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Abstract. In this paper, we summarize ideas to use finite automata as a tool for 
specification and compression of data aggregates (e.g. images, electrical 
signals, waves, large (sparse) matrixes, etc.). We describe different ways of data 
access. Then we describe an approach how make a resultant automata with 
included interesting information, how to focus on interesting information in our 
data, and how to link together resultant automata.  
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1 Introduction 

Finite automata is an useful tool for matrix representation of commonly used 
information resources (e.g. images, texts, sound waves, electrical signals etc.), for 
their compression and for obtaining interesting information about given data 
[1,2,4,5,7,8,9]. 
 In our opinion, such technique could be used also to represent large matrixes, 
which are usually hard to manipulate. A traditional approach (compression using 
common algorithms) solves only part of the problem. It consumes less space but on 
the other hand, there is no way to make changes to original matrix. Moreover, there is 
no way to use another additional information and if it is required it has to be 
computed using other means (e.g. nearest neighbors of some 1-position, interest 
points, carrier, base, etc.). With our approach, we can focus at this issue and improve 
predication capabilities about data. The resultant automaton (or automata) contains 
this interesting information. We can use it for comparing per pattern or search similar 
information (e.g. part of faces, medical pictures, buildings tracing, part of large sparse 
matrixes, similar noise, similar trends, etc.).  
 If we want to have certain benefit from such advantages and if we want to have 
some mean to store matrixes in database with included interesting information, we 
can use the approach of storing resultant automata in some well known structure such 
as table, matrix or XML. 
 In the following examples we describe for simplicity our approach on the images, 
if will not remark alternatively. 

K. Richta, V. Snášel, J. Pokorný (Eds.): Dateso 2005, pp. 9–19, ISBN 80-01-03204-3.



10 Marian Mindek, Martin Hynar

2 Data specification 

2.1 Finite State Automata (FSA) 

Background about automata theory in this chapter is the most necessary. We describe 
only simple procedure for storing matrixes to automata too. For more about automata 
theory please read [6] and for more about automata as a tool for specifying image, 
please read [3,4,5,7]. 
 In order to facilitate the application of FSA to matrix description we will assign 
each pixel at 2n x 2n resolution (2n for vector) a word of length n over the alphabet 
Σ={0,1,2,3} for basic approach and Σ={0,1} for offset (read vector) approach, as its 
address. Offset (vector) approach is useful for matrix approach too. 
 
Example. The large sparse matrix can by represented as set of coordinates [x, y] 
where x is a row and y is a column. If we separate x part and y part we obtain two 
vectors. These vectors can have value as set of positions in matrix, or difference 
between previous and followed position.    
  
A part at 2n x 2n (2n) resolution corresponds to a sub-part of size 2-n of the unit part. 
We choose ε as the address of the whole unit part. Single digits as shown in figure 1a; 
on the left address its quadrants. The four sub-squares of the square with address w 
are addressed w0, w1, w2 and w3, recursively. Addresses of all the sub-squares 
(pixels) of resolution 4 x 4 are shown in figure 1, middle. The sub-square (pixel) with 
address 3203 is shown on the right of figure 1. Clearly for offset (vector) approach is 
sub-part with address w denoted only as w1 and w2, recursively. For comparison see 
figure 1b, black part of vector has address 1101. 
 

 
Fig. 1. The addresses of the quadrants, of the sub-square of resolution 4 x 4, and the sub-square 

specified by the string 3203. 
 
For simplicity, in the following we describe theory only for matrixes. (Offset) vectors 
approach is very similar. 
 In order to specify a binary matrix of resolution 2m x 2m, we need to specify a 
language L ⊆ Σm. Frequently, it is useful to consider multi-resolution images, sounds 
or el. signals simultaneously specified for all possible resolutions (discriminability), 
usually in some compatible way (We denote Σm the set of all words over Σ of the 
length m, by Σ* the set of all words over Σ). 
 In our notation a binary matrix is specified by a language L ⊆ Σ*, Σ={0,1,2,3}, i.e. 
the set of addresses of all the evaluated squares. 
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 A word in the input alphabet is accepted by the automaton if there exists labeled 
path from the initial state to the final state. The set (language accepted by automaton 
A) is denoted L(A). 
 
Example. The 2 x 2 chessboards in figure 2 (a) look identically for all resolutions. 
The multi-resolution specification is the regular set {1,2}Σ*. The 8 x 8 chessboard in 
figure 2 (b) is described by the regular set Σ2{1,2}Σ* or by FSA A figure 2(c). 
 

 
 

Fig. 2. 2 x 2, 8 x 8 chessboards and corresponding automaton. 
 
Note that here we used the fact that the regular expression Σ2{1,2}Σ* is the 
concatenation of two regular expression Σ2 and {1,2}Σ*.  
 
