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Abstract

In this paper, we present a dynamic Bayesian
network (DBN) approach to modeling vascu-
larization in engineered tissues. Injuries and
diseases can cause significant tissue loss to
the degree where the body is unable to heal
itself. Tissue engineering aims to replace the
lost tissue through use of stem cells and bio-
materials. For tissue cells to multiply and
migrate, they need to be close to blood ves-
sels, and hence proper vascularization of the
tissue is an essential component of the en-
gineering process. We model vascularization
through a DBN whose structure and parame-
ters are elicited from experts. The DBN pro-
vides spatial and temporal probabilistic rea-
soning, enabling tissue engineers to test sen-
sitivity of vascularization to various factors
and gain useful insights into the vasculariza-
tion process. We present initial results in this
paper and then discuss a number of future re-
search problems and challenges.

1 INTRODUCTION

People lose tissue due to accidents, medical opera-
tions, treatments, and illnesses. While some organs,
e.g. liver, can replace the lost tissue most cannot espe-
cially when the damage is too severe. For these kinds
of tissue damages, the lost tissue can be replaced by
engineering a new tissue through stem cells and bio-
materials [18].

An essential process for engineering a healthy tissue
is the proper vascularization (formation of new blood
vessels) of the tissue, as the tissue cells need to be
close to the blood vessels both to discharge their waste
and to receive nutrition and oxygen. The blood ves-
sels need to spread out in the tissue, invade into the

depths of the tissue, and form connections to allow
blood circulation.

The formation of new blood vessels are triggered and
a↵ected by growth factors that are released by dis-
tressed cells that are far from the existing blood ves-
sels. When these growth factors reach existing blood
vessels, they sprout new branches and these branches
“search” for the distressed cells by following the gradi-
ent of the growth factor. This process, however, is
stochastic for at least two reasons: i) even though
growth factors are the main ingredients for causing
sprouts, they are not the only elements that a↵ect vas-
cularization, and ii) the growth factors are increasingly
more uniformly distributed as they go further away
from the distressed cells, and hence the gradient is al-
most uniform, hindering the capability of the blood
vessel finding its way correctly.

This inherent stochasticity in the vascularization pro-
cess, the spatial nature of the tissue, and the temporal
aspect of the vascularization make temporal graphical
models a great fit for reasoning with uncertainty in
vascularization. In this paper, we present a dynamic
Bayesian network (DBN) for modeling vascularization
in engineered tissues. We elicit the structure of the
DBN from tissue engineering experts and we experi-
ment with various parameter settings to provide fur-
ther insights into the vascularization process. Because
this is a first and novel application of DBNs to tissue
engineering, it avails itself to many interesting future
research directions and challenges.

Our contributions in this paper include:

• We present a novel application of DBNs to vascu-
larization in engineered tissues

• We present initial results and insights, where we
experiment with various parameter settings, and

• We discuss several future research challenges and
opportunities in detail.
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The rest of the paper is organized as follows: in Sec-
tion 2, we provide a brief background on tissue engi-
neering and vascularization. In Section 3, we describe
our DBN model for vascularization. We present our
experimental setup and results in Section 4. In Sec-
tion 5, we briefly discuss related work. We then dis-
cuss future research directions and challenges in detail
in Section 6, and then conclude.

2 BACKGROUND

In this section, we first provide a brief background on
tissue engineering and vascularization and then discuss
briefly why dynamic Bayesian networks (DBNs) are a
good fit for modeling vascularization.

People lose tissue due to accidents, treatments, and
illnesses. Some organs, e.g. liver, can replace the lost
tissue while others cannot. Sometimes, the damage
can be so severe that the body cannot heal itself. For
example, bones can heal after smooth fractures. Yet,
some fractures damage bone body so severely that the
bone cannot regenerate. For these kinds of damages,
the lost tissue can be replaced by engineering a new
tissue through stem cells and biomaterials.

