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Abstract. Determining the graph-theoretic properties of large real-world networks like
social, computer, and biological networks, is a challenging task. Many of those networks
are too large to be processed efficiently and some are not even available in their entirety. In
order to reduce the size of available data or collect a sample of an existing network, several
sampling algorithms were developed. They aim to produce samples whose properties are
close to the original network. It is unclear what sample size is sufficient to obtain a sample
whose properties can be used to estimate those of the original network. This estimation
requires sampling algorithms that produce results that converge smoothly to the original
properties since estimations based on unsteady data are unreliable. Consequently, we eval-
uate the monotonicity of sampled properties while increasing the sample size. We provide
a ranking of common sampling algorithms based on their monotonicity of relevant network
properties using the results from four nework classes.

1 Introduction

Today’s networks are quite large, in many cases too large to understand the net-
work or to compute its properties. We have to reduce the complexity and therefore
the size of networks to use the network for analyses and research. We can reduce
the size by using graph coarsening or sampling techniques. Graph coarsening and
some sampling techniques require the availability of the complete network. This
constraint is rarely satisfied. Sampling by exploration allows to gain knowledge
about the unavailable network, but it usually distorts properties as the sampling
process can be biased. There are two large classes of sampling algorithms, we can
sample using a breadth first sampling (BFS) approach, constructing the sample
from the local area first, or we can use a random walk (RW) approach, traversing
along random paths of nodes and constructing the sample with nodes from deeper
areas of the network. The convergence behavior of network properties like the de-
gree distribution depends highly on the underlying network and the used sampling
algorithm.
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Many work has been done to overcome these biases and many specialized algo-
rithms were developed. These algorithms produce samples, whose properties con-
verge faster to the original networks properties, but as the properties of the original
network are typically unknown, it is undecidable whether the quality demands or
original properties are met.

Our approach is another way to solve this problem. We are proposing a new met-
ric, which allows to develop an estimator for network properties in future work.
This estimator should deliver the properties of the original network if it gets the
network properties of the sample, the specification of the sampling algorithm, and
the assumed size of the original network. For the development of such an estimator,
we need the sampling algorithm to produce a sample with monotone converging
network properties. In this paper, we are investigating the convergence monotonic-
ity of the network properties on sampled networks.

The rest of the paper is structured as follows: Section 2 presents the related work
about sampling and the evaluation of newly developed sampling algorithms. We
present in Section 3 the desired behavior of sampling algorithms. We present the
results and the discussion of our work in Section 4 and conclude with a summary
and outlook in Section 5.

2 Related Work

The related work lists two typical classes of sampling techniques. The first one is
the deletion of nodes or edges. Node deletion techniques use the complete network
as basis and are deleting nodes until the network size is reduced to the desired
size. Edge deletion uses a similar technique, instead of removing nodes, these algo-
rithms remove edges and perhaps the attached nodes. The complete network has
to be available to apply these two techniques. The second technique is sampling
by exploration, using this technique, the sampling algorithm traverses from a start
node into the network and collect the nodes to the sample. This technique is inter-
esting for at least two reasons: First, it is easy to use by instrumenting crawlers.
Second, we do not have this dependency on the availability of the complete net-
work. Sampling by exploring is the common technique to reduce the complexity
of networks and gain an excerpt of the whole network.

A lot of research has been done into the direction of developing more sophisti-
cated sampling algorithms in this area. These algorithms are developed to pro-
duce samples, whose property values converge faster towards the property values
of the original network. The sampling algorithms can be classified into breadth



first approaches and random walk ones. Table 1 shows the classification, based on
the type of walking, and the abbreviations of the analyzed algorithms.

Breadth First Sampling

The BF'S algorithms traverse through the network by focusing on the local neigh-
borhood first. The simplest implementation is a classical BF'S which visits all the
neighbors of node. Krishnamurthy, Leskovec and Stutzbach [4,7,13] use the BFS
in their work. Goodman et al. [2] introduced snowball sampling (SS), which is
a variation of the BFS and visits only a specifiable number of new, still unseen
neighbors. Lee et al. [6] have evaluated this variation. Similar to SS, respondent-
driven sampling (RDS) is developed by Heckarthorn et al. [3] and analyzed by
Rasti and Kurant [10,5]. RDS visits a specifiable number of random neighbors,
ignoring whether these neighbors are already known. Forest fire (FF), introduced
by Leskovec et al. [7], is the last BFS derivate. It collects all neighbors with a
certain probability into a walking queue.