Example. By placing the triangle L= L1L2 where L1= {1,2}*0 and L2=Σ* into all 
squares with addresses L3={1,2,3}*0 we get the image L3L={1,2,3}*0{1,2}*0Σ* 
shown at the left of figure 5. 
 
 Zooming [3] is easily implemented for matrixes represented by regular sets 
(automaton) and is very important for loss compression. 
 

 
 

Fig. 3. The diminishing triangles defined by {1,2,3}*0{1,2}*0Σ*, and the corresponding 
automaton. 

 
We have just shown that a necessary condition for binary matrixes to be represented 
by a regular set (FSA) is that it must have only a finite number of different sub-
matrixes in all the sub-squares with addresses from Σ*. We will show that this 
condition is also sufficient. Therefore, matrixes that can be perfectly (i.e. with infinite 
precision for loss compression) described by regular expressions are matrixes of 
regular or fractal character. Self-similarity is a typical property of fractals. Any matrix 
can by approximated by a regular expression however; an approximation with a 
smaller error might require a larger automaton. Multi-resolution (fractal) principle is 
at most useful for images, sounds, and descriptions of function or electrical signals. 
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2.2 Basic procedure 

Our algorithm for matrix compression (both approaches) is based on basic procedure 
for black-and-white images proposed in [4], but it will use evaluated finite automata 
(like WFA) introduced in [3] and only replacing black and white color to real values, 
without possibility to create loops and adding some option for setup compression and 
facilitation storage for likely representation. 
 
Example. For the image diminishing triangles in figure 3, the procedure constructs 
the automaton shown at the right-hand side of figure 3. First, the initial state D is 
created and processed. For sub-square with address 0 a new state T is created, for 
addresses 1,2 and 3 create the new states with deep n (where deep is length of route 
from the root and n is length of part of word w with the same symbol; loop of edge 
from previous algorithm). Then state T* is processed for sub-square with address 0 
and new state S is created, for 1 and 2 a connection to a last of new states. There is no 
edge labeled 3 coming out of T since the quadrant 3 for T (triangle) is empty (in 
binary matrix there is 0 everywhere). Finally, the state S (square) is processed by 
creating edge back to S for all four inputs. In this way it represents end of automaton 
or loop to state itself for multi-resolution approach. 
 
 Now we demonstrate in brief a generalized method for matrix compression 
applicable on construction of resultant matrix storage, or matrix database with 
included information presented furthermore. There lead four edges from each node at 
most (for offset approach lead two edges at most) and these are labeled with numbers 
representing matrix / vector part. Every state can store information of average value 
of sub-part represented thereby state. 
 The procedure Construct Automaton for compression terminates if exists an 
automaton that perfectly (or with small-defined error) specifies the given matrix and 
produces a deterministic automaton with the minimal (interpret as optimal for our 
problem solution) number of states. The count of states can be reduced a bit or 
extended by changing error or do tolerance for average values of matrix part. This 
principle is naturally useful only for matrixes, where we can obtain matrix 
reconstructed with small error (only if we make tolerance, it is loss-compression.) 
 Changing the part (or only one matrix element) in source matrix can change the 
count of states in resultant automata. We can use certain principle to optimize this 
algorithm for non-recompress all matrix. Details are described in the furthermore in 
the text. 
  
Procedure Construct Automaton for Compression 
For given matrix M (in arbitrary representation e.g. full matrix, difference vector, [x, 
y] representation, etc.), we denote Mw the zoomed part of M in the part addressed w, 
where w∈{0,1,2,3...X}. For simplicity we use w∈{0,1}, see figure 1. The matrix 
represented by state numbered x is denoted by ux. 
 
Procedure Construct Automaton for Compression 
 i = j = 0 
 create state 0 and assign u0 = M (matrix represented by empty word and define 
  average value of M) 
 assume ui = M w  



Finite State Automata as a Data Storage 13

 loop 
  for k ∈ {0,1} do 
   if Mwk = uq (or with small error, only for loss compression)  
   or if the matrix Mwk can be expressed as a part or expanded part of 
    the matrix uq  for some state q 
   then  create an edge labelled k from state i to state q 
   else   j = j + 1 
    uj = M wk  
    create an edge labelled k from state i to the new state j  
   end if 
  end for 
  if  i = = j than 
   Stop (all states have been processed) 
  else i = i + 1 
  end if 
 end loop 
end procedure 
 
It is clear, that procedure for vector (offset) approach is very similar. We do not 
describe it, but we give some confrontation later. 
 Procedure for reconstruction matrixes from automaton is very simple, for more 
information see [9]. 

