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Handling preferences [16] is important in a number of domains, including rec-
ommender systems, computational advertisement, personal cognitive assistants,
systems for decision support (for example, in medicine) and robotics.

Artificial intelligence has been dealing with preferences for quite some time.
In order to get closer to the goal of realizing autonomous agents that can decide
and act on behalf of humans, formal tools are needed in order to model pref-
erences, represent preferences in a compact way, support reasoning, and elicit
(or learn) them from the user (decision maker). Research on preference handling
systems makes use of quite a variety of different tools, including formal logic, op-
timization techniques from operations research; there is also a substantial inter-
section with research in mathematical economics, especially in approaches based
on utility. An additional challenge is brought by the realization that (differently
from what assumed in classical economics) humans are not rational decision
makers, and are prone to decision biases; this recognition is important especially
if the aim is to produce systems that are meant to be used by real users. A
thorough introduction to the topic of preferences in artificial intelligence, going
much more in depth, can be found in [17].

1 Modeling and Representing Preferences

Preferences express comparative judgments about elements of a set X of alterna-
tives, choices or options. The preference relation �⊆ X×X is a reflexive binary
relation; x � y stands for x is at least as good as y. The preference relation �

can be decomposed into three relations:

– Strict preference ≻: x � y∧¬(y � x)
– Indifference ≈: x � y∧y � x

– Incomparability ∼: ¬(x � y)∧¬(y � x)

The triple (≻,≈,∼) is the preference structure induced by �. The strict prefer-
ence relation is often called the asymmetric part, while indifference and incom-
parability comprises the symmetric part. The incomparability relation might be
interpreted in different ways; two alternatives might be incomparable due to lack
of knowledge (epistemic indifference) or for intrinsic reasons.

Based on different assumptions on the underlying relations, different prefer-
ence structures are possible. A total preorder corresponds to a reflexive, complete
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and transitive preference relation � (the associated ≻ and ≈ are transitive, while
∼ is empty); when � is antisymmetric, ≈ is the set of pairs (x, x) and we have a
total order. A partial preorder is a preference structure where � is reflexive and
transitive (the associated ≻ and ≈ are transitive, while ∼ is not empty); when �

is antisymmetric, ≈ is the set of pairs (x, x) and we have a partial order. While
often transitivity is assumed as a reasonable property, we stress that this must
not necessarily be the case. In particular, the indifference relation is intransitive
in semi orders [18].

If the size of X (the domain of the preference relation) is reasonable then
an explicit representation of � is feasible both from a cognitive (human agent)
and a computational (artificial agent) point of view. However, in most cases an
explicit representation is not possible and people will not provide their preference
relation � explicitly. A compact representation is useful so that preferences can
be formulated with statements that encompass several alternatives. Preferences
are most often conveyed through “preference statements”, whose interpretation
(according to a precise semantics) induces a particular preference model (but
the latter is not expressed directly). Languages for preference representation
are evaluated with respect to a number of criteria: expressiveness, concision,
cognitive relevance, computational complexity.

Among the different possible representations, we cite:

Logical representations In this approach preferences are directly expressed
as logical statements. According to the classic Von Wright’s semantics [23],
the statement “I prefer Φ to Ψ” (where Φ and Ψ are formulas about the
state of the world) actually means preferring the state of affairs Φ ∧ ¬Ψ

(any world where Φ is true and Ψ is false) to Ψ ∧ ¬Φ (any world where
Ψ is true and Φ is false). A number of “logic of preferences” have been
proposed extending Von Wright’s work. Further consideration shall be given
to the extent of the preferential information inferred from a statement. Let’s
consider a preference statement like “I prefer red cars over to blue cars”.
What does this exactly mean in term of preferential ordering? Its exact
meaning (with respect to the underlying preference relation �) depends on
the associated semantics. Under the so-called strong semantics, it follows that
all red cards are preferred to blue cars; while under other semantics it means
that there is at least one red car that is preferred to a blue car. More precisely,
under the optimistic semantics, the two objects in considerations are the
ones that are most-preferred (maximal) according to the preference relation
� itself: the most-preferred red car is preferred to the most-preferred blue
car (similar definitions are given for the pessimistic and the opportunistic
semantics). According to the ceteris paribus semantics, instead, a red car
is preferred to a blue car everything-else-being-equal, meaning that the two
cars have the same evaluation according to the variables of interest (i.e. the
brand, the engine, etc. are the same).

