Design Specification of Cyber-Physical Systems:
Towards a Domain-Specific Modeling Language
based on Simulink, Eclipse Modeling
Framework, and Giotto

Muhammad Umer Tariq, Jacques Florence, and Marilyn Wolf

Georgia Institute of Technology,
Atlanta, USA
{m.umer.tariq, jacques.florence,marilyn.wolf}@gatech.edu

Abstract. In this paper, we propose a domain-specific modeling lan-
guage for specifying the design of cyber-physical systems. The proposed
domain-specific modeling language can capture the control, comput-
ing, and communication aspects of a cyber-physical system design in
an integrated manner. The concrete syntax of the proposed domain-
specific modeling language has been implemented as an extension of
standard blocks available in Simulink. The meta-model for the proposed
domain-specific modeling language has been defined using the Ecore
meta-modeling language, which was originally developed as a part of
Eclipse Modeling Framework project. We have also implemented an ini-
tial version of a parser that converts Simulink models, employing the
proposed domain-specific modeling language, into corresponding Eclipse
Modeling Framework instance models, which can then serve as input
to model transformation tools. The proposed domain-specific model-
ing language builds on the concepts introduced by Giotto programming
paradigm for platform-independent specification of control law, imple-
mented by the controller in a cyber-physical system.

Keywords: Model-driven development, cyber-physical systems, domain-
specific modeling language

1 Introduction

Embedded control systems consist of a physical plant being controlled by a feed-
back control algorithm, executing on an embedded computing platform. Typical
examples of embedded control systems include automotive and avionics. De-
velopment of embedded control systems typically involves the following steps:
requirements specification, control design and analysis, embedded design and
analysis, and implementation. Model-driven development paradigm has been

successfully applied to the field of embedded control systems through the defi-
nition of appropriate domain-specific modeling languages (DSMLs) for different
development steps of embedded control systems and appropriate model trans-
formations among these DSMLs. Figure 1 shows the DSML and analysis tools
used for each development step of embedded control system.

Specification Languages Analysis Tools
* Use Cases
(Combined with Formal
Descriptive Specification

Languages)

Development Steps

* Consistency checks
* Completeness checks

Embedded Design /

* Simulink/Stateflow
Block Diagrams

* UML MARTE Profile

* Simulink/Stateflow
Simulation

*+ TrueTime Simulation

Analysis + AADL (Simulink + RTOS)

* Specialized
Programming Languages
(Lustre, Giotto)

* Formal Verification of
Time Safety

* General Purpose
Programming Languages
(C/C++)

Fig. 1. Embedded control systems: development steps, specification languages, and
analysis tools.

Last couple of decades have witnessed a dramatic decrease in the cost of
sensing, communication, and computation technologies. This phenomenon has
enabled the development of a new breed of embedded control systems that are
much larger in scale, resulting in non-guaranteed wide-area communication sub-
systems. Moreover, these systems have longer lifespans and are more open in
nature, resulting in the need for online reconfiguration and maintenance. Some
examples of this new breed of embedded control systems are smart electric grids,
smart irrigation networks, and vehicular networks. Design techniques and tools
available in the domain of traditional embedded control systems cannot be di-
rectly applied to this new breed of embedded control systems. The field of cyber-
physical systems aims to address these issues by rethinking the abstractions in-
volved in the development of embedded control systems. In particular, the field of
cyber-physical systems emphasizes the co-design of control, communication, and
computation aspects of a system. As a result, the development steps for cyber-
physical systems are requirements specification, cyber-physical system design
(incorporating the co-design of control and computation), and implementation.