2.3 Tests 

Every test was carried out on standard PC with Intel Celeron 1,3GHz and 384MB 
RAM. We used two different algorithms for computing resultant automata without 
loss compression, but results are very similar, such that we describe only one of the 
results. Tested data was generated randomly. Some of the test matrixes correspond 
with the worst test data (for our procedure) for comparison. 
 In table 1 there are depicted matrixes and corresponding counts of evaluated 
elements. The last column contains counts of similar parts of matrixes. Sizes of these 
parts are between 1/16 - 1/128, for larger matrixes. Maximum range of similar parts is 
6 for matrix with 32000x32000 elements. This setup is only for testing, real data are 
generally more similar but we show tests for worse cases of data. In next comparison, 
we test matrixes without similar parts. The resultant automata were perfectly (without 
loss) representing the source matrix. 
 In table 2 there are depicted results of our tests. In first column there are source 
matrixes, in second resulting time for procedure with using vector approach and then 
follow two columns with counts of state of corresponding resultant automata. In last 
two columns there are times for procedure using full matrix (Procedure Construct 
Automaton for Compression described before) and counts of states of resultant 
automata. 
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Table 1. The tested matrixes. 
  

Matrix Count of elements Similar parts 
67 2 128 x 128 
57 0 
128 2 256 x 256 
124 0 
266 2 512 x 512 
244 0 
515 2 650 x 650 
526 0 
533 3 1024 x 1024 
500 0 

1035 2 2048 x 2048 
1011 0 
2058 2 4096 x 4096 
2022 0 
4000 3 8192 x 8192 
4059 0 

16000 x 16000 1 0 
8193 4 16384 x 16384 
8000 0 

32000 x 32000 9000 6 
64000 x 64000 18124 0 

 
Table 2. The results of tests. From the left: source matrixes, time for offset approach in 

seconds, count of states of resultant automata for X and Y parts, time for classical procedure 
and counts of states of resultant automata. 

 
Matrix time (XY) X states Y states time states 

0,1 72 132 0,1 134 128 x 128 
0,1 111 119 0,2 118 
0,3 129 254 0,8 271 256 x 256 
0,3 163 249 0,9 280 
0,3 310 516 1,2 552 512 x 512 
0,5 289 491 2,3 516 
1 427 813 4,5 1080 650 x 650 
1 419 835 3 1126 

1,1 740 1027 4,9 1120 1024 x 1024 
1,2 593 1003 5 1044 
1,2 1008 1028 16 2161 2048 x 2048 
1,2 1279 2027 16 2145 
1 2019 4049 70 4289 4096 x 4096 
1 2016 2052 50 4353 

2,6 4010 7350 110 5350 8192 x 8192 
3 4304 3890 86 5112 

16000 x 16000 0,1 13 13 240 14 
5 6218 8192 180 6308 16384 x 16384 

5,5 5905 8100 190 6100 
32000 x 32000 6,5 4929 8190 NA NA 
64000 x 64000 16 8111 10450 NA NA 

 
 
Highlighted row is the worst case for our solution for matrix approach (Source matrix 
contains only one element at unlikely position.) It is clear that offset approach is faster 
for larger matrixes but produces more states. Matrix approach is better for 
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compression of small matrixes. If we want to have more compressed large matrix then 
the matrix approach is useful too but at the expense of machine time. For lucidity see 
following graph, where time is only on informative scale. 
 

 
Graph 1.  Graph of results from Table 2 for offset approach, where  

count of states is X states plus Y states. 
 

 
Graph 2.  Graph of results from Table 2 for matrix approach. 

 

 
Graph 3.  Comparing of presented approach. 
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2.4 Changes in source  

In this section we describe in brief, how to solve the changes in the matrix. If we 
compress the matrix with traditional algorithm (e.g. zip, LZW, Huffman, etc.) and 
some element is changed, we must re-compress all matrixes every time. But if we 
represent matrix as a FSA, we can change/re-compress only the corresponding part of 
resultant automaton, the one with changed element.  
 There exist at least three basic solutions for selection of corresponding part of 
Finite State Automata or corresponding sub-square of source matrix: 
 
1) Re-calculating the biggest corresponding sub-square: 
This approach leads to a big quantum of data manipulation (up to one quarter), but 
with this approach we can reach the high compression ratio. The method is useful for 
all types of source matrixes. 
 
2) Re-calculating the least corresponding sub-square: 
This approach re-calculates the least quantum of data (approximately tens elements), 
but with this approach we can gain only very small compression ratio and changes 
often lead to the growth of the automata. Compression become here the disutility, but 
if we want only obtain the interesting information from our resultant automata, this 
method is useful too. This approach is useful for all types of source matrixes. 
 
3) Re-calculating the optimal corresponding sub-square: 
Retrieval of such sub-square may be difficult, but in most cases, it shows that it has 
no sense to work with sub-square greater than three or four least corresponding sub-
squares. Naturally, it greatly depends on the character of the matrixes. If we know that 
the matrixes contain many equal blocks, we can state the amount of levels which we 
should still take in consideration. This choice naturally has not influence on 
algorithm, but only on machine time and resultant size of compressed matrixes. 

