
Finite State Automata as a Data Storage

Marian Mindek and Martin Hynar

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic

{marian.mindek, martin.hynar}@vsb.cz

Finite State Automata as Data Storage

Marian Mindek, Martin Hynar

Katedra informatiky, FEI, VŠB – Technická Univerzita Ostrava, 17. listopadu 15,
708 33, Ostrava-Poruba

{marian.mindek, martin.hynar}@vsb.cz

Abstract. In this paper, we summarize ideas to use finite automata as a tool for
specification and compression of data aggregates (e.g. images, electrical
signals, waves, large (sparse) matrixes, etc.). We describe different ways of data
access. Then we describe an approach how make a resultant automata with
included interesting information, how to focus on interesting information in our
data, and how to link together resultant automata.

Keywords: finite automata, compression, large sparse matrix, searching,
pattern

1 Introduction

Finite automata is an useful tool for matrix representation of commonly used
information resources (e.g. images, texts, sound waves, electrical signals etc.), for
their compression and for obtaining interesting information about given data
[1,2,4,5,7,8,9].
 In our opinion, such technique could be used also to represent large matrixes,
which are usually hard to manipulate. A traditional approach (compression using
common algorithms) solves only part of the problem. It consumes less space but on
the other hand, there is no way to make changes to original matrix. Moreover, there is
no way to use another additional information and if it is required it has to be
computed using other means (e.g. nearest neighbors of some 1-position, interest
points, carrier, base, etc.). With our approach, we can focus at this issue and improve
predication capabilities about data. The resultant automaton (or automata) contains
this interesting information. We can use it for comparing per pattern or search similar
information (e.g. part of faces, medical pictures, buildings tracing, part of large sparse
matrixes, similar noise, similar trends, etc.).
 If we want to have certain benefit from such advantages and if we want to have
some mean to store matrixes in database with included interesting information, we
can use the approach of storing resultant automata in some well known structure such
as table, matrix or XML.
 In the following examples we describe for simplicity our approach on the images,
if will not remark alternatively.

K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 9–19, ISBN 80-01-03204-3.

10 Marian Mindek, Martin Hynar

2 Data specification

2.1 Finite State Automata (FSA)

Background about automata theory in this chapter is the most necessary. We describe
only simple procedure for storing matrixes to automata too. For more about automata
theory please read [6] and for more about automata as a tool for specifying image,
please read [3,4,5,7].
 In order to facilitate the application of FSA to matrix description we will assign
each pixel at 2n x 2n resolution (2n for vector) a word of length n over the alphabet
Σ={0,1,2,3} for basic approach and Σ={0,1} for offset (read vector) approach, as its
address. Offset (vector) approach is useful for matrix approach too.

Example. The large sparse matrix can by represented as set of coordinates [x, y]
where x is a row and y is a column. If we separate x part and y part we obtain two
vectors. These vectors can have value as set of positions in matrix, or difference
between previous and followed position.

A part at 2n x 2n (2n) resolution corresponds to a sub-part of size 2-n of the unit part.
We choose ε as the address of the whole unit part. Single digits as shown in figure 1a;
on the left address its quadrants. The four sub-squares of the square with address w
are addressed w0, w1, w2 and w3, recursively. Addresses of all the sub-squares
(pixels) of resolution 4 x 4 are shown in figure 1, middle. The sub-square (pixel) with
address 3203 is shown on the right of figure 1. Clearly for offset (vector) approach is
sub-part with address w denoted only as w1 and w2, recursively. For comparison see
figure 1b, black part of vector has address 1101.

Fig. 1. The addresses of the quadrants, of the sub-square of resolution 4 x 4, and the sub-square

specified by the string 3203.

For simplicity, in the following we describe theory only for matrixes. (Offset) vectors
approach is very similar.
 In order to specify a binary matrix of resolution 2m x 2m, we need to specify a
language L ⊆ Σm. Frequently, it is useful to consider multi-resolution images, sounds
or el. signals simultaneously specified for all possible resolutions (discriminability),
usually in some compatible way (We denote Σm the set of all words over Σ of the
length m, by Σ* the set of all words over Σ).
 In our notation a binary matrix is specified by a language L ⊆ Σ*, Σ={0,1,2,3}, i.e.
the set of addresses of all the evaluated squares.