Figure 2 shows the development steps of a cyber-physical system (CPS) and
analysis tools required at each of these steps. However, in order to develop a
cyber-physical system according to model-driven development paradigm, the
DSMLs used to specify the design of embedded control systems are not sufficient.
An appropriate DSML for CPS design specification must be able to capture the

Specification Languages Analysis Tools
* Use Cases

1
i
i
(Combined with Formal Lo Consistency checks
i
1
i
]

Development Steps

Descriptive Specification * Completeness checks
Languages)

* Proposed DSML for CPS
Design Specification

(A DSMLthat extends Simulink
with blocks for cyber entities)

* Cyber-physical
Co-Simulation
(Combination of Simulink
and a network simulator)

CPS Design / Analysis

* Specialized
Programming Languages
(Lustre, Giotto)

* Formal Verification of
Time Safety

* General Purpose
Programming Languages
(C/C4+)

s S

Fig. 2. Cyber-physical systems: development steps, specification languages, and anal-
ysis tools.

control, communication, and computation aspects of a CPS design. Moreover,
an appropriate DSML for CPS design specification must independently convey
the characteristics of a CPS computing platform as well as the control law im-
plemented on that computing platform. The meta-model for this DSML can
then be used to define model transformations that convert a CPS design speci-
fication into appropriate input for analysis tools (such as simulation and formal
verification tools) as well as executable code for implementation platforms.

In this paper, we propose a DSML for CPS design specification. The pro-
posed DSML is capable of capturing the control, communication, and computa-
tion aspects of a CPS design, as it provides blocks to represent physical system,
cyber system, and cyber-physical interface involved in a cyber-physical system.
The proposed DSML builds on the concepts introduced by Giotto programming
paradigm [5] in order to specify the control law, executed by the embedded con-
troller of CPS, in a platform-independent manner. Since Simulink (combined
with auxiliary Stateflow and Simscape blocks) has become a defacto standard
in the domain of embedded control system, we chose to implement the concrete
syntax of the proposed DSML as an extension of standard blocks available in
Simulink. The abstract syntax of the proposed DSML has been defined using
an Ecore-based meta-model. Ecore meta-modeling language was originally de-
veloped as a part of Eclipse Modeling Framework (EMF) project. We have also
implemented an initial version of a parser that converts Simulink models, em-
ploying the proposed DSML, into corresponding EMF instance models, which
can then serve as input to model transformation tools. Figure 3 shows the envi-
sioned model-driven development toolset for CPS based on the proposed DSML.

The rest of the paper is organized as follows. In Section 2, we present a brief
review of the component technologies involved in the development of DSML,
proposed in this paper. In Section 3, we present the details of the proposed

DSML with
Ecore-based -——==
meta-model

CPS Design
Specification

Model Transformation
(Uses source and target
DSML meta-models)

InputSpecification
to Formal
Verification Tools

Program
Specification for
Execution Platform

Input Specification
to CPS Simulator

o ! | 1
& uses uses,
’

\ v v
DSML with DSML with DSML with
Ecore-based Ecore-based Ecore-based
meta-model meta-model meta-model

Fig. 3. Role of proposed DSML in the envisioned model-driven toolset for cyber-
physical systems.

DSML for CPS design specification. In Section 4, we outline some related work.
In Section 5, we present the conclusion.

2 Component Technologies

In this section, we briefly review the technologies involved in the definition and
implementation of the proposed DSML for CPS design specification.

2.1 Simulink

Simulink, developed by MathWorks, is a simulation and model-based design tool
that provides a graphical editor for specifying a model as a set of hierarchical
block diagrams. Simulink is often used in conjunction with some auxiliary tools
that provide specialized types of blocks to be used in Simulink block diagram.
Two important examples of such auxiliary tools are Stateflow and Simscape.
Stateflow allows the users to model decision logic based on the state machine
and flow chart formalisms. Simscape provides fundamental building blocks from
various domains (such as electrical, mechanical, and hydraulic) that can be com-
bined to model a physical plant.

Simulink has become a defacto standard in the field of embedded control sys-
tems. It is not only used to simulate and analyze the proposed designs, but var-
ious model transformations have been defined to generate executable code from
Simulink models for various embedded platforms. Therefore, we have chosen to
develop the concrete syntax of the proposed DSML for CPS design specification
as an extension of the standard blocks available in Simulink toolset.