Random Walk Sampling

The second class is the one of the random walk algorithms. The simplest one is
the random walk sampling (RW). This algorithm traverses through the network
by exploring along random neighbors. This sampling algorithm is well studied,
e.g. by Stutzbach, Leskovec and Ribeiro [13,7,11]. Intuitively, and mathematically
proveable, the RW sampling is biased towards nodes with higher degrees in the
network. To overcome this bias, and to collect a representative sample of the
network, two methods of correcting the probability for the next node were intro-
duced. Stutzbach et al. [13] called their version random walk with degree correction
(RW-DC). Rasti et al. [10] proposed a slightly different correction and named it
metropolized hastings random walk (RW-MH). Both approaches depend on the
degree of the potential next node on their exploration path.

Stutzbach et al. [13] showed two further variations of the RW: The first one is the
random stroll (RS). This variation is moving like the RW but skips intermediate
nodes from adding them to the sample. The second algorithm is the combination
of RS and RW-DC. Random stroll with degree correction (RS-DC) skips interme-
diate nodes like the RS and moves with a degree correction like the RW-DC.

Leskovec et al. [7] introduced another variation of the RW. In particular, they
introduced a jump probability in the random jump (RJ). This probability allows
to move to a farther area of the network to avoid getting caught in a small area
of the network.



Ribeiro et al. [11] developed a variation of a random walk with multiple instances.
Since a simple parallel execution would suffer from the same problems like the
classical RW, they introduced a dependency between the instances. Only one in-
stance, in the default setting the one with the highest node degree on the current
position, is allowed to move through the network. The active instance is picked
every round again. This sampling algorithm is called frontier sampling (FS).

Another algorithm, similar to the RW, is the depth first sampling (DFS). This
algorithm moves to the first neighbor and collects the remaining neighbors in a
queue. This queue affects the behavior if the algorithm is getting caught. Even
though there are similarities between RW and DF'S, the results are quite different
due to the impact of the queue in DFS. This algorithm is often used as a kind of
baseline, e.g. by Krishnamurthy and Leskovec [4,7].

Table 1. Analyzed sampling algorithms.

Class Algorithm Abb. Related Work
Breadth First Sampling BFS [4,7,13]
. . Forest Fire FF [7]
Breadth First Sampling Respondent-driven Sampling RDS [3,10,5]
Snowball Sampling SS 2]
Depth First Sampling DFS [4,7]
Frontier Sampling FS [11]
Random Jump RJ [7]
. Metropolized Hastings Random Walk [RW-MH |[10]
Random Walk Sampling Random Stroll RS [13]
Random Stroll with Degree Correction RS-DC  |[13]
Random Walk RW [13,7,11]
Random Walk with Degree Correction | RW-RDC|[13]

Network Properties

We analyze the common network properties. The earlier introduced sampling al-
gorithms are partially evaluated with these metrics in their corresponding papers.
There are two types of properties: The first one is a single scalar value, for ex-
ample a floating-point number or an integer. The second type is a distribution,
which provides for each possible value a certain probability to find this value in
the network. We concentrate our work in this paper on the single scalar values.

The assortativity coefficient (AC) is a measure for the correlation of connected



nodes. We use the definition from Newman et al. [9,8]. We analyze the cluster-
ing coefficient (CC) in both characteristics, the transitivity which is for example
used by Chakrabarti et al. [1] and the average clustering coefficient which is for
example used by Krishnamurthy et al. [4]. The degree distribution (DD) allows
the derivation of multiple single scalar values. We inspect the average node de-
gree, the average in-degree, the average out-degree and the maximum degree of
the networks. We are deriving multiple single scalar values from the shortest path
length distribution (SP), too. The characteristic path length is a measure for the
expected path length in the network, the diameter is the maximum shortest path
length in the network. As the diameter is prone to distortions, we are analyzing
the effective diameter of the 90% quantile. This metric computes the maximum
shortest path length for the part of 90% connected nodes in the network. We use
the definition from Chakrabarti et al. [1] in our implementation. By ignoring the
end of the heavy tail, we remove the sensitivity for deformed networks. Table 2
lists the used metrics, submetrics and abbreviations for the metrics.

Table 2. Evaluated network properties, analyzed submetrics.

Metric Submetrics \Abb.

Assortativity Assortativity Coefficient ‘AC

Clustering A%;/;i:i?vi;ustering Coefficient cC
Average Degree (avg)

Degree Average In-Degree (avgin) DD

Average Out-Degree (avgout)
Maximum Degree (max)

Characteristic Path Length (cpl)
Shortest Path Diameter (diam) Sp
Effective Diameter, 90% (effectiveDiam)

3 Monotonicity

We propose a new approach to circumvent the nescience of the original networks
properties. Instead of evaluating the sampling algorithms with respect to the speed
of convergence, we evaluate the monotonicity of the property convergence along
increasing sample sizes. The monotonicity is an important property to support
the development of estimators to project the properties of the sampled network
to the original network. We rank the well known and commonly used explorative
sampling algorithms with respect to the monotonicity properties of their samples.