Finite State Automata as a Data Storage 11

 A word in the input alphabet is accepted by the automaton if there exists labeled
path from the initial state to the final state. The set (language accepted by automaton
A) is denoted L(A).

Example. The 2 x 2 chessboards in figure 2 (a) look identically for all resolutions.
The multi-resolution specification is the regular set {1,2}Σ*. The 8 x 8 chessboard in
figure 2 (b) is described by the regular set Σ2{1,2}Σ* or by FSA A figure 2(c).

Fig. 2. 2 x 2, 8 x 8 chessboards and corresponding automaton.

Note that here we used the fact that the regular expression Σ2{1,2}Σ* is the
concatenation of two regular expression Σ2 and {1,2}Σ*.

Example. By placing the triangle L= L1L2 where L1= {1,2}*0 and L2=Σ* into all
squares with addresses L3={1,2,3}*0 we get the image L3L={1,2,3}*0{1,2}*0Σ*
shown at the left of figure 5.

 Zooming [3] is easily implemented for matrixes represented by regular sets
(automaton) and is very important for loss compression.

Fig. 3. The diminishing triangles defined by {1,2,3}*0{1,2}*0Σ*, and the corresponding
automaton.

We have just shown that a necessary condition for binary matrixes to be represented
by a regular set (FSA) is that it must have only a finite number of different sub-
matrixes in all the sub-squares with addresses from Σ*. We will show that this
condition is also sufficient. Therefore, matrixes that can be perfectly (i.e. with infinite
precision for loss compression) described by regular expressions are matrixes of
regular or fractal character. Self-similarity is a typical property of fractals. Any matrix
can by approximated by a regular expression however; an approximation with a
smaller error might require a larger automaton. Multi-resolution (fractal) principle is
at most useful for images, sounds, and descriptions of function or electrical signals.

12 Marian Mindek, Martin Hynar

2.2 Basic procedure

Our algorithm for matrix compression (both approaches) is based on basic procedure
for black-and-white images proposed in [4], but it will use evaluated finite automata
(like WFA) introduced in [3] and only replacing black and white color to real values,
without possibility to create loops and adding some option for setup compression and
facilitation storage for likely representation.

Example. For the image diminishing triangles in figure 3, the procedure constructs
the automaton shown at the right-hand side of figure 3. First, the initial state D is
created and processed. For sub-square with address 0 a new state T is created, for
addresses 1,2 and 3 create the new states with deep n (where deep is length of route
from the root and n is length of part of word w with the same symbol; loop of edge
from previous algorithm). Then state T* is processed for sub-square with address 0
and new state S is created, for 1 and 2 a connection to a last of new states. There is no
edge labeled 3 coming out of T since the quadrant 3 for T (triangle) is empty (in
binary matrix there is 0 everywhere). Finally, the state S (square) is processed by
creating edge back to S for all four inputs. In this way it represents end of automaton
or loop to state itself for multi-resolution approach.

 Now we demonstrate in brief a generalized method for matrix compression
applicable on construction of resultant matrix storage, or matrix database with
included information presented furthermore. There lead four edges from each node at
most (for offset approach lead two edges at most) and these are labeled with numbers
representing matrix / vector part. Every state can store information of average value
of sub-part represented thereby state.
 The procedure Construct Automaton for compression terminates if exists an
automaton that perfectly (or with small-defined error) specifies the given matrix and
produces a deterministic automaton with the minimal (interpret as optimal for our
problem solution) number of states. The count of states can be reduced a bit or
extended by changing error or do tolerance for average values of matrix part. This
principle is naturally useful only for matrixes, where we can obtain matrix
reconstructed with small error (only if we make tolerance, it is loss-compression.)
 Changing the part (or only one matrix element) in source matrix can change the
count of states in resultant automata. We can use certain principle to optimize this
algorithm for non-recompress all matrix. Details are described in the furthermore in
the text.