Stem cells are generic types of cells that have the abil-
ity to replicate and transform to any tissue. Stem
cells, like all other cells, need to be close enough to the
blood vessels so that they can forward their biological
wastes to the vessels and they can be fed with nutri-
tion and oxygen carried by the blood vessels. When
a tissue is engineered through replication and trans-
formation of stem and tissue cells, there is no existing
blood vessel web in the environment; the only blood
vessels available are the original vessels located at the
edges, ready to sprout and progress to the depths of
the newly-formed tissue.

The stem cells that do not have access to blood vessels
will not be able to discharge waste and receive nutri-
tion and oxygen. In such cases, a cell starts signaling
about its needs by means of emitting chemicals called
vascular endothelial growth factor (VEGF). VEGF dif-
fuses and disperses in the environment. When it con-
tacts a blood vessel, it triggers a new sprout of blood
vessel towards the source of emission. The tip of these
new sprouts typically follow the gradient of the VEGF
to find the distressed cell. During this process, the
newly-formed blood vessel can also branch and sprout
new blood vessels. When the branches meet with other
branches, they merge (this process is called anastomo-
sis) and a blood circulation through the new vessel
starts. The blood circulation helps nearby stem and
tissue cells, which then stop emitting growth factors.
This event is called angiogenesis or vascularization.
Please see Figure 1 for an illustration of this process.

Figure 1: Illustration of vascularization, including the
tip cells (active cells), the fixed cells (stalk cells), and
anastomosis. [19]

Vascularization is a key process in tissue development.
When cells that are emitting VEGF cannot be reached
in time by the new blood vessels, the cells first fall
in hypoxia (i.e., lack of Oxygen) and then start dy-
ing. Hence the formation of healthy tissue depends on
appropriate vascularization; the blood vessels need to
spread out in the newly-formed tissue, invade into the
depth, and need to form connections to allow blood
circulation.

Though it is well-known that the VEGF is a major
contributor to sprouting of new blood vessels and that
the tip of the blood vessel typically follows the gradient
of the VEGF, there are still unknown factors that af-
fect vascularization. Moreover, the VEGF distribution
becomes more uniform as we get further away from
the source of the emission and hence the gradient does
not necessarily point to the distressed cell. Therefore,
given our knowledge of the VEGF distribution the en-
vironment, the blood vessels do not necessarily follow
a deterministic path; they also do a bit of exploration.
This is where the uncertainty reasoning capabilities of
probabilistic graphical models become handy for mod-
eling vascularization.

In this paper, we model the vascularization process
through dynamic Bayesian networks (DBNs) to enable
tissue engineering researchers to reason with spatial
and temporal growth of blood vessels. With the help
of DBNs, the researchers can formulate and query the
DBNs and try a number of parameter settings, without
the need to experiment with every one of them in the
lab. This process allows the researchers to gain further
insights and formulate new in-vivo (on animals) and
in-vitro (on glass) experiments.

90



3 APPROACH

In this section, we describe our DBN model for vas-
cularization. We made a number of assumptions to
simplify the model. In this model, we assume a 2D
structure, whereas in real-life scenarios, the tissue ob-
viously has a 3D structure. In this 2D structure, which
is illustrated in Figure 2, as also assumed in [1], we as-
sume that the blood vessel grows bottom-up towards
north. Therefore, the status of a location at time t

depends on: i) its status at time t, and ii) the statuses
of its south neighbors at t.

t 

𝐿௫௬௧  

𝐿(௫ିଵ)(௬ିଵ)௧  𝐿௫(௬ିଵ)௧  𝐿(௫ାଵ)(௬ିଵ)௧  

t+1 

𝐿௫௬(௧ାଵ) 

𝐿(௫ିଵ)(௬ିଵ)
(௧ାଵ)  𝐿௫(௬ିଵ)

(௧ାଵ)  𝐿(௫ାଵ)(௬ିଵ)
(௧ାଵ)  

Figure 2: The tissue grid. Each cell of the grid rep-
resents a location, which can be Empty, or can be oc-
cupied with an Active Cell or Stalk Cell. Each
location is represented as a random variable in DBN.