CP-nets The notion of conditional preferential independence constitutes the
main building block to develop graphical models to compactly represent
preferences. In a CP-net [3] each decision variable is associated with a pref-
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erence table associates a given combination of values for its “parents” (a
set of other variables) with a linear order establishing the preference over
the domain values of the variable. We can distinguish between unconditional
“Ceteris Paribus” preferences along some of the attributes of X (red is pre-
ferred to blue for the variable color all other things being the same) and
conditional preferences where preferences along a certain attribute (let’s say
attribute isConvertible) are conditioned by preferences expressed on other
attributes (let’s say attribute brand and cost). Technically speaking, a CP-
net is represented through a directed graph among the variables (attributes),
where the maximal elements of the graph are the ones where preferences are
unconditioned. CP-nets have been extended in a number of ways, notably
to TCP-nets [6] in order to take into account the “relative importance” of
attributes.

Utility functions and GAI-networks The intuition behind additive utility
is that the contribution of each attribute to the overall utility is independent
from all other attributes (and subsets of attributes): U(x) =

∑
j u(x

j) where

xj is the j-th attribute of x). Under less restrictive conditions [1] we can have
utility functions based on a “generalized additive independence” such that:
U(x) =

∑k

i u(x
Ci) where Ci are subsets of the set of attributes on which X

is defined; DCi
=

∏
j∈Ci

Dj is the cardinal product of the domains of the
variables in Ci, and ∃ui : DCi

7→ R (a local utility value associated with an
assignment of Ci). The so-called GAI networks [11] allows compact repre-
sentations and efficient computation even for rather complex dependencies.

The reader interested in the subject can find a detailed introduction to the
problem of preference modeling and representation in [14]. We now discuss elic-
itation, focusing on utility-based models.

2 Preference Elicitation

Learning or eliciting preferences means to acquire preference information in ei-
ther direct or indirect way, from preference statements, critiques to examples,
observations of user’s clicking behaviour, etc. The study of the assessment of the
preferences of a decision maker goes back to several decades; particular empha-
sis has been given to the elicitation of utility functions for multi-attribute and
multi-criteria settings [15]. Classic approaches for utility elicitation focus on high
risk decision and aim at assessing the decision maker’s utility very precisely. The
decision maker is asked a number of questions in order to assess precisely the
parameters of the utility function, based on a precise protocol. The problem with
the classic approach is that typical queries asked might be difficult to respond
and the precision attained is often unnecessary.

Ideally, a system for automated elicitation and recommendation will only
consider cognitive plausible forms of interactions, focusing on the available al-
ternatives of the current decision problem. A number of researchers in AI [4, 9,
5, 20] have proposed the idea of an interactive utility-based recommender sys-
tems. It is assumed that the user has a latent utility function that dictates his
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preferences; the system maintains a “belief” (whose nature will be clearer in a
moment) about such utility function u. The general schema is as follows:

1. Some initial user preferences P0 are given; initialize belief
2. Repeat until the belief meets some termination condition

(a) Ask user a query q

(b) Observe the user response r
(c) Update the belief given r

3. Recommend the item optimal according to the current belief

A number of alternative proposals have been made with respect to 1) how
preference uncertainty is represented in a belief, 2) which criterion is used to
make a recommendation, and 3) how to select the question that is asked next.
These are summarized in this table (we focus here on utility-based models).

minimax-regret maximin-utility Bayesian
approach approach approach

knoweldge constraints constraints prob. distribtion
representation
which option minimax maximin expected
to recommend? regret utility utility
which query worst-case worst-case maximin expected value
to ask next? regret reduction improvement of information