Procedure Construct Automaton for Compression
For given matrix M (in arbitrary representation e.g. full matrix, difference vector, [x,
y] representation, etc.), we denote Mw the zoomed part of M in the part addressed w,
where w∈{0,1,2,3...X}. For simplicity we use w∈{0,1}, see figure 1. The matrix
represented by state numbered x is denoted by ux.

Procedure Construct Automaton for Compression
 i = j = 0
 create state 0 and assign u0 = M (matrix represented by empty word and define
 average value of M)
 assume ui = M w

Finite State Automata as a Data Storage 13

 loop
 for k ∈ {0,1} do
 if Mwk = uq (or with small error, only for loss compression)
 or if the matrix Mwk can be expressed as a part or expanded part of
 the matrix uq for some state q
 then create an edge labelled k from state i to state q
 else j = j + 1
 uj = M wk
 create an edge labelled k from state i to the new state j
 end if
 end for
 if i = = j than
 Stop (all states have been processed)
 else i = i + 1
 end if
 end loop
end procedure

It is clear, that procedure for vector (offset) approach is very similar. We do not
describe it, but we give some confrontation later.
 Procedure for reconstruction matrixes from automaton is very simple, for more
information see [9].

2.3 Tests

Every test was carried out on standard PC with Intel Celeron 1,3GHz and 384MB
RAM. We used two different algorithms for computing resultant automata without
loss compression, but results are very similar, such that we describe only one of the
results. Tested data was generated randomly. Some of the test matrixes correspond
with the worst test data (for our procedure) for comparison.
 In table 1 there are depicted matrixes and corresponding counts of evaluated
elements. The last column contains counts of similar parts of matrixes. Sizes of these
parts are between 1/16 - 1/128, for larger matrixes. Maximum range of similar parts is
6 for matrix with 32000x32000 elements. This setup is only for testing, real data are
generally more similar but we show tests for worse cases of data. In next comparison,
we test matrixes without similar parts. The resultant automata were perfectly (without
loss) representing the source matrix.
 In table 2 there are depicted results of our tests. In first column there are source
matrixes, in second resulting time for procedure with using vector approach and then
follow two columns with counts of state of corresponding resultant automata. In last
two columns there are times for procedure using full matrix (Procedure Construct
Automaton for Compression described before) and counts of states of resultant
automata.

14 Marian Mindek, Martin Hynar

Table 1. The tested matrixes.

Matrix Count of elements Similar parts
67 2 128 x 128
57 0
128 2 256 x 256
124 0
266 2 512 x 512
244 0
515 2 650 x 650
526 0
533 3 1024 x 1024
500 0

1035 2 2048 x 2048
1011 0
2058 2 4096 x 4096
2022 0
4000 3 8192 x 8192
4059 0

16000 x 16000 1 0
8193 4 16384 x 16384
8000 0

32000 x 32000 9000 6
64000 x 64000 18124 0

Table 2. The results of tests. From the left: source matrixes, time for offset approach in

seconds, count of states of resultant automata for X and Y parts, time for classical procedure
and counts of states of resultant automata.

Matrix time (XY) X states Y states time states

0,1 72 132 0,1 134 128 x 128
0,1 111 119 0,2 118
0,3 129 254 0,8 271 256 x 256
0,3 163 249 0,9 280
0,3 310 516 1,2 552 512 x 512
0,5 289 491 2,3 516
1 427 813 4,5 1080 650 x 650
1 419 835 3 1126

1,1 740 1027 4,9 1120 1024 x 1024
1,2 593 1003 5 1044
1,2 1008 1028 16 2161 2048 x 2048
1,2 1279 2027 16 2145
1 2019 4049 70 4289 4096 x 4096
1 2016 2052 50 4353

2,6 4010 7350 110 5350 8192 x 8192
3 4304 3890 86 5112

16000 x 16000 0,1 13 13 240 14
5 6218 8192 180 6308 16384 x 16384

5,5 5905 8100 190 6100
32000 x 32000 6,5 4929 8190 NA NA
64000 x 64000 16 8111 10450 NA NA

Highlighted row is the worst case for our solution for matrix approach (Source matrix
contains only one element at unlikely position.) It is clear that offset approach is faster
for larger matrixes but produces more states. Matrix approach is better for

Finite State Automata as a Data Storage 15

compression of small matrixes. If we want to have more compressed large matrix then
the matrix approach is useful too but at the expense of machine time. For lucidity see
following graph, where time is only on informative scale.

