
Structured Spreadsheet Modeling and Implementation

Paul Mireault

Honorary professor, HEC Montréal

Montréal, Canada

Paul.Mireault@hec.ca

Abstract — Developing an error-free spreadsheet has been a

problem since the beginning of end-user computing. In this

paper, we present a methodology that separates the modeling

from the implementation. Using proven techniques from

Information Systems and Software Engineering, we develop

strict, but simple, rules governing the implementation from the

model. The resulting spreadsheet should be easier to

understand, audit and maintain.

Index Terms — Spreadsheet modeling, Spreadsheet

implementation, structured modeling.

I. Introduction

How have you learned Excel? The majority of Excel users

we asked in MBA and Executive training courses answer that

they have learned it simply by using it, sometimes with the help

of a colleague who had shown them a few tricks. A few had

attended Excel classes, varying from a few hours to a couple of

days. However, those classes usually show what Excel can do,

and not how to use it in a business context. It is like learning a

language by reading a dictionary: you may learn the meaning

of the words (the what), but not the syntax (the how).

The same can be said about Excel books: they will explain

all the features, menus and functions offered by the program.

Some books will show how to use Excel in specific contexts,

like Finance, Accounting, Marketing and Human Resources,

but they present a limited number of spreadsheet templates that

the reader is expected to modify in order to adapt them to his or

her needs.

Excel presents the illusion of simplicity because of its free-

form structure or, should we say, its lack of structure. This lack

of structure may please the novice users, but as they become

more experienced, they often impose upon themselves some

form of structure. For example, they may indicate input cells

with a particular colour, format its descriptive label (i.e. the

text, usually on the left, that describes the cell’s content) or

even separate the data from the formulas in different areas of

the spreadsheet. This very need for self-imposed structure is an

indication that the free-form structure has its shortcomings.

Self-imposition of rules is not new. Many industries have

adopted codes or norms. For example, think of what would

happen if electricians did not have a norm for the color of

wires: maintenance would be problematic, if not outright

dangerous. Following norms makes us incur additional costs:

extra inventory (i.e. spools of different coloured wires instead

of all black) and other resources. Yet, nobody disputes the

benefits of those norms; they let another electrician continue

the work of the original installer, sometimes many years later.

IT departments often impose norms on their programmers

such as variable naming conventions and indentation rules, to

name a couple. If these norms weren’t imposed, then

maintenance would be problematic; the maintenance

programmer would have to spend hours trying to understand

both the original programmer’s intent as well as the work of

previous maintenance programmers.

Programmers, electricians, plumbers and engineers have all

had training in which the importance of norms has been taught.

None of the Excel users in our courses had.

In this article, we present a spreadsheet development

methodology named Structured Spreadsheet Modeling and

Implementation (SSMI). This methodology was taught in

MBA, Executive training and undergraduate business courses.

In the next section, we explain the underlying Information

Systems concepts of the methodology. Then, we illustrate the

methodology with an example.

II. Modeling

Past research on spreadsheet design has focused on the

physical design of the spreadsheet itself.

The analogy with computer systems is like talking about the

design of a program in terms of declaring all the variables at

the beginning, indenting loops and if-then-else structures or

naming variables with descriptive names using a mix of lower

and upper case letters. However, the core of a computer

program is its algorithm, not how it looks. The same with

spreadsheets: they are a model of a real-world system. All the

formulas in the spreadsheet are the model, and very little has

been said about the model’s design.

In this article, we make a distinction between the design of

the spreadsheet, which we will call the spreadsheet

implementation, and the design of the model, which we will

simply call spreadsheet modeling. We will use concepts from

the Information Systems (IS) literature to explain a modeling

methodology for spreadsheet developers.

A. Developing an Information System

Figure 1 illustrates a simplified view of information

systems development where three models are used in

succession. Even though the process appears to be sequential,

there are feedback loops allowing changes in previous steps.

The final model is called the physical model and is in fact

the implementation. In a relational database system, it is the

actual data tables created with the SQL statement CREATE

TABLE (see Figure 2) and managed by the Database

Management System (DBMS) like Oracle, Microsoft SQL

Server or IBM DB2.

Before the creation of the tables, the system analysts

produce the logical model, represented with a Data Structure

Diagram (DSD) (see Figure 3), which is a high-level

description of the data tables showing all their fields and

specifying the relationships between the tables through the

primary keys (PK) and the foreign keys (FK). The DSD is the

tool with which the system analyst communicates with the IT

specialists who will implement the database. It contains

technical information that is not always understood by the

system user like, for example, primary key and foreign key.

While these concepts are essential for a proper implementation,

it is not necessary that the user understands them.