The looked-for algorithm produces smoothly approximating properties among in-
creasing sampling sizes. We count the direction changes of the property conver-
gence while sampling with increasing sample sizes. Figure 1 shows the aggregrated
AC of a webgraph, sampled 100 times with DFS (in blue) and RW (in red). The
original networks assortativity coefficient is plotted as a green line. The AC sam-
pled with RW is obviously slower converging than the AC sampled with DFS, even
though, the smooth progression allows develop a simpler estimator for the original
property values. We are computing the monotonicity by comparing the property
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Fig. 1. Monotonicity of the AC on a webgraph, sampled with DFS (blue) and RW (red), original value
(green).

values of consecutive samples according to Eq. (1). v; are the values of a network

property in the sample i, the sample i+1 is the next larger sample, the last v;
yields the property value of the original network.

Torv < vy
monotonicity; = < =; :v; = Vi (1)

bt > v
Intuitively, a change of monotonicity is defined as a change in the direction of con-
vergence as in Eq. (2) at position ¢ to i+1. An intermediate equality of successive



property values does not cause a change in monotonicity.

T Tidin dige - (2)

A good sampling algorithm approximates the inspected properties with as few
changes in the monotonicity progress as possible. This property definition of a
good sampling algorithm is also intuitive as it matches the perception of a good
approximation.

4 Evaluation

We used GTNA [12] to implement and compute the sampling process. GTNA
allows to integrate the network generation, the application of the sampling al-
gorithms and the computation of the graph-theoretic metrics. We initialized the
sampling algorithms with random start nodes, and executed 100 runs for the net-
works with < 500,000 nodes and 20 runs for the networks with > 500, 000 nodes
to reduce the impact of randomness in the sampling process. We sampled 1% -
10% in 1% steps and 15% on all networks, networks with < 500,000 nodes are
also sampled with 20% and 25%.

We selected networks based on the related work, which is presented in Section
2. The analyzed networks are listed in Table 3. The networks are available at the
SNAP project®. We identified four groups of networks based on their network type:
social networks in a directed and undirected form, directed p2p networks and a
directed webgraph. We calculated the earlier presented network properties (AC,

Table 3. Evaluated networks, classified by their context.

Class Type Network Nodes
cit-HepPh 34,546
social directed cit-HepTh 27,770

soc-Epinionsl 75,879
ca-GrQc 5,242

social undirected com-Youtube 1,134,890

. p2p-Gnutella30 36,682
p2p directed o Grutella31 62,586
webgraph directed web-Google 875,713

CC, DD, and SP) to provide a useful evaluation for the property monotonicity of

3 Stanford Large Network Dataset Collection, available at http://snap.stanford.edu/data/
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the sampled networks. We show the results in Table 4. The sampling algorithms
are ranked according to their monotonicity properties. We ignored the transitiv-
ity in this evaluation, since all algorithms perform very good with respect to the
monotonicity of the progression of this metrics values. As introduced in Section 3,
we are concentrating on single scalar properties, and therefore we are deriving the
submetrics as listed in Table 2. These single scalar values are combined as in Eq.
(3) to have a single value per property. To avoid an overweighting of one of these
submetrics, we are normalizing by the number of submetrics.

gp |

cpl + diam + ;ffectiveDiam) . DD = (avg + avgy, +4avgout + max) (3)

We expect to provide a recommendation of sampling algorithms for the complete
network class. Therefore, we sum up the single network properties of each network
instance in a group to have a cumulated monoticitiy value per network property. To
be able to compare these values over the borders of a group, we are normalizing
the values by the number of networks within the group. This is formulated in
Eq. (4) (group represents the network groups, listed in Table 3). The function
M returns the value of a certain metric, computed on the given network. Mg, oy,
collects the normalized, added values of the analyzed metrics. M is a placeholder
for the computed metrics, listed in Table 2.

> M(nw); M e {AC,CC,DD,SP} (4)

nwegroup

1
M roup — 7|
T |group)

To be able to provide a recommendation not only on the basis of a single property
but for a monotone sampling of the complete network, we cumulate the values of
the single network properties of a group and are normalizing them by the number
of metrics. This is shown in Eq. (5) and described by v.