Graph 1. Graph of results from Table 2 for offset approach, where

count of states is X states plus Y states.

Graph 2. Graph of results from Table 2 for matrix approach.

Graph 3. Comparing of presented approach.

16 Marian Mindek, Martin Hynar

2.4 Changes in source

In this section we describe in brief, how to solve the changes in the matrix. If we
compress the matrix with traditional algorithm (e.g. zip, LZW, Huffman, etc.) and
some element is changed, we must re-compress all matrixes every time. But if we
represent matrix as a FSA, we can change/re-compress only the corresponding part of
resultant automaton, the one with changed element.
 There exist at least three basic solutions for selection of corresponding part of
Finite State Automata or corresponding sub-square of source matrix:

1) Re-calculating the biggest corresponding sub-square:
This approach leads to a big quantum of data manipulation (up to one quarter), but
with this approach we can reach the high compression ratio. The method is useful for
all types of source matrixes.

2) Re-calculating the least corresponding sub-square:
This approach re-calculates the least quantum of data (approximately tens elements),
but with this approach we can gain only very small compression ratio and changes
often lead to the growth of the automata. Compression become here the disutility, but
if we want only obtain the interesting information from our resultant automata, this
method is useful too. This approach is useful for all types of source matrixes.

3) Re-calculating the optimal corresponding sub-square:
Retrieval of such sub-square may be difficult, but in most cases, it shows that it has
no sense to work with sub-square greater than three or four least corresponding sub-
squares. Naturally, it greatly depends on the character of the matrixes. If we know that
the matrixes contain many equal blocks, we can state the amount of levels which we
should still take in consideration. This choice naturally has not influence on
algorithm, but only on machine time and resultant size of compressed matrixes.

3 Resultant aggregate / database

3.1 Resultant automata

Composition is useful for storing resultant FSA in one structure with value-added
information. In this section, we describe only necessary generalized procedure, for
more information read [9]. This procedure can be used for both approaches; object
oriented and prevailing approach. This approach can be simply upgraded to loss-
composition and makes possible to save more space and setup some additional
options. We focus on this in future work.

Procedure Composition Automaton for Storage
For given automaton A and automaton B (resultant automaton from previously
composition) compute new resultant automaton B´∈A∪B and combine similar parts
of both ones.

Finite State Automata as a Data Storage 17

Procedure Composition Automaton (Automaton A, Stored automaton B)
 Assign state qx from A to the corresponding state in stored automaton B.
 if such case does not exists, assign a new state and take qx+1 from A.
 end if
 for all state of automaton A do
 if not exists edge from state qi labeled with same word w as edge from
 correspond state in stored automaton then
 create a new edge labeled w to a new state i
 otherwise
 take next edge
 end if
 if all edges from actual state is processed, take next state
 end if
 end for
end procedure

This principle can be used for no-loss or loss compression for saving matrixes.
Additional information can be obtained from structure of resultant automaton, for
example the information about the similarity of the stored matrixes or its parts,
common lines, etc. We can also easily get the group of equal matrix parts.

3.2 Focus on a interesting information

 If we store the source matrixes in more than one automaton, we can focus on the
interesting part of the matrix and compute the automaton with various lengths. This
principle was introduced in [10].
 On other part of matrix, we can compute automaton with less number of states.
For this purpose, we can use the pattern matrix shown in table 3, where the values in
cells are the counts of profundity of automaton, which represents that part of matrix.
This matrix can be used for some image, see figure 4. This principle can be used only
for loss compression (e.g. images, signals, etc.). The part with less count of states
stores much fewer information than the part with more states.
 It is clear that with this principle we can save much more space preserving high
information value of data. We can transfer only interesting part of matrix or any
nearest part and save machine time or network capacity. It is sufficient to choose a
state from resultant automata, which represents the interesting part of the matrix, and
operate with this as with the root. This principle is used in the automata composition.
Procedure for focusing on interesting information is very simple. Pattern may be
arbitrary.
 Now we have a background for using finite state automata as a database with
included information.