2.2 Eclipse Modeling Framework

Eclipse is an open-source software project, aimed at providing a platform that
can be reused for the development of integrated development environments

(IDEs). Eclipse is divided into numerous top-level projects such as Eclipse Project,
Modeling Project, Tools Project, and Technology Project [1]. Eclipse Project is
the core project that provides a generic framework for tools development and a
Java IDE, built using this generic tools development framework. The Modeling
Project has served as the focal point for the implementation of model-driven
development technologies under the Eclipse project [2].

At the core of the Eclipse Modeling Project is Eclipse Modeling Framework
(EMF) and all the other model-driven development technologies (such as model-
to-model transformations and model-to-text transformations) have been built on
top of EMF. At it core, EMF is a framework for defining a model and generating
Java code from that model. As a part of EMF, Ecore modeling language has been
defined that can be used to specify the model from which EMF generates a set of
Java classes and interfaces. However, in the model-driven development context,
an Ecore model can also serve as the meta-model of a DSML. We have used an
Ecore-based meta-model to specify the abstract syntax of our proposed DSML
for CPS design specification.

2.3 Giotto

Typical development process for an embedded control system requires a collabo-
ration between control engineer and software engineer. First, a control engineer
models the physical plant, derives the feedback control law, and validates the
controller design through mathematical analysis and simulation. Then, a soft-
ware engineer decomposes the computational activities of a feedback controller
into time-constrained software tasks, develops code for these tasks in a tradi-
tional programming language (such as C), and assigns priorities to these tasks
so that they could meet their timing constraints while being scheduled by an
RTOS scheduler. Giotto is a specialized programming language for embedded
control systems that aims to bridge the communication gap between a control
engineer and a software engineer by providing an intermediate level of abstrac-
tion between control design and software implementation [5].

Giotto program provides a platform-independent description of feedback con-
troller design in terms of time triggered sensor readings, actuator updates, task
invocations, and mode transitions. Then, a Giotto compiler compiles the Giotto
program onto a specific computing platform, preserving the functionality as well
as the timing behavior, specified by Giotto program. Any CPS design specifica-
tion must independently convey the computing platform characteristics as well
as the controller design that needs to be implemented on that computing plat-
form so that this design specification can then serve as an input to appropriate
CPS analysis tools. Therefore, our proposed DSML builds on the concepts intro-
duced by Giotto programming paradigm for platform-independent specification
of the control law, implemented by the controller in a cyber-physical system.
Figure 4 reviews the major concepts involved in a Giotto program [5].

Actuator Port: Actuator Port:
A2

£
o x
=
= a(
-/
[

Sensor Port: Sensor Port:
82 S1

Fig. 4. Major programming elements of Giotto programming language [5].

3 Proposed Domain-Specific Modeling Language

In this section, we present the details of the proposed DSML for CPS design
specification. The individual elements of the proposed DSML can be divided into
three categories: physical system blocks, cyber system blocks, and cyber-physical
interface blocks. CompoundPhysicalPlant, AtomicPhysicalPlant, PhysicalSystem-
Parameter and PhysicalLink blocks belong to the physical system blocks. Sensor
and Actuator blocks make up the cyber-physical interface blocks. ComputingN-
ode, NetworkLink, NetworkRouter, NodePlatform, NodeApplication, Mode, Task,
ModeSwitchLogic, SensorPort, ActuatorPort, InputMsgPort, and OutputMsgPort
make up the cyber system blocks.

wm ryraamal o1 ou
Sensor

Actuator CompoundPhysicalPlant

ComputingNode3
mputingNode! ComputingNode 1

NetworkLink3

NetworkLink1

NetworkRouter

NetworkLink2

ComputingNode2

Fig. 5. A CPS design, specified as a Simulink model with the proposed DSML.

