conference on World wide web.
pp. 591–600. ACM, New York, NY, USA (2010)

12. Lampos, V., De Bie, T., Cristianini, N.: Flu detector: tracking epidemics on twitter.
In: Proc. of the 2010 European conference on Machine learning and knowledge
discovery in databases: Part III. pp. 599–602. Springer (2010)

13. Lanfranchi, V.: Realtime situation awareness via social media streams (2012), demo
session at ISCRAM2012, Vancouver, Canada

14. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: Proc. of
the 10th International Semantic Web Conference, Bonn, Germany, October 23-27,
2011, Part I. pp. 370–388. Springer (2011)

15. Le-Phuoc, D., Dao-Tran, M., Pham, M.D., Boncz, P.A., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: The Semantic Web - ISWC
2012 - 11th International Semantic Web Conference, Boston, MA, USA, November
11-15, 2012, Proceedings, Part II. LNCS, vol. 7650, pp. 300–312. Springer (2012)

16. Le-Phuoc, D., Parreira, J.X., Hausenblas, M., Hauswirth, M.: Unifying stream data
and linked open data. Tech. rep., Digital Enterprise Research Institute (DERI)
(August 2010)

17. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2001)

18. Rinne, M., Abdullah, H., Törmä, S., Nuutila, E.: Processing Heterogeneous RDF
Events with Standing SPARQL Update Rules. In: On the Move to Meaningful
Internet Systems: OTM 2012. LNCS, vol. 7566, pp. 797–806. Springer (2012)

19. Rinne, M., Nuutila, E., Törmä, S.: INSTANS: High-Performance Event Processing
with Standard RDF and SPARQL. In: Proceedings of the ISWC 2012 Posters and
Demonstrations Track. Boston, US (2012)

20. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th international confer-
ence on World Wide Web. pp. 851–860. ACM, New York, USA (2010)

21. Slagh, C.L.: Managing Chaos, 140 Characters at a Time: How the Usage of So-
cial Media in the 2010 Haiti Crisis Enhanced Disaster Relief, vol. 9781243460929.
Proquest, Umi Dissertation Publishing (2011)

22. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In:
Proceedings of the 26th Annual Computer Security Applications Conference. pp.
1–9. ACSAC ’10, ACM, New York, NY, USA (2010)

23. Teevan, J., Ramage, D., Morris, M.R.: #twittersearch: a comparison of microblog
search and web search. In: Proceedings of the fourth ACM international conference
on Web search and data mining. pp. 35–44. ACM, New York, NY, USA (2011)

24. Thom, D., Bosch, H., Koch, S., Wörner, M., Ertl, T.: Spatiotemporal anomaly
detection through visual analysis of geolocated twitter messages. In: 2012 IEEE
Pacific Visualization Symposium, PacificVis 2012, Songdo, Korea (South), Febru-
ary 28 - March 2, 2012. pp. 41–48. IEEE (2012)

25. Valle, E.D., Ceri, S., Harmelen, F.v., Fensel, D.: It’s a Streaming World! Reasoning
upon Rapidly Changing Information. IEEE Intelligent Systems 24(6), 83–89 (Nov
2009)