Procedure Focus on interesting information
For given matrix M and pattern matrix P compute resultant automaton. This
procedure use procedure Construct Automaton for Compression (CAfC), there in
before.

18 Marian Mindek, Martin Hynar

Procedure Focus on interesting information (Matrix M, pattern matrix P)
 i = j = 0
 create state 0 and assign u0 = M
 assume ui = M w
 loop
 for x ∈ S (part of pattern matrix)
 assume |w|= P(ui)
 i = CAfC(M, new w)
 j++;
 end for
 if i = = j than
 Stop (all parts from pattern are processed)
 else S = S + 1
 end if
 end loop
end procedure

Table 3. Example pattern for procedure Focus on interesting information

2 2 2 2 2 2 2 2 2 2 ... 2
2 2 3 3 3 3 3 3 3 2 ... 2
2 2 3 4 4 4 4 4 3 2 ... 2
2 2 3 4 5 5 5 4 3 2 ... 2
2 2 3 4 5 6 4 4 3 2 ... 2
2 2 3 4 5 5 5 4 3 2 ... 2
2 2 3 4 4 4 4 4 3 2 ... 2
2 2 3 3 3 3 3 3 3 2 ... 2
2 2 2 2 2 2 2 2 2 2 ... 2

Fig. 4. Example image with used focus on interesting information.

Finite State Automata as a Data Storage 19

4 Conclusions

In this paper was summarized an idea to use finite state automata as a tool for
specification and compression of data aggregates. We compared two basic approaches
of computing the resultant automata, namely: the matrix approach and the vector (or
offset) approach. The first one is better applicable for representation and compression
of smaller matrixes and for manipulation after decompression. The vector approach is
pretty faster for larger matrixes, but on the other hand it produces more states. If we
want to have large matrix to be more compressed (independently on the machine
time) then the matrix approach is useful too. Both methods can be loss or loss-free,
and both types have high predicate ability about stored matrixes and save space and
network capacity.
 The linked resultant automaton is able to create matrix database with included
value and to make manipulation with matrixes easier. We also described simple and
generalized procedure focus on interesting information in the source data and some
illustrative results were shown. This procedure can make a better compression ratio
together with maintaining the high information level of data.

5 References

1. Alur, R. and Dill, D. L. A Theory of Timed Automata. In Theoretical Computer
Science, 126(2):183–235, 1994.

2. Daniela Berardi, Fabio De Rosa, Luca De Santis and Massimo Mecella. Finite
State Automata as Conceptual Model for E-Services. In Integrated Design and
Process Technology, IDPT- 2003, June 2003.

3. K. Culik II and J. Kari. Image compression using weighted finite automata. In
Computers & Craphics, 17:305–313, 1993.

4. K. Culik II and V. Valenta. Finite automata based compression of bi-level and
simple color images. In Computers & Craphics, 21:61–68, 1997.

5. K. Culik II and J. Kari. Image compression Using Weighted Finite Automata, in
Fractal Image Compression. In Theory a Techniques, Ed. Yuval Fisher, Springer
Verlag, pp 243-258, 1994.

6. J.E.Hopcroft and J.D.Ullman. Introduction to automata theory, languages and
computation. In Addison-Wesley, 1979.

7. Marian Mindek. Finite State Automata and Images. In Wofex 2004, PhD
Workshop, Ed. V. Snášel, ISBN: 80-248-0596-0, 2004

8. Marian Mindek. Finite State Automata and Image Recognition. In Dateso 2004,
Ed. V. Snášel, J. Pokorný, K. Richta, pp 132-143, ISBN: 80-248-0457-3, 2004

9. Marian Mindek. Finite State Automata and Image Storage. In Znalosti 2005, Eds.
Lubomír Poplínksý, Michal Krátký, ISBN: 80-248-0755-6

10. Marian Mindek. Konečné automaty jako obrázky s multi-rozlišením. In posters
Znalosti 2005

11. W3C (2004) XML Protocol. XML Protocol Web Page http://www.w3.org/XML
(January 2005)