Physical system component of a CPS design can be specified by a set of Atom-
icPhysicalPlant blocks connected to each other through PhysicalLink blocks.
PhysicalLink blocks represent “flow of energy” between components of a phys-
ical plant. A set of AtomicPhysicalPlant and PhysicalLink blocks can also be
grouped together into a CompuondPhysicalPlant block. Moreover, PhysicalSys-
temParameter blocks are used to identify the elements of a physical plant that
are to be sensed and actuated upon by the cyber system. Cyber-physical inter-
face of a CPS design is captured by a set of Sensor and Actuator blocks. Each
Sensor and Actuator block is connected to a PhysicalSystemParameter block.

Cyber aspects of a CPS design include the network topology of comput-
ing nodes, platform characteristics of each computing node, and the application
software executing on each computing node. These aspects can be captured by
connecting a set of ComputingNode, NetworkRouter, and NetworkLink blocks.
Each ComputingNode block must include a NodePlatform and NodeApplication
block. NodePlatform block in turn includes Processor, RTOS, Middleware, and
ApplicationFramework blocks, which allow it the capture the platform char-
acteristics of a computing node. The NodeApplication block includes a set of
Giotto-inspired blocks that can specify the feedback control algorithm executing
on that computing node in a platform independent manner.

D D
PhyParam1 PhyParam1 PhyParam2| PhyParamr2

PhyPort1 PhyPort2]

AtomicPhysicalPlant

PhysicalLink2 Physicallink1

APhyParaml PhyParam2

PhyPort{ PhyPort2

AtomicPhysicalPlant1

Fig. 6. Internal details of CompoundPhysicalPlant block in Figure 5.

Sensor Interface OutputMsgPort p

X InputMsgPort
OutputMsgPort1 p

Actuatorinterface NodeAppication

(@p

Networkinterface Ain1 Outtp

NodePlatform

Fig. 7. Internal details of ComputingNode block in Figure 5.

OutputMsgPort

OutputMsgPort 1
OQutputMsgPort1

Merge

InputMsgPort NomalMode

Ch
0 InputMsgPort O Port

ModeSwitchLogic

)
OutputMsgPort

DegradedMode

Fig. 8. Internal details of NodeApplication block in Figure 7.

InputMsgPort QutputMsgPort
In1 Qutt

Task2

In1 Outt
OutputMsgPort
Task1 1

Fig. 9. Internal details of Mode block in Figure 8.

Concrete syntax of the proposed DSML has been implemented as an ex-
tension to standard blocks available in Simulink. In particular, a new Simulink
library has been developed that provides a Simulink block for each of the pro-
posed DSML element. We have also used Simulink’s mask interface capability
to provide each new Simulink block with a custom look, and a dialog box for
entering element-specific parameters, such as the bandwidth and delay of Net-
workLink block. Figure 5 shows a Simulink model that specifies a CPS design
using the proposed DSML. Figure 6 shows the internal details of Compound-
PhysicalPlant block. Figure 7 shows the internal details of a ComputingNode
block, which contains a NodeApplication and a NodePlatform block. Figure 8
shows the internal details of NodeApplication block, which consists of a set of
Mode blocks and a ModeSwitchLogic block. Figure 9 shows the internal details of
Mode block, which contains a set of Task blocks. Figure 10 shows the simplified
version of the Ecore-based meta-model for the proposed DSML.

4 Related Work

Integration of Simulink with Giotto has also been pursued in [6]. However, in
this paper, we address a larger issue of developing an appropriate DSML for
CPS design specification. Concepts introduced by Giotto are only used for one
component of the proposed DSML (i.e. the platform-independent specification of
a control algorithm executing on a computing node of CPS). Moreover, we also
extend the concepts of traditional Giotto paradigm by introducing the concepts

of InputMsgPort and OutputMsgPort to enable mode transitions based on the
violation of QoS constraints on the communication among computing nodes.

H CPsDesignModel
= name: EString

11 11
E PhysicalSystem B CyberPhysicallnterface

0.
1.+

1.1
H CyberSystem

0.
H MetworkRouter

Lr 0.