Since the system is developed for the user, there must be a

way for him to convey his needs and requirements down the

chain. This is done through the conceptual model. In a database

system, the conceptual model can be represented with a

Unified Modeling Language Diagram (UML). An important

characteristic of the conceptual model is that it is not dependant

on any technology (Oracle, Microsoft or IBM) and it does not

use technical concepts, rather, it uses the user’s vocabulary.

The UML Diagram is usually designed by the system analyst,

following interviews with the users and observation of the

work processes they perform. In Figure 4 we can understand

that a ship has cabins, that a cabin is contained in a ship and

that a cruise has stops. A cruise has a set of stops and it has

trips that sail on specific dates and are sold to clients.

B. Developing a Spreadsheet

With spreadsheets, there is often no system analyst or IT

specialist present, as illustrated in Figure 5. The user is usually

the developer and builds his spreadsheet by alternating between

the creative activities like thinking about formulas and

variables, and the mechanical activities, like typing formulas,

pointing to cells, copying them, testing them and so on. As the

spreadsheet grows in size, these mechanical operations take

longer to perform and are a source of errors.

This is an unreliable development process because

spreadsheet developers, even though they are their domain’s

specialists, are not trained in development techniques like IT

specialists. In fact, they are part-time developers because

developing spreadsheets usually only represents a small part of

their job.

Furthermore, since users don’t have formal training, it is

left to themselves to build the spreadsheet as they see fit. Some

organizations have developed standards for spreadsheet

applications (see FAST[1]), but what they call a model is what

we call the Physical Model.

Figure 1 Typical Information System analysis, design and

implementation process

CREATE TABLE CRUISE(

 CRUISECODE INTEGER NOT NULL,

 CRUISENAME VARCHAR2(100) NOT NULL,

 SHIPNO INTEGER NOT NULL,

 DEPARTURE_PORT VARCHAR2(100) NOT NULL,

 ARRIVAL_PORT VARCHAR2(100) NOT NULL,

 CONSTRAINT CRUISE_PK

 PRIMARY KEY(CRUISECODE),

 CONSTRAINT CRUISE_FK_SHIP

 FOREIGN KEY(SHIPNO) REFERENCES SHIP(SHIPNO));

CREATE TABLE STOP(

 CRUISECODE INTEGER NOT NULL,

 STOPNO INTEGER NOT NULL,

 PORT VARCHAR2(100) NOT NULL,

 ARRIVAL_DAY INTEGER,

 ARRIVAL_HOUR INTEGER,

 DEPARTURE_DAY INTEGER,

 DEPARTURE_HOUR INTEGER,

 CONSTRAINT STOP_PK

 PRIMARY KEY (CRUISECODE,STOPNO),

 CONSTRAINT STOP_FK_CRUISE

 FOREIGN KEY(CRUISECODE) REFERENCES

CRUISE(CRUISECODE));

Figure 2 Physical Model: SQL statements

Figure 3 Logical Model: DSD of a Cruise Operator

Figure 4 Conceptual Model: UML Diagram of Cruise

Operator

Because of this free-for-all approach, researchers have

studied ways to audit or understand a spreadsheet’s logic

(Clermont[2], Hermans [3], Igarashi [4]). Unfortunately, this

after-the-fact approach to understanding the spreadsheet

developer’s logic is difficult and time consuming.

Other research provided guidelines for the spreadsheet

developer. Alexander [5] gives guidelines for the Physical

Model.

III. Structured Methodology

The structured methodology is based on the same concepts

presented in Figure 1: a separation of tasks to produce three

models. The process is illustrated in Figure 6.

The conceptual model is called a Formula Diagram (FD),

the logical model is the Formula List (FL) and the physical

model is the actual spreadsheet. Since the Formula Diagram

and the Formula List have a one to one correspondence and

require more domain knowledge than spreadsheet knowledge

they are produced at the same time and by the same person.

The Formula Diagram was inspired by Bodily’s Influence

Diagram [6]. Ronen’s [7] Spreadsheet Flow Diagrams are a

Conceptual Model, but its implementation does not follow

directly from the diagrams.

We will illustrate the process by building a spreadsheet for

a small North-American car rental company. A car has a daily

cost and an additional cost if the client goes over the total

distance allowance. The total distance allowance is the product

of the number of days and the daily distance allowance.

A. Modeling

We will start by developing the model without any

information regarding the interface.

The Formula Diagram corresponding to our car rental

company is illustrated in Figure 7.

The symbols have the following signification:

 A triangle represents a constant that is not changed

often. We will put it in the Parameters sheet during the

implementation.