A possibility for representing the current belief about the utility is to encode
user responses with constraints and reason about all possible consistent utility
functions making use of a robust decision criterion to select the item to recom-
mend. While maximin is a possibility [22], Boutilier et al. [5] suggest to adopt
minimax regret, that is a less conservative robust criterion for decision making
under uncertainty. The intuition behind the approach of minimax regret is that
of an adversarial game; the recommender selects the item reducing the “regret”
with respect to the “best” item when the unknown parameters are chosen by
the adversary. The max-regret of option (or choice) x is the the maximum loss
(in term of utility) that can be incurred by not choosing the (unknown) true
optimal choice. The advantages of regret-based approach are threefold: 1) utility
knowledge is easy to update: whenever a query is answered, we treat the answer
as a new preference and derive a new feasible set of utility functions, 2) simple
“priors” can be encoded with constraints in the space of utility parameters, and
3) there are efficient heuristics that directly use the computation of minimax re-
gret to choose the queries to ask next to the user, as the current solution strategy
[5]. The limitations of the approach are that it cannot deal with noisy responses
and the formulation of the optimization is problem-dependent. See also [8] for
regret-based elicitation of generalized additive utility models.

Alternatively, one could assume a Bayesian point of view: this has the ad-
vantage of handling noisy information, can exploit prior information (if avail-
able) and can be used with different assumption about the choice model of
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the user. The belief is represented by a probability distribution over the pa-
rameters of the utility function the recommended item is the one that max-
imizes expected utility. When a new preference is acquired (for instance, the
user states that he prefers VOLVO cars to FIAT) the distribution is updated
according to Bayes (using Monte Carlo methods, or inference scheme based on
expectation-propagation[13]). The problem of deciding which questions to ask
could be formulated as a POMDP [4], however it is impractical to solve for non
trivial cases. A more tractable approach is to consider (myopic) Expected Value
Of Information (EVOI), the difference between the expected posterior utility
(of the best recommendation in the updated belief) and the current maximum
expected utility. For choice queries (“Among the following options, which one
do you prefer?”), Viappiani and Boutilier [21] showed that EVOI optimization
is tightly connected to problem of finding an optimal recommendation set and
near-optimal queries can be computed efficiently with worst-case guarantees. See
also [7] for Bayesian elicitation of GAI models using mixture of Gaussians.

The idea of active elicitation can be applied to collaborative filtering appli-
cations, with the goal of learning the most informative ratings [10].

3 Complex Utility Models

Linear aggregators fail to represent situations where it is desired to achieve
a certain degree of fairness or where one aims to model interactions between
attributes. Rank-dependant aggregators sort the performance of the individual
criterion by increasing order before mapping the performance vector to a scalar
value (the overall utility value). The parameters provide control on: 1) the type
of compromise, and 2) the attitude towards equity (fairness). Perhaps the most
well known (and the simplest) of such operators is the Ordered Weighted Average
(OWA) [24], defined as the scalar product between a vector of weights and the
instantiation sorted from lowest to highest. OWA is limited as it has no notion of
attribute importance; several more complex operators have then been proposed,
including WOWA. The most flexible rank-dependant operator is the Choquet
integral [12] that includes OWA, WOWA and the weighted sum as special case.

Eliciting or learning an utility model based on Choquet is however challenging
because of the number of parameters to assess (exponential in the number of
attributes). The problem can be relaxed by making additional assumptions; [19]
restricts the attention to Choquet models determined by 2-additive capacities.
Another approach is to focus on types of queries that are easy to handle: see [2]
for the regret-based elicitation of Choquet-based utility models.
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Learning monotone nonlinear models using the choquet integral. In In Proceedings
of ECML/PKDD’11, pages 414–429, 2011.

20. Paolo Viappiani and Craig Boutilier. Regret-based optimal recommendation sets
in conversational recommender systems. In Proceedings of ACM RecSys’09, pages
101–108, 2009.

21. Paolo Viappiani and Craig Boutilier. Optimal bayesian recommendation sets and
myopically optimal choice query sets. In Proceedings of NIPS’10, pages 2352–2360,
2010.

22. Paolo Viappiani and Christian Kroer. Robust optimization of recommendation
sets with the maximin utility criterion. In Proceedings of ADT’13, pages 411–424,
2013.

23. G.H von Wright. The logic of preference reconsidered. Theory and Decision,
3:140–169, 1972.

24. Ronald R. Yager. On ordered weighted averaging aggregation operators in mul-
ticriteria decision making. IEEE Trans. Systems, Man and Cybern., 18:183–190,
1998.