3 Resultant aggregate / database 

3.1 Resultant automata 

Composition is useful for storing resultant FSA in one structure with value-added 
information. In this section, we describe only necessary generalized procedure, for 
more information read [9]. This procedure can be used for both approaches; object 
oriented and prevailing approach. This approach can be simply upgraded to loss-
composition and makes possible to save more space and setup some additional 
options. We focus on this in future work. 
 
Procedure Composition Automaton for Storage 
For given automaton A and automaton B (resultant automaton from previously 
composition) compute new resultant automaton B´∈A∪B and combine similar parts 
of both ones. 
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Procedure Composition Automaton (Automaton A, Stored automaton B) 
 Assign state qx from A to the corresponding state in stored automaton B. 
 if such case does not exists, assign a new state and take qx+1 from A. 
 end if 
 for all state of automaton A do 
  if not exists edge from state qi labeled with same word w as edge from 
  correspond state in stored automaton then  
   create a new edge labeled w to a new state i 
  otherwise 
   take next edge 
  end if 
  if  all edges from actual state is processed, take next state 
  end if 
 end for 
end procedure 
 
This principle can be used for no-loss or loss compression for saving matrixes. 
Additional information can be obtained from structure of resultant automaton, for 
example the information about the similarity of the stored matrixes or its parts, 
common lines, etc. We can also easily get the group of equal matrix parts. 

3.2 Focus on a interesting information 

 If we store the source matrixes in more than one automaton, we can focus on the 
interesting part of the matrix and compute the automaton with various lengths. This 
principle was introduced in [10].  
 On other part of matrix, we can compute automaton with less number of states. 
For this purpose, we can use the pattern matrix shown in table 3, where the values in 
cells are the counts of profundity of automaton, which represents that part of matrix. 
This matrix can be used for some image, see figure 4. This principle can be used only 
for loss compression (e.g. images, signals, etc.). The part with less count of states 
stores much fewer information than the part with more states. 
 It is clear that with this principle we can save much more space preserving high 
information value of data. We can transfer only interesting part of matrix or any 
nearest part and save machine time or network capacity. It is sufficient to choose a 
state from resultant automata, which represents the interesting part of the matrix, and 
operate with this as with the root. This principle is used in the automata composition. 
Procedure for focusing on interesting information is very simple. Pattern may be 
arbitrary. 
 Now we have a background for using finite state automata as a database with 
included information. 
 
Procedure Focus on interesting information 
For given matrix M and pattern matrix P compute resultant automaton. This 
procedure use procedure Construct Automaton for Compression (CAfC), there in 
before. 
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Procedure Focus on interesting information (Matrix M, pattern matrix P) 
 i = j = 0 
 create state 0 and assign u0 = M  
 assume ui = M w  
 loop 
  for x ∈ S (part of pattern matrix) 
   assume |w|= P(ui)  
   i = CAfC(M, new w) 
   j++; 
  end for 
  if  i = = j than 
   Stop (all parts from pattern are processed) 
  else S = S + 1 
  end if 
 end loop 
end procedure 

 
Table 3. Example pattern for procedure Focus on interesting information 

 
2 2 2 2 2 2 2 2 2 2 ... 2 
2 2 3 3 3 3 3 3 3 2 ... 2 
2 2 3 4 4 4 4 4 3 2 ... 2 
2 2 3 4 5 5 5 4 3 2 ... 2 
2 2 3 4 5 6 4 4 3 2 ... 2 
2 2 3 4 5 5 5 4 3 2 ... 2 
2 2 3 4 4 4 4 4 3 2 ... 2 
2 2 3 3 3 3 3 3 3 2 ... 2 
2 2 2 2 2 2 2 2 2 2 ... 2 

 
 

 
Fig. 4. Example image with used focus on interesting information. 
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4 Conclusions 

In this paper was summarized an idea to use finite state automata as a tool for 
specification and compression of data aggregates. We compared two basic approaches 
of computing the resultant automata, namely: the matrix approach and the vector (or 
offset) approach. The first one is better applicable for representation and compression 
of smaller matrixes and for manipulation after decompression. The vector approach is 
pretty faster for larger matrixes, but on the other hand it produces more states. If we 
want to have large matrix to be more compressed (independently on the machine 
time) then the matrix approach is useful too. Both methods can be loss or loss-free, 
and both types have high predicate ability about stored matrixes and save space and 
network capacity. 
 The linked resultant automaton is able to create matrix database with included 
value and to make manipulation with matrixes easier. We also described simple and 
generalized procedure focus on interesting information in the source data and some 
illustrative results were shown. This procedure can make a better compression ratio 
together with maintaining the high information level of data. 
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