Figure 5 Typical unstructured spreadsheet analysis,

design and implementation process

Figure 7 Typical Structured Spreadsheet Modeling and

Implementation process

Figure 8 Formula Diagram

Variable Type Formula / initial value

Daily Rate Input 58$

Nb Days Input,

Interface

12

Daily

Allowance

Input 100

Total

Distance

Input,

Interface

1452

Distance

Cost

Input 0,36$

Daily Cost Intermediate = Nb Days * Daily Rate

Total

Allowance

Intermediate = Nb Days * Daily

Distance

Surplus

Distance

Intermediate = IF(Total Distance >

Total Allowance; Total

Distance – Total

Allowance; 0)

Surplus

Dist Cost

Intermediate = Surplus Distance *

Distance Cost

Rental Cost Intermediate,

Interface

= Daily Cost + Surplus

Dist Cost

Figure 6 Formula List

 A rectangle represents a constant that is changed

during the regular use of the spreadsheet. It will be put

in the Interface sheet.

 A circle is an intermediate variable that is defined by a

formula using the variables sending arrows to it. It will

appear in the Model sheet.

 An ellipse represents an intermediate variable that has

a particular importance to the spreadsheet user. Its

definition will be in the Model sheet, like all the

intermediate variables, and there will be a reference to

its value in the interface sheet.

As we develop the Formula Diagram, we also determine the

formula of each intermediate variable and fill the Formula List

(see Figure 8).

We found it preferable to have more variables with simple

formulas than less variables with complex formulas. The

golden rule of this methodology is to avoid having more than

one kind of operator or function in a formula. Figure 9 shows

the Formula Diagram of a non-recommended extreme case and

Figure 10 its corresponding Formula List.

As the model grows in size, we can diagram sub-models

separately and use connectors to indicate where intermediate

variables are located. For example, Figure 11 shows a sub-

model where the Total Distance is the result of a calculation

instead of being an input variable. The Formula Diagram of

Figure 7 can be modified as shown in Figure 12.

Figure 9 Formula Diagram of a non-recommended

extreme case

Variable Type Formula / initial value

Daily Rate Input 58$

Nb Days Input,

Interface

12

Daily

Allowance

Input 100

Total

Distance

Input,

Interface

1452

Distance

Cost

Input 0,36$

Rental

Cost

Intermediate,

Interface

= Nb Days * Daily Rate +

IF(Total Distance >

Nb Days *

Daily Allowance,

(Total Distance – Nb Days

* Daily Allowance) *

Distance Cost, 0)

Figure 10 Formula List of the extreme case

Figure 12 Formula Diagram with a connector

Figure 11 Sub-model and connector

B. Implementation

1) Three-Tier Architecture

The Three-Tier Architecture was developed in the 1990’s to

improve the performance and the management of information

systems. It consists of separating three major functions

performed by systems and then building them separately, with

the proper connections between them to ensure they work

properly. These major functions are the interface, where the

user interacts with the system, the application, which consists

of the programs implementing the business logic required by

the system and the services, which perform auxiliary services

for the application, such as getting data to and from a database

or accessing network resources.

The implementation of the Three-Tier Architecture in an

Information System consists of developing separate computer

programs. In our case, we will implement the tiers in separate

sheets of the Excel file.

When you create a new file, Excel provides a sheet named

Sheet1 and when you create new ones they are named Sheet2,

Sheet3 and so on. You can rename a sheet simply by double-

clicking on its name and typing a new name. To implement the

three-tier architecture, you should at least have the following

sheets: Interface, Model and Parameters as illustrated Figure

13. There may be some situations where you will use more

than three sheets. For example, if you get data from different

sources you may have multiple Parameters sheets in order for it

to be easier to refresh their content at different moments. Also,

if you have a complex model you may have multiple Model

sheets to represent easier to manage sub-models. You would

then need to name the sheets appropriately.

The Model sheet will have all the definition formulas of the

intermediate variables (circles and ellipse in the Formula

Diagram), presented in a specific block structure that is

described in the next section. The Parameters sheets will

simply have the input variables represented as triangles in the

Formula Diagram. Finally, the Interface sheet will have the

other input variables, represented as rectangles, and references

to the intermediate variables the user wants to see, represented

as ellipses in the Formula Diagram.

2) Model Sheet

Computer science has developed structured programming

techniques in an effort to reduce the possibility of making

errors. Using modules is one particular technique that consists

of building a self-contained block in which all inputs are passed

by value and the block’s calculation does not use values that

are not in its input list. The block is said to use local variables

but there are exceptions where a global variable can be used,

normally under controlled circumstances. A module that

returns a value is called a function.

In the SSMI methodology, the implementation of a formula

follows the structured programming technique of modules. It

uses a block of rows with a precise structure, as illustrated in

Figure 14. The bottom part of the block is the definition part

and contains the variable that is being defined with a formula.