To simplify the notation, when we refer to a generic
location L

t

xy

, we will drop the subscripts and hence
simply use L

t, and when we refer to its neighbors
at its south L

t

(x�1)(y�1), L
t

x(y�1), and L

t

(x+1)(y�1) we

will simply use L

t

SW

, Lt

S

, and L

t

SE

, corresponding to
neighbors at south west, south, and south east, respec-
tively. We illustrate the relevant 2-time slice dynamic
Bayesian network in Figure 3.

Each location on the 2D grid is a random variable,
representing whether that location is Empty, or occu-
pied by a blood vessel cell. Blood vessel cells are two
types: the tip of a blood vessel that has the potential to
grow (henceforth called an Active Cell) or the body
of the blood vessel (henceforth called the Stalk Cell).
Therefore, the domain of random variable is [Active
Cell, Stalk Cell, Empty], abbreviated henceforth as
[AC, SC, E].

We model the conditional probability distribution,
(CPD), P

�
L

(t+1)|Lt

, L

t

SW

, L

t

S

, L

t

SE

�
as a tree CPD as

illustrated in Figure 4. To give a simple overview,
at each step in time, an Active Cell elongates and
moves into a nearby Empty location, forming the body
of the blood vessel (i.e., Stalk Cell) in the process.
The transitions are:

𝐿௧ 

𝐿ௌௐ௧  𝐿ௌ௧  𝐿ௌா௧  

𝐿(௧ାଵ) 

t t+1 

Figure 3: A two-time slice representation of the DBN.
A location at a time t + 1 has four parents: itself at
time t and its lower neighbors at time t.

AC 

SC 

T F 

T F 

PAC PSC PE 

PAC PSC PE 

Figure 4: The CPD for P (L(t+1)|Lt

, L

t

SW

, L

t

S

, L

t

SE

).

• The tip of a blood vessel (AC) at time
t becomes the body (SC) at time t + 1.
That is P

�
L

(t+1)|Lt = AC,L

t

SW

, L

t

S

, L

t

SE

�
=

P

�
L

(t+1)|Lt = AC

�
= h✏, 1 � 2✏, ✏i, where ✏ is a

small noise parameter.

• A Stalk Cell at time t either continues
to remain a Stalk Cell at time t + 1 or
it might become Active Cell with probabil-
ity � to sprout a new blood vessel branch.
That is, P

�
L

(t+1)|Lt = SC,L

t

SW

, L

t

S

, L

t

SE

�
=

P

�
L

(t+1)|Lt = SC

�
= h�, 1 � � � ✏, ✏i. We refer

to � as the sprout possibility.

• An Empty location at time t will remain Empty

at time t + 1 if none of its SW, S, or SE neigh-
bors are Active Cell at time t; if there is an
Active Cell at one or more of those neighbor-
ing locations at time t, one of them might elon-
gate to this Empty location at time t + 1. The

91



probability of that an Empty location being oc-
cupied by an Active Cell at time t + 1 is mod-
eled as a Noisy-OR of its neighboring locations.
That is P

�
L

(t+1) = AC|Lt = E,L

t

SW

, L

t

S

, L

t

SE

�

is a Noisy-OR of Lt

SW

, L

t

S

, L

t

SE

, with parameters
�0, �SW

, �
S

, and �

SE

, where �0 is leak param-
eter, and �

SW

, �
S

, and �

SE

corresponds to the
possibility that an Active Cell elongates in the
NE, N, or NW direction.1 The magnitude of �

SW

,
�

S

, and �

SE

are determined by the VEGF gradi-
ent. We refer to various configurations of the �

parameters as the growth patterns.

4 EXPERIMENTAL SETUP,
RESULTS, AND INSIGHTS

In this section, we describe the experiments we per-
formed using various settings for the growth pattern
(�) and sprout (�) parameters. In all the experiments
to follow, we set the noise ✏ and the leak �0 parameters
to 0.01. For the growth pattern, we present results for
two settings:

• straight-growth: h�
SW

,�

S

,�

SE

i =
h0.01, 0.98, 0.01i. For this pattern, the blood
vessel follows a straight line, growing towards
north.