ACgroup + C(Cygroup + DDgroup + SPgroup
Vgroup = 1 (5)

The Uniform Sampling (US), which is a random node selection algorithm, is used
as ground truth. This algorithm is not practicable in real world applications, but
as it produces a real random sample it is a good baseline to compare the mono-
tonicity of the analyzed algorithms with. We are providing in Table 4 the by v
sorted ranking of sampling algorithms. Table 4 shows the domination of the ran-
dom walk algorithms on the directed social network and the webgraph, the BFS
algorithms are dominating the undirected social network and the P2P networks.
An interesting fact is the stable presence of the US in the upper half of the rank-
ing. Besides the webgraph, the simple algorithms are not far behind the forefront.
There is typically either BF'S or RW within the best five sampling algorithms. We



Table 4. Summed monotonicity rankings per network group

‘Rank‘u - directed social‘l/ - undirected social‘ v - p2p ‘I/ - webgraph‘

1 RW 0.74 US 1.63 BFS 1.44| RW-DC 0.83
2 |RW-DC 0.94 DFS 1.69 US 1.79] RS-DC 0.83
3 RJ 1.01 RDS 1.71 RS-DC 1.83 RJ 0.83
4 |RW-MH 1.13 FS 1.91 FF 1.88|RW-MH 0.96
5 FS 1.51 BFS 1.98 RW-MH 1.92 FS 1.42
6 UsS 1.58 RS-DC 2.08 RS 2.04 RW 1.58
7 RS 1.63 SS 2.10 RJ 2.13 US 1.83
8 RS-DC 2.13 RS 2.43 RW-DC 2.21 RS 1.92
9 DFS 2.25 RJ 2.63 DFS 2.58 FF 2.69
10 SS 2.28 RW-MH 2.71 RDS 2.71 SS 3.27
11 RDS 2.42 RW 3.17 SS 3.17 BFS 3.52
12 FF 2.46 RW-DC 3.25 FS 3.33 RDS 3.69
13 BFS 2.92 FF 3.28 RW 3.96 DFS 3.71

are showing in Figure 2(a) the plotted values of the results for the directed social
network. We have built groups for AC, CC, DD, and the SP, the last group is
showing the v-values of the column from Table 4. The AC is completely monotone
sampled by the RW and the RW-MH, the other algorithms are including changes
in the monotonicity, a high amount of changes is especially visible at the group of
BFS algorithms. The plot of the CC values showing similar results, the advantage
of the random walk group is even higher, besides the DFS, all algorithms are bet-
ter than the BFS algorithms. The monotonicity analysis of the DD metric shows
similar monotonicity values for all sampling algorithms. The advantage of the RW
algorithms is not distinctly present. The SP metric is well preserved by the BFS,
the advanced algorithms of the BFS group and the group of RW algorithm pro-
duce similar monotonicity values. The advantage of the BFS is intuitive, as the
shortest path properties are constantly converging by extending the exploration of
the direct neighborhood in rings. The RW algorithms are traversing into the deep
of the network and are usually producing longer paths. Beside the SP property, the
results for the webgraph are similar. Figure 2(d) shows the plot for the webgraph.
The advantage of the BFS on the SP property is not present on the webgraph.

The undirected social network, shown in Figure 2(b), is similarly sampled with
all algorithms. The monotonicity of all samples is similar for the combined metrics
of the network, DD and SP. The CC has a negative outlier with RW-DC which
is not monotonously converging. The AC has two positive outliers BFS and RDS,
which produce very monotone AC values.

The P2P network, shown in Figure 2(c), is the only network with different mono-



tonicity results, as shown in Table 4. The advantage of the RW algorithms is not
present. The AC is dominated by BFS and FF, while the CC is dominated by BFS,
RS and RS-DC. The DD is nearly equal monotone for all sampling algorithms, only
the BF'S has a change in the monotonicity but these values can be neglected with a
value of 0.25. The SP property is slightly dominated by RW algorithms. Combined
to the v value, the algorithms perform with similar monotonicity for the complete
network. There is no predominant algorithm for this group of P2P networks.

5 Conclusion

Today’s networks are large, often too large to understand and process them di-
rectly. The computation of graph-theoretical properties on these large networks is
a challenging task. We need to reduce the networks complexity and therefor the
size of the network. The main technique for achieving this reduction of complexity
is sampling by exploration. These sampling algorithms traverse through the net-
work and collect the sample. Due to the network structure, some algorithms distort
the networks properties. Many improved sampling algorithms were introduced to
overcome these biased sampling processes. The properties of the sampled network
are highly depending on the underlying network and the used sampling algorithm.

