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Abstract 
Despite the current high capacity and speed of computers, the efficient storage of spatial data is still a cutting edge issue, most 
notably in the context of mobile devices. Processing power, limited storage and small display on mobile devices all mean that 
algorithms which efficiently summarize spatial data, reducing its size, have relevance. Generalization also has an important role 
to play in mobile display, not merely being employed for scale change, but overall legibility. 

This paper investigates the accuracy of using circles to store polygon boundaries. Can a series of xy points be usefully 
generalized by information contained in a smaller array of variably-sized circles used in a non space filling sense to 
approximate to the edge of the polygon? Accordingly, a Voronoi-based medial axis approach was used to generalize a vector 
dataset representing the island of Rarotonga.  

Two measures were combined to ascertain the effectiveness of this, size of generalized dataset and visual error. Circle 
approximation was not found to outperform the state-of-the-art Douglas-Peucker generalization algorithm in terms of dataset 
size and visual accuracy, though suitability for modelling rounded coastlines and other like geographic features was highlighted 
and future research directions suggested. 
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Introduction 
Despite the current high capacity and speed of computers, the efficient storage of spatial data is still a cutting edge issue, most 
notably in the context of mobile devices. Processing power, limited storage and small display on mobile devices all mean that 
algorithms which efficiently summarize spatial data, reducing its size, have relevance. Generalization also has an important role 
to play in mobile display, not merely being employed for scale change, but overall legibility (Anand et al,  2008; Jones and 
Ware, 2005). 
 
This paper reports on a novel and potentially useful spatial data generalization method and its initial testing for efficiency of 
storage and accuracy. The theory underlying this method is that the conventional storage of polygonal data in terms of a series 
of xy points can be efficiently replaced by an array of variably-sized circles that approximate closely to a polygon boundary 
(accuracy tests will measure how closely) and run in a non-space filling mode. The circle array holding the generalized line 
information implicitly has three values per entry: x, y and r, where x, y = the centre coordinates, and r = radius of the circle (as 
opposed to just x, y for conventional point-delineated polygon structures).  
 



 
 

 
 

Methods 
The circular arcs are derived through the following process. 

Deriving a population of circles through the sweep line Voronoi method and medial axes  
The sweep line algorithm (Fortune, 1987) was used to generate a Voronoi diagram (Figure 1) which in turn described the 
medial axis of the polygon (that set of lines in the polygon interior describing a “skeleton” that is central to the polygon). One of 
the main advantages of using this algorithm was the automatic generation of a population of circles whose circles are coincident 
with the vertices of the Voronoi diagram.  
 
In similar research, a union-of-circles based approach to shape representation was implemented by Ranjan and Fournier (1996) 
as the basis for assessing the similarity of two shapes as well as interpolation between them. Hubbard (1996) used 3D shape 
filling spheres as the basis for quickly calculating collision detection of shapes in a dynamic environment. Within the 
cartographic generalization research community Gold and Thibault (2001) and Haunert and Sester (2004) have applied medial 
axes or skeletons to the generalization task. 
 
In the current implementation, each circle’s radius was calculated during the execution of the algorithm and required minimal 
post processing upon completion. A full population of circles approximating to the polygon boundary was generated from the 
medial axis. The points of the original polygon are stored with the circle that approximates to them. 
 
Figure 1. Stages in the application of the sweep line algorithm on point data. a) points delineating polygon data; b) sweep line 
triggers parabolas for each point; where parabolas meet a Voronoi boundary is formed (the full parabola for any point is not 
seen, being clipped at any Voronoi boundary); c) the final Voronoi diagram (generated by software in Odgaard and Nielsen, 
2000). 
 

 
 
 
Filtering 
Four stages of filtering were then needed to remove unwanted circles. The first stage takes an error threshold, epsilon, and 
removes circles whose centres lie within an epsilon band ε (Perkal, 1956) around the boundary, as illustrated in Figure 2. This is 
the Minimum Circle Threshold (MCT), as reported in results. 
 
The second stage takes an overlap threshold t and removes circles whose overlap with smaller circles exceeds t.  Circles are 
treated from smallest to largest so that detail contributed by the smaller circles is more likely to be retained. The third stage 
takes an error threshold and removes circles whose arcs extend more than that threshold outside the boundary. The fourth stage 
takes a minimum run length (threshold number of consecutive points on the boundary “captured” by a circle for that circle to be 
included) and maximum allowed gap, and removes circles that replace less than run length number of points on the boundary, 
as long as no gap of more than the maximum allowed gap is formed. This is calculated from assessment of the points already 
stored with the circle. The resultant list of circles is stored in the same order as the original polygon points. 
 