• uniform-growth: h�
SW

,�

S

,�

SE

i = h 13 ,
1
3 ,

1
3 i.

For this pattern, the blood vessel has equal chance
of growing towards north, north west, or north
east.

For the sprout possibility, that is a Stalk Cell turn-
ing into an Active Cell, we present results for two
settings:

• seldom-sprout: � = 0.01. For this setting, the
Stalk Cell has very small chance (probability of
0.01) of becoming an Active Cell in the next
time step.

• always-sprout: � = 0.98. For this setting, the
Stalk Cell has 0.98 probability of becoming ac-
tive in the next step. This is quite an unrealistic
setting; we present it only for didactic purposes.

We present results for four possible configurations: the
cross-product of the growth patterns and sprout pos-
sibilities. We first provide detailed results on a 3 ⇥ 3

1
Note that �SW denotes the probability that an Active

Cell at the SW of an Empty location will move to this

Empty location; hence �SW denotes the possibility that an

Active Cell at SW moves in the NE direction to occupy

an Empty location.

grid over three time slices. Then, we present results
on a bit larger scale, 9 ⇥ 9, over nine time slices. Fi-
nally, we present a framework where we quantify the
uncertainty over the predictions on the last time slice
and discuss how it is a↵ected by the growth patterns
and sprout possibilities.

For inference, in the 3⇥3 case, we used exact inference.
For the 9 ⇥ 9 case, we used forward sampling. Note
that we are able to use forward sampling in our settings
because we provide the initial condition (all locations
at time t = 0) as evidence and compute probabilities
for the remaining time slices.

4.1 Detailed Results for 3⇥ 3

In this toy setting, we provide the evidence for the
initial configuration of the experiment, i.e., we provide
evidence for all locations for time t = 0, and compute
probabilities for all locations for all future time slices.
That is, we compute P (L1

,L2|L0), where Lt denotes
all locations at time t. For t = 0, we provide the
evidence as follows: the middle of the bottom row is
set as the tip of the blood vessel (i.e, L0

x=1,y=0 = AC)
and the rest of the locations are set as Empty. Figure 5
illustrates this setting.

E E E

E E E

E AC E

Figure 5: The initial configuration for the 3⇥ 3 grid.

The straight-growth results are presented in Figures
6 and 7, and uniform-growth results are presented in
Figures 8 and 9.

The simplest setting where the blood vessel grows in
a straight path and that does not sprout at all (Fig-
ure 6) is fairly straightforward to analyze. The tip of
the blood vessel migrates one location towards north at
each step, forming the body of the vessel along the pro-
cess. This setting, therefore, serves as a sanity check.

In the next setting, which is presented in Fig-
ure 7, we keep the growth pattern the same
(straight-growth) but increase the sprout possibility
to 0.98 (always-sprout). In this setting, the blood
vessel grows towards north as expected. Unlike the
seldom-sprout case, however, a Stalk Cell at time
t = 1 became active at time t = 2.

Next, we present results for the uniform-growth

cases. In this setting, the blood vessel has uniform
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AC

.01 .01 .01 .04 .95 .04

.02 .98 .02 .02 .01 .02

.01 .01 .01 .01 .01 .01

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .02 .96 .02

.00 .98 .00 .02 .97 .02

t = 1 t = 2

Figure 6: straight-growth, seldom-sprout.
This is the most straightforward setting where the
blood vessel grows one step at a time towards
north.

AC

.01 .01 .01 .04 .95 .04

.02 .98 .02 .02 .01 .02

.01 .01 .01 .02 .96 .02

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .02 .96 .02

.00 .98 .00 .02 .02 .02

t = 1 t = 2

Figure 7: straight-growth, always-sprout. The
blood vessel grows towards north. A location that
is a Stalk Cell at time t = 1 (L

x=1,y=0) becomes
Active Cell at time t = 2.