In column A, we write a text label that will become the

variable’s name. In column B we write the formula that defines

it, using only the cells in the top portion of the block.

The top part of the block is the reference part and contains

all the variables used in the calculation of the variable we are

defining. Each variable is identified by its name in column A

and a simple reference formula in column B. The reference

formula is simply a reference to the name of the cell where that

variable is defined. Figure 15 displays the formula view and

illustrates the reference formulas and the definition formula of

a block.

Figure 13 Sheets with new names

Figure 14 Block structure of the Model sheet

Figure 15 Formula view of the block structure

Since all the definition formulas refer to cells immediately

above, the formulas are easy to validate. They have a very low

score according to the complexity measure developed by

Hermans, Pinzger and van Deursen [8]

The reference and definition parts are visually separated by

a line, easily implemented as a top border of the cells in the

definition part. We format the rows with the definition

formulas in bold. Furthermore, in Excel we name the cell

containing the definition formula in column B with the text

label of column A (see Figure 16). McKeever and McDaid [9]

concluded that “range names do not improve the quality of

spreadsheet developed by novice and intermediate users.”

Nevertheless we expect that our rules for naming cells and

using those names only in the reference part of the blocks will

be beneficial.

The block structure is similar to a function module in most

programming languages. All the values that are passed to the

function as arguments are in the reference part of the block and

become the equivalent of local variables, and the function itself

is implemented in the definition part of the block. Since all the

cell references in the definition formula are in the immediate

vicinity (see Figure 17) auditing a formula is easy.

3) Parameters Sheet

In the Parameters sheet, we write the name of each

parameter in column A and put the respective value in column

B, as illustrated in Figure 18. All the parameters are bold to

indicate that it is here where they are defined and those

representing monetary values should be formatted with the

Currency style, where the number of decimals can be adjusted

according to the value they represent.

All the parameters need to be named the same way

intermediate variables are (see Figure 16).

4) Interface Sheet

In the Interface sheet, we write the name of each input

variable in column A and put starting values in column B, as

illustrated in Figure 19. The exact values are not important at

this moment because the user will type proper values when he

will use the spreadsheet. We will format in Bold the cells

where each of our model’s variables is defined. Finally, we

format the cell with a proper number format, like the Currency

or Percentage format.

When the model is completed, we return to the Interface

sheet. Now, we can finish by putting a reference formula next

to each output variable, referencing the cell where it is defined

in the Model sheet, as demonstrated in Figure 20.

When the names of the input variables have been created,

the Interface sheet can be redesigned to suit the user’s

preferences and needs: it doesn’t need to be as austere as

shown in these figures.

IV. Conclusion

In this paper, we have shown that we can apply principles

and techniques from the fields of IS and SE to spreadsheet

development. The SSMI methodology is concerned solely with

the model; at the moment it does not address other issues like

interface design and data import.

Further research should be done on the methodology’s

efficiency:

 Does it reduce the probability of making errors (logical

and mechanical errors)?

 Is it easier to do maintenance on spreadsheets

developed with it?

 Is it easier to detect errors?

Figure 16 Creating variable names

Figure 17 Visual clues to help audit a formula

Figure 18 Parameters Sheet

Figure 19 Interface Sheet

Figure 20 Interface Sheet, formula view

V. References

[1] Fast-Standard.org, "The FAST Standard," ed, 2012.

[2] M. Clermont, "Heuristics for the Automatic

Identification of Irregularities in Spreadsheets," in

First Workshop on EndUser Software Engineering

(WEUSE I), Saint-Louis,MI, 2005, pp. 1-6.

[3] F. Hermans, M. Pinzger, and A. v. Deursen,

"Supporting professional spreadsheet users by

generating leveled dataflow diagrams," presented at

the Proceedings of the 33rd International Conference

on Software Engineering, Waikiki, Honolulu, HI,

USA, 2011.

[4] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T.

Zellweger, "Fluid Visualization of Spreadsheet

Structures," in IEEE Symposium on Visual

Languages, Halifax, 1998.

[5] R. A. Alexander, "Teaching good systems design for

spreadsheet projects," Journal of Accounting

Education, pp. 113-122, 1996.

[6] S. E. Bodily, Modern decision making: McGraw-Hill,

1985.

[7] B. Ronen, M. A. Palley, and H. C. J. Lucas,

"Spreadsheet Analysis and Design," Communications

of the ACM, vol. 32, pp. 84-93, 1989.

[8] F. Hermans, M. Pinzger, and A. van Deursen,

"Measuring Spreadsheet Formula Understandability,"

in EUSPRIG, 2012.

[9] R. McKeever and K. McDaid, "Effect of Range

Naming Conventions on Reliability and Development

Time for Simple Spreadsheet Formulas," in

EUSPRIG, 2011.