As the original networks properties are mostly unknown, we are not able to com-
pare the sample properties with them. Therefore, it is undecidable if or when the
quality demands are met. We propose another way to overcome this problem. We
evaluate the convergence monotonicity to support the development of an estimator
for the common original network properties. The common properties are e.g. the
degree distribution, and the shortest path distribution. To be able to provide a use-
ful monotonicity evaluation, we chose networks based on the related work, which
analyzes the newly developed sampling algorithms. To evaluate the convergence
monotonicity, we sampled multiple times and compute the properties of the sam-
ples. The convergence along increasing sample sizes is collected and aggregated.
We rank the sampling algorithms with respect to the monotonicity values of their
samples.

The main results of our evaluation are as follows: the complex algorithms en-
hancing the simple basic algorithms are not necessarily better in our monotonicity
metric. Moreover, the simple algorithms random walk and breadth first sampling
are the best algorithms of their group or at least at the forefront of their groups.
The random walk algorithms are typically outperforming their breadth first sam-
pling counterparts. The breadth first sampling algorithms are only as good as the
random walk algorithms on the P2P and undirected social networks. The shortest
path properties are well preserved by the breadth first sampling, they are inferior



(d)

Fig. 2. Results of the monotonicity of the analyzed sampling algorithms: (a) directed social networks,

(b) undirected social networks, (¢) p2p networks, (d) webgraphs.



compared to the random walk ones on the webgraph and the P2P networks only.
An interesting fact is that the monotonicity of the uniform sampling which is used
as ground truth: The uniform sampling is never the most monotone algorithm but
is in the better half of the ranking on all networks.

In the future work, we will develop a metric to measure the monotonicity of net-
work properties which are not describable with a single scalar value, but with a
distribution. The open question regarding this metric is: What is a monotonely
converging distribution and how to measure this monotonicity? After answering
this question, we want to develop estimators to assess the properties of the original
network by analyzing sampled networks.

References

10.

11.

12.

13.

. CHAKRABARTI, D., AND FaALOUTSOS, C. Graph Mining : Laws , Generators , and Algorithms. ACM

Computing Surveys 38, March (2006).

. GoobpmaN, L. A. Snowball Sampling. The Annals of Mathematical Statistics 32, 1 (Mar. 1961),

148-170.
HECKATHORN, D. D. Respondent-driven sampling: a new approach to the study of hidden popula-
tions. Social problems 44 (1997), 174-199.

. KRISHNAMURTHY, V., SUN, J., FALOUTSOS, M., AND TAURO, S. Sampling Internet Topologies :

How Small Can We Go ? In International Conference on Internet Computing (2003).

KURANT, M., MARKOPOULOU, A., AND THIRAN, P. On the bias of BFS (Breadth First Search).
In 2010 22nd International Teletraffic Congress (ITC 22) (Sept. 2010), IEEE, pp. 1-8.

LEeE, S., Kim, P.-J.; AND JEONG, H. Statistical properties of sampled networks. Physical Review
E 78, 1 (Jan. 2006), 016102.

LESKOVEC, J., AND FALOUTSOs, C. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining (New York, NY, USA,
2006), KDD ’06, ACM, pp. 631-636.

NEWMAN, M. Mixing patterns in networks. Physical Review E 67, 2 (Feb. 2003), 026126.
NEWMAN, M. J. Assortative Mixing in Networks. Physical Review Letters 89, 20 (Oct. 2002),
208701.

Rasti, A. H., TorkJazi, M., REJAIE, R., STUTZBACH, D., DUFFIELD, N., AND WILL-
INGER, W. Evaluating Sampling Techniques for Large Dynamic Graphs. Technical Re-
port CIS-TR-08-01, Department of Computer and Information Science, University of Oregon,
http://mirage.cs.uoregon.edu/pub/tr08-01.pdf, Sept. 2008.

RIBEIRO, B., AND TOWSLEY, D. Estimating and sampling graphs with multidimensional random
walks. In Proceedings of the 10th annual conference on Internet measurement - IMC 10 (New York,
New York, USA, Nov. 2010), ACM Press, p. 390.

SCHILLER, B., BRADLER, D., SCHWEIZER, 1., MUHLHAUSER, M., AND STRUFE, T. GTNA: a
framework for the graph-theoretic network analysis. In Proceedings of the 2010 Spring Simula-
tion Multiconference (San Diego, CA, USA, 2010), SpringSim ’10, Society for Computer Simulation
International, pp. 111:1—111:8.

STuTZBACH, D., REJAIE, R., DUFFIELD, N., SEN, S., AND WILLINGER, W. Sampling Techniques
for Large, Dynamic Graphs. In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings (Apr. 2006), Ieee, pp. 1-6.



	Monotone Sampling of Networks