AC

.01 .01 .01 .22 .31 .22

.34 .34 .34 .02 .02 .02

.01 .01 .01 .01 .01 .01

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .34 .33 .34

.00 .98 .00 .02 .97 .02

t = 1 t = 2

Figure 8: uniform-growth, seldom-sprout. The
blood vessel has equal probability to grow in all
three directions. A Stalk Cell at time t will most
likely remain as Stalk Cell at t+ 1.

AC

.01 .01 .01 .22 .31 .22

.34 .34 .34 .02 .02 .02

.01 .01 .01 .02 .96 .02

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .33 .33 .33

.00 .98 .00 .02 .02 .02

t = 1 t = 2

Figure 9: uniform-growth, always-sprout. The
blood vessel has equal probability to grow in all
three directions. A Stalk Cell will most likely
become Active Cell in the next time slice.

probability of growing towards NW, N, and NE. In
the seldom-sprout case (Figure 8), the Active Cell

at t = 0 turned into a Stalk Cell at time t = 1 and
remained a Stalk Cell at time t = 2. The Active

Cell, unlike the straight-growth case, has equal
probability of moving in all three directions. In the
last time step, the middle of the top row has higher
probability (.31) than the sides (.22) simply because
the middle location can be reached from more locations
compared to the side locations. The always-sprout

case (Figure 9) is similar except a Stalk Cell at t = 1

becomes an Active Cell at t = 2.

These toy experiments provide insights into how the
process typically works. Next, we present results for
the 9⇥ 9 grid.

4.2 Summary Results for 9⇥ 9

Similar to the 3⇥3 grid, we provide evidence for t = 0
case and compute probabilities for the remaining eight
time slices. In the initial configuration, the middle

93



Active 
Cell

.06 .06 .06 .10 .64 .10 .06 .05 .05 .17 .17 .18 .22 .75 .22 .17 .18 .17

.06 .06 .07 .06 .01 .06 .06 .06 .06 .17 .18 .17 .18 .13 .17 .18 .18 .18

.05 .05 .05 .05 .01 .05 .05 .05 .06 .17 .16 .18 .24 .88 .24 .17 .18 .18

.05 .05 .05 .04 .01 .05 .05 .05 .05 .16 .17 .16 .16 .09 .16 .17 .17 .16

.04 .04 .04 .04 .01 .04 .04 .04 .04 .16 .14 .16 .22 .91 .22 .15 .16 .15

.04 .04 .03 .04 .01 .03 .04 .03 .04 .13 .14 .14 .13 .07 .14 .14 .14 .14

.03 .03 .03 .03 .01 .03 .03 .03 .03 .12 .11 .12 .17 .92 .16 .12 .12 .12

.02 .03 .02 .02 .01 .02 .02 .02 .02 .09 .09 .10 .10 .07 .09 .09 .10 .09

.02 .01 .01 .01 .01 .01 .01 .01 .01 .06 .06 .06 .06 .86 .05 .05 .06 .05

Stalk 
Cell

.22 .23 .22 .23 .23 .23 .24 .23 .23 .14 .14 .14 .15 .14 .14 .14 .14 .14

.23 .23 .23 .27 .86 .27 .23 .23 .22 .14 .14 .15 .18 .77 .18 .14 .15 .14

.23 .23 .23 .28 .87 .26 .24 .23 .22 .14 .15 .14 .14 .11 .14 .15 .14 .15

.23 .22 .23 .26 .88 .26 .23 .23 .22 .14 .13 .14 .20 .89 .20 .14 .15 .14

.21 .21 .22 .25 .89 .25 .22 .21 .21 .13 .14 .13 .13 .08 .13 .14 .14 .13

.20 .20 .20 .23 .89 .23 .20 .20 .20 .12 .11 .12 .18 .91 .18 .12 .12 .12

.18 .17 .17 .20 .90 .19 .18 .17 .18 .10 .11 .11 .10 .07 .11 .11 .10 .10

.14 .14 .14 .15 .91 .15 .14 .14 .14 .08 .08 .08 .11 .92 .10 .08 .08 .08

.10 .10 .10 .10 .93 .10 .10 .10 .10 .06 .06 .06 .06 .07 .06 .05 .06 .06

straight-growth – seldom-sprout straight-growth – always-sprout

Figure 10: AC and SC probabilities for the 9 ⇥ 9 grid at the last time slice (t=8) for straight-growth. Left:
seldom-sprout. Right: always-sprout. On the right, it is apparent that the Stalk Cells and Active Cells
alternate.