Reconstruction of the polygon from stored circles 
The conventionally stored circles (x, y, r) are internal circles, which approximate to the polygon boundary from the inside. As 
natural geographical objects are concave as well as convex, external circles, stored as (x, y, -r) or with negative radii are used. 
As Figure 2 shows (though external circles are not displayed here), the reconstructed polygon comprises a combination of 
tangents and circle arcs. The circles are stored in clockwise order in a linked list and are consecutively processed two at a time 
for construction of tangents. Where two consecutive tangents intersect, the coordinate of intersection forms a new point. All 
remaining gaps to be reconstructed are filled in by circle arcs. Finally, there is also a check for self intersection, with resultant 
loops removed at this stage. 
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Figure 2. Reconstructing the polygon using tangents and circle arcs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Testing 
All realisations from this implementation were compared with output from the Douglas-Peucker algorithm (1973). This 
commonly used generalization method is global and recursive, initially offering the simplest straight line linking the start and 
end points of the line to be generalised. It then identifies the point that has the greatest perpendicular distance from the initial 
line, then subsequently uses that point to define two straight lines: start – point and point – end. The perpendicular distance 
measurement is then repeated recursively on these two smaller lines, and so on. Points from the original line are added to the 
evolving generalised line by the greatest perpendicular distance criterion until some predefined threshold (minimum allowed 
perpendicular distance) is undercut. This threshold thus effectively defines the scale of generalization. 

The Douglas-Peucker algorithm has been proven to be effective at retaining the most important points in defining the 
recognisable shape of a line. These tend to be the most extreme points, and these alone can result in unrealistic spiky artefacts in 
the generalized line, particularly at higher thresholds. The method proposed in this paper adopts a smoother, curve-based 
solution to address this. 

There are many generalization algorithms that have been put forward over the years, and it is not the place of this paper to 
compare them. A selection is cited here for affinity with the technique proposed. For example, Saux (2003) uses B-splines and 
wavelets, which have curved geometry; Wang and Muller (1998) use curves too. Christensen (2000) uses medial axes as part of 
his generalization solution. 

Error measurements of the realisations took two forms which were subsequently combined for the results. Firstly, the amount of 
data stored for a realisation was recorded, in terms of a count of numbers needed for storage (in the case of each circle, three: 
x,y,r; two numbers in the case of points chosen by Douglas-Peucker). Secondly, measurement of the visual area as used by 
Alani et al (2001) was implemented. This is a graphic measure, assessing parity of shape. It is given by the formula  

(App + Anp) / actualArea    (1) 

where App is the positive approximate false error (area falling within the approximation but outside of the original) and Anp is 
the negative equivalent (area falling within the original but outside of the approximation). In this study, the number of points 
(indicating performance in data storage) and visual error (ranging from 0 to 1) will be multiplied to give an overall figure of 
effectiveness for each realization.  
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Results 

The circle-packing algorithm has been tested on a 1:62800 polygon of the South Pacific island of Rarotonga, chosen for its 
smoothness and a favourable initial test. Many combinations of parameters were tried in order to explore the properties of the 
algorithm, producing many realisations (sample output in Figure 3).  
 
Figure 3. a) the original Rarotonga polygon; (b) an example Douglas-Peucker generalization output (100m); (c) a 
representation derived through altering MCT = 25, overlap = 90%, minimum 3 point runs with no gaps; (d) very generalized 
representation, the result of MCT = 100, overlap = 80%, runs of 4 points and above with at most gaps of one point permitted. 

 

 
 
 
Fig. 4 graphs the error measurement scores of a representative selection of realizations. Values graphed for the parameters were 
chosen as follows: The Minimum Circle Threshold scale was relative to the mean point separation of the original dataset; an 
even spread of values was graphed for Maximum Allowed % Overlap; Minimum Allowed Runs was displayed for the range of 
values (2 up to 6) yielding results; and Maximum Allowed Gaps values chosen (0, 4) were sufficiently separated to show some 
difference in error magnitude. 
 
Looking for patterns within and between realizations, there seems to be no benefit in lifting the minimum points in a run. 
However, there is an abrupt improvement in performance with increasing minimum circle threshold (markedly improved results 
once MCT= 50, perhaps a reflection of mean point separation of the original Rarotonga dataset). Fig. 5 graphs the scores for the 
Douglas-Peucker output. It can be seen from the measures that Douglas–Peucker outperforms circle-based generalization (a 
lower score means low error and low number of points – from this measure, DP is over twice as effective as circle 
approximation at its best). 
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Figure 4. The (Number of points * Visual Area) values graphed by Minimum Allowed Threshold, Maximum 
Allowed Overlap, Minimum Allowed Runs and Maximum Allowed Gaps in Runs. 
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Figure 5. The error values graphed for different Douglas Peucker tolerances. 
 

 
 

Discussion and Conclusion 
 
From a polygon of the island of Rarotonga, the circle algorithm has derived a set of circles, whose arcs approximately follow 
the coastline, but is smaller in size than the original data set. However, even if the algorithm could reconstruct polygons 
perfectly from circles, there is still the issue of the loss of explicit boundary coordinates – storage is in terms of circle centres, 
which are generally placed somewhat remote from the boundary.  
 
Beyond these initial results, more challenging and intricate polygon forms (i.e. containing convexities and concavities in 
particular of different scales) will be used to test the boundary approximating circle algorithm, to further explore its properties. 
Although not outperforming Douglas-Peucker, the kind of curved coastlines being generated by the circle algorithm may be a 
step towards the ‘aesthetic’ generalization looked for by Dutton (1999) (and user testing could be applied to state this for 
definite). Other possible future strategies include running the circles in space-filling mode (enabling swift containment 
calculations), exploring circle ordering (largest first as opposed to smallest first) and optimization techniques. Finally, to 
ascertain efficiency of the proposed algorithm (critical in the context of mobile devices) an assessment of processing times will 
be made. 
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