H Sensor
ompoun ysicalPlant 0.* omputingMode
Hc dPhysicalP| Hc Nod
0x p.* B MetwarkLink
[] Actuator = latency: EDouble ix
= BW: EDouble
11 0.
I 1% 1.1
tomicPhysicalPlant yParam odefpplication
H AtomicPhysicalPl B PhyP 1 H Modeapplicati
1.1 11
1%
e H ModePlatform H Mode
H Physicallink 11
=] ModeSwitchLogic
0.1 L
B Port b 1
or W
B ApplicationFramework
0.1 0. |H Task
Q Middleware Q QutputMsgPort
H SensorPort H ActuatorPort
0.1
B RTOS
5 InputMsgPort
0.1
H Processor

Fig. 10. Ecore-based meta-model of proposed DSML.

In [3], EMF-based integration of Simulink and EAST-ADL (a modeling lan-
guage for automotive embedded systems) has been presented. The approach
presented in [3] is targeted to the domain of automotive system. However, we
propose to extend this approach by defining Ecore-based meta-model for specifi-
cation languages required at each development step of a cyber-physical system.
In this paper, we proposed a DSML for CPS design specification and developed
its meta-model using Ecore.

Generic Modeling Environment (GME) is a popular domain-specific model-
ing environment [4]. GME supports its own meta-modeling language, MetaGME,
and a graphical concrete syntax of DSMLs. The DSML, proposed in this paper,
could have been implemented using GME as well. However, we chose to imple-
ment the proposed DSML using a combination of EMF and Simulink, because
Simulink has become a defacto standard in the field of embedded control systems
and the choice of EMF allows us to leverage all the model-based development

tools that have been developed on top of EMF. It must be pointed out that a
transformation between MetaGME and Ecore has been reported in literature [7].
As a result, the DSML presented in this paper could be integrated with GME
in the future.

5 Conclusion

In this paper, we have proposed a DSML for CPS design specification that is
capable of capturing the control, computing, and communication aspects of a
CPS design. The proposed DSML leverages the concepts of Giotto programming
paradigm to ensure that the CPS design specification independently conveys the
CPS computing platform characteristics as well as the control law that needs to
be implemented on that computing platform. The abstract syntax of the pro-
posed DSML has been defined through an Ecore-based meta-model. The concrete
syntax of the proposed DSML has been implemented as an extension of standard
blocks available in Simulink. We have also implemented an initial version of a
parser that converts Simulink models, employing the proposed DSML, into cor-
responding EMF instance models, which can then serve as input to EMF-based
model transformation tools.

The individual elements of the DSML, proposed in this paper, will be refined
further in the future based on the experience obtained from different case studies.
However, the proposed DSML with the choice of EMF for meta-modeling and
Simulink for concrete syntax can serve as the basis of integrating various emerg-
ing facets of CPS research such as CPS simulation tools, CPS formal verification
tools and CPS implementation platforms.

References

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Boston (2008)

2. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language Toolkit.
Addison-Wesley Professional, Boston (2009)

3. Biehl, M., Sjostedt, C.J., Torngren, M.: A Modular Tool Integration Approach -
Experiences from Two Case Studies. In: 3rd Workshop on Model-Driven Tool and
Process Integration at the European Conference on Modelling Foundations and
Applications (2010)

4. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated Development
of Embedded Software. Proceedings of the IEEE, 91(1), 145-164 (2003)

5. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A Time-Triggered Language
for Embedded Programming. Proceedings of the IEEE, 91(1), 84-99 (2003)

6. Pree, W., Stieglbauer, G., Templ, J.: Simulink Integration of Giotto/TDL. In: Au-
tomotive SoftwareConnected Services in Mobile Networks, pp. 137-154. Springer
Berlin Heidelberg (2006)

7. Emerson, M., Sztipanovits, J.: Implementing a MOF-based Metamodeling Envi-
ronment using Graph Transformations. In: Proceedings of OOPSLA Workshop on
Domain-Specific Modeling, pp. 83-92 (2004)