of the bottom row is set as an Active Cell and the
remaining locations are set as Empty. Due to space
limitations, we present results for only the last time
slice, t = 8. The straight-growth case is shown in
Figure 10 and the uniform-growth case is shown in
Figure 11.

In the straight-growth seldom-sprout case (the left
side of Figure 10), we see a straight blood vessel for
the middle of the grid, where every cell of the blood
vessel except the tip is a Stalk Cell and the tip is
an Active Cell, as expected. In the always-sprout

case (the right side of Figure 10), the Stalk Cells and
Active Cells alternate, again as expected.

In the uniform-growth seldom-sprout case (the left

side of Figure 11), the blood vessel can be anywhere
on the grid, except, as expected, the middle locations
have higher probability. In the always-sprout case
(the right side of Figure 11), the Stalk Cells and
Active Cells alternate, as expected. Additionally,
the probabilities for locations being a blood vessel (ei-
ther Stalk to Active) are higher in the always-sprout
case compared to the seldom-sprout case, again as
expected.

The results so far have been nothing surprising, but
only confirming our expectations. The value of the
DBNs, however, lies at their capability to reason with
spatial and temporal uncertainty as well as their po-
tential for future directions. We discuss one of the
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Active 
Cell

.04 .06 .07 .08 .09 .08 .07 .06 .04 .17 .22 .24 .26 .26 .25 .24 .22 .17

.03 .04 .03 .04 .04 .04 .04 .04 .03 .16 .20 .21 .20 .20 .22 .21 .20 .16

.03 .04 .03 .04 .03 .04 .04 .03 .03 .21 .30 .34 .40 .40 .38 .34 .29 .21

.03 .04 .03 .03 .03 .03 .03 .03 .03 .15 .19 .18 .17 .17 .17 .19 .19 .15

.03 .03 .03 .03 .03 .03 .03 .03 .03 .22 .37 .51 .60 .63 .59 .50 .36 .21

.02 .03 .03 .03 .02 .03 .03 .03 .02 .15 .17 .15 .13 .12 .13 .15 .17 .15

.02 .03 .02 .02 .02 .02 .02 .03 .02 .13 .16 .52 .71 .80 .70 .53 .16 .13

.02 .02 .02 .02 .02 .02 .02 .02 .02 .10 .13 .13 .09 .09 .09 .12 .13 .10

.01 .01 .01 .01 .01 .01 .02 .02 .02 .06 .06 .06 .05 .86 .06 .06 .06 .06

Stalk 
Cell

.17 .19 .21 .20 .21 .21 .20 .20 .16 .13 .16 .17 .17 .16 .17 .17 .16 .13

.17 .23 .23 .26 .27 .26 .25 .23 .18 .14 .18 .21 .22 .23 .21 .21 .18 .14

.18 .22 .25 .27 .27 .27 .26 .23 .17 .13 .16 .16 .15 .17 .16 .17 .16 .13

.17 .22 .26 .28 .29 .29 .26 .22 .17 .18 .26 .34 .40 .41 .39 .33 .25 .18

.17 .22 .26 .30 .31 .30 .26 .21 .17 .12 .15 .15 .14 .13 .14 .15 .15 .12

.15 .21 .26 .32 .34 .31 .26 .20 .15 .12 .29 .47 .62 .66 .62 .46 .28 .11

.15 .16 .25 .32 .39 .33 .24 .17 .14 .11 .14 .12 .10 .09 .10 .12 .14 .11

.13 .15 .14 .40 .41 .41 .14 .14 .13 .09 .10 .10 .71 .71 .71 .10 .10 .08

.10 .10 .10 .10 .91 .10 .10 .10 .10 .06 .06 .06 .06 .07 .06 .06 .06 .05

uniform-growth – seldom-sprout uniform-growth – always-sprout

Figure 11: AC and SC probabilities for the 9 ⇥ 9 grid at the last time slice (t=8) for uniform-growth. Left:
seldom-sprout. Right: always-sprout. In both cases, the blood vessel can grow uniformly in each direction
and the middle locations have higher probability of having a blood vessel simply because they can be reached
from multiple locations. In the always-sprout case, Stalk Cells and Active Cells alternate.

future directions here supplemented with some pre-
liminary results, and discuss more future directions in
Section 6.

4.3 Quantifying Uncertainty

Given an initial condition, L0, the tissue engineers are
interested in the final status of the tissue, LT , where
T denotes the final step of the experiment. Because
real-world experiment take a long time, mostly weeks,
they would like to be able to stop an experiment at
time t < T and still be able to reason about time T .
Therefore, they are interested in the following ques-
tion: given an initial condition L0, if we stop the ex-

periment at time t, what is the uncertainty over LT ?
More practically: when is the earliest time we can stop
an experiment so that the uncertainty over the last
time slice is below a pre-specified target �?. It is im-
portant to note that when an experiment is stopped,
the researchers dissect the tissue to analyze its proper-
ties, such as vascularization, and hence the experiment
cannot continue beyond that point.

Given an uncertainty measure, this question can be
formulated rather straightforwardly using DBNs. Let
UNC

�
P

�
LT |l0, lt

��
denote the uncertainty over the

predictions over the last time slice, given the initial
condition L0 = l

0 and the status of the experiment at
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time t, Lt = l

t. Then, we simply need to find

argmin
t<T

UNC

�
P

�
LT |l0, lt

��
< � (1)

Obviously, even though we know the initial conditions
l

0, we do not know the status of the experiment at time
t > 0 unless we stop the experiment. Therefore, we
need to take an expectation over all possible outcomes
at time t:

argmin
t<T

X

l

t

P

�
Lt = l

t|l0
�
UNC

�
P

�
LT |l0, lt

��
< �

(2)

where the subscript l

t in the summation ranges over
all possible configurations of Lt.

Unfortunately the number of all possible configura-
tions for an n ⇥ n grid is 3n⇥n, which is clearly in-
tractable to solve. We leave a more systematic solu-
tion for future direction and present results for the case
where the summation is replaced with the most proba-
ble lt|l0. For the UNC measure, there are a number of
possibilities, including the entropy. We present results
where we compute the conditional error of the most
probable blood vessel path. That is, for the most-
likely blood vessel path, we sum 1 � P (SC|lt, l0) for
the body of the vessel and add 1�P (AC|lt, l0) for the
tip of the blood vessel.

We experimented with the 9 ⇥ 9 grid and we set
the sprout possibility to � = 0.01 so that the most
probably path does not have any branches. We
present the uncertainty values for straight-growth

and uniform-growth patterns in Figure 12. The x

axis represents the time we would stop the experiment
and the y axis plots the uncertainty. As expected, the
uncertainty is much higher for the uniform-growth

case and that uncertainty goes down for both growth
patterns as we provide evidence for later time steps.

We scratched only the surface of this important prob-
lem, leaving many interesting research problems for
future work, some of which are discussed in Section 6.

5 RELATED WORK

Tissue engineering experiments typically are per-
formed in-vivo usually on mice and in-vitro in glass
on lab. Researchers experiment with various settings
including the porosity of the sca↵old that the tissue is
expected to hold on to, the VEGF distribution, and
initial blood vessel sprout locations [24, 13, 16, 17].

On the computational side, various researchers have
used agent-based modeling to simulate the tissue en-
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Figure 12: Uncertainties for two growth patterns. As
expected, the straight-growth pattern is more pre-
dictable than the uniform-growth pattern. Addition-
ally, providing evidence for later time slices results in
lower uncertainties in the last time slice.

gineering process [1, 19, 3, 2, 9]. In these simulations,
stem cells, tissue cells, and blood cells are modeled as
agents and are provided rules that are often elicited
from experts. These simulations allow researchers
to experiment with a varying number of parameters,
without having to perform in-vivo or in-vitro experi-
ments. Some of the parameter settings that produce
promising results are then tried in the lab. Based on
the results obtained in the lab, the rules for the agents
are updated and thus there is often a continuous feed-
back loop between the simulations and experiments.

Our DBN modeling is a complementary approach to
the lab experiments and computational simulations.
Because the whole process is inherently stochastic, ob-
taining the average behavior through experiments and
simulations require many trials whereas DBNs provide
a systematic, transparent, and modular mechanism to
reason with uncertainty.

DBNs have been previously used for many practi-
cal applications. Examples include managing wa-
ter resources [8], modeling environmental problems
[23], driverless cars [14], gene regulatory networks
[20, 22, 15], figure tracking [21], ranking [10], and
speech recognition [25] to name a few. To the best
of our knowledge, ours is the first probabilistic graphi-
cal model approach for modeling the tissue engineering
process.
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6 CURRENT LIMITATIONS AND
FUTURE DIRECTIONS

There are two lines of work that we would like to pur-
sue in the future. The first type is enriching the model,
lifting some of the assumptions we made. The second
type of work is a new line of research that we refer to
as active inference, which we will describe shortly.

We made a series of simplifying assumptions in our
current DBN model. One such assumption is that the
tissue space is 2D, whereas in reality it is obviously
3D. The 2D assumption allowed us to work with much
fewer random variables. Additionally, in 2D, the num-
ber of parents for a variable is four whereas in 3D, the
number of parents is ten (itself in the previous time
slice and nine locations under it). It is rather straight-
forward to move from 2D to 3D from a representa-
tion perspective. However, scalability both in terms
of memory and computational time is a challenge.

Another assumption we made is that the gradient of
the VEGF is fixed throughout the grid. That is, we as-
sumed the � and the � values are fixed across the grid.
In reality, however, the growth factor is expected to
have steeper gradient when it is closer to the source of
the distressed tissue cell and it is expected to be more
uniform as we get further away from the distressed
cell. Our simplifying assumption can be easily lifted
by providing a growth factor distribution across the
grid and then translating it into the necessary � and
� parameters.

A limitation that is harder to address is scalability. In
our experiment section (Section 4), we experimented
with 3⇥3 and 9⇥9 grids. These were trivial to exper-
iment with. In reality, however, we need to deal with
thousands if not millions of random variables over a
much longer period of time. This will raise scalabil-
ity issues both in terms of memory and in terms of
computation time. Lifted inference [7] can be used to
address some of these challenges.

Another line of research is to formulate and run ac-
tive inference for dynamic Bayesian networks [6, 5, 4,
12, 11]. Active inference is interested in the following
question: if we are given the opportunity to gather ev-
idence to condition on but gathering evidence is costly,
which variables and what time frames are the most
cost-e↵ective ones to condition on?. We discussed the
initial formulation of active inference and preliminary
results in Section 4.3. However, many questions and
challenges remain to be addressed. For example, given
a target uncertainty threshold �, how can we e�ciently
find the smallest time t, where UNC(P (LT |l0, lt) < �,
without searching all possible t values?

7 CONCLUSIONS

We presented a dynamic Bayesian network model for
vascularization in engineered tissues. This DBN en-
ables i) spatial and temporal reasoning for understand-
ing of vascularization, ii) formulation and investiga-
tion of various parameter settings for vascularization,
and iii) formulation of uncertainty and active informa-
tion gathering to minimize uncertainty. We presented
initial results that provide insights in to the vascu-
larization process. Though the DBN model currently
represents an oversimplification of the reality, it is the
first and hence novel application of DBNs to vascular-
ization. As such, it avails itself to many interesting
research challenges and opportunities.
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