
Peer-to-Peer Discovery of Semantic Associations

Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

LSDIS Lab,
Department of Computer Science, The University of Georgia

415 Boyd Graduate Studies Research Center
Athens, GA 30602-7404

{mperry, janik, cartic, ibanez, budak, amit}@cs.uga.edu

Abstract. The Semantic Web vision promises an extension of the current Web
in which all data is annotated with machine understandable metadata. The
relationship-centric nature of this data has led to the definition of Semantic
Associations, which are complex relationships between resources. Semantic
Associations attempt to answer queries of the form “how are resource A and
resource B related?” Knowing how two entities are related is a crucial question
in knowledge discovery applications. Much the same way humans collaborate
and interact to form new knowledge, discovery of Semantic Associations across
repositories on a peer-to-peer network can allow peers to share their local
knowledge to collectively make new discoveries. In this paper we propose a
method for computing Semantic Associations over distributed RDF data stores
in a peer-to-peer setting. We follow a hierarchical peer / super-peer network
topology, and we propose a novel query planning algorithm based on a notion
of knowledgebase borders and minimum distances between borders.

1 Introduction

Today’s data and information management tools enable massive accumulation and
storage of knowledge that is produced through scientific advancements, personal and
corporate experiences, communications, interactions, and other accomplishments. The
willingness and the ability to share and use this information are key factors for
realizing the full potential of this knowledge scattered over many distributed data
stores. By correlating these isolated islands of knowledge, individuals can gain new
insights through the discovery of new relations. For example, many complex
scientific problems increasingly require collaboration between teams of scientists who
belong to diverse disciplines [12]. Such collaboration therefore requires a system that
enables scientists to correlate knowledge across multiple knowledgebases. In this
paper we present a method of discovering complex relationships between resources
across distributed RDF [13] repositories to enable such collaboration in a peer-to-peer
environment.

Determining how two resources are related provides insight and knowledge about
the two resources. The relationship-centric organization of RDF data allows us to find
answers for these questions. In [3], Anyanwu and Sheth propose a set of relationship-

2 Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

based query operators for this purpose. They define a Semantic Association as a
complex relationship between two resources, and introduce a set of operators, �, for
querying Semantic Associations. One such operator is �-path. Two resources A and B
are �-path related if a path exists from A to B in the RDF graph. Finding �-path
associations that span many peers will allow for collective discovery of new
knowledge. With the goal of efficient processing of Semantic Associations in a peer-
to-peer environment, this paper makes the following contributions:

− A P2P architecture for the efficient computation of Semantic Associations
− Introduction of the concept of knowledgebase borders (knowledge contained in

more than one knowledgebase).
− A query planning algorithm for �-path queries based on borders and distances

between borders.

2 Semantic Associations

RDF, which initially emerged as the de-facto standard for representing semantic
metadata, has been adopted by W3C as a standard for representing information on the
Web. RDF uses XML to represent metadata. RDFS (RDF Schema) [14] provides a
standard vocabulary that can be used to specify concepts and relationships between
them. Relationships in RDF, known as Properties, are binary relationships between
resources/literals that take on the roles of Subject and Object respectively. The
Subject, Predicate and Object compose an RDF statement. This model can be
represented as a directed, labeled graph with typed edges and nodes. In this model, a
directed edge labeled with the Property name connects the Subject to the Object.

Semantic Associations are originally defined in [3]. We give simplified definitions
of relevant Semantic Associations here for completeness, namely �-path. A path
P = e1, p1, e2, p2, e3, … , en-1, pn-1,en is defined as a sequence of RDF statements where
each ei, pi, ei+1 represents a single statement with pi the RDF predicate and one of ei or
ei+1 is the RDF subject and the other is the RDF object. Two resources x and y are �-
path associated if there exists a path p of length n > 0 between them. A �-path query
between two resources should return all such paths.

2.1 The �-path Problem

Here we define �-path association queries in graph theoretic terms and state the �-
path problem. The RDF data model consists of four sets of resources: C the set of
classes, P the set of properties, I the set of class instances, and L the set of literals. We
define the set P′ to be P – {rdf:type, rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, rdfs:range, rdfs:label, rdfs:comment}. We define an RDF instance
graph as a directed, edge labeled graph G(V,E) where

(){ }LobjppredcobjcsubobjpredsubjPpIcV ∉∧=∧=∨=∃∧′∈∃∈= ,, each c∈V

will get the label uri(c). For each triple ops ,, with Vos ∈, and Pp ′∈ we add an

Peer-to-Peer Discovery of Semantic Associations 3

edge (s, o), with label uri(p), to E. In other words, the RDF instance graph includes
class instances and relationships between them, but does not include ontology schema
information.

 We define the �-path problem as follows:

�-path Problem
Given: RDF instance graph G, vertices x and y of G, and an integer k

Find: All simple, undirected paths p with length ≤ k in G which connect x
and y

We chose the k-hop limit and simple paths constraint for practical and
computational reasons. Given the many possible ways we can piece together paths
from different knowledgebases and the nature of the small-world phenomenon [10],
without these constraints a �-path query on a well-connected graph could easily return
most of the RDF dataset. We add the simple path constraint because we do not feel
that loops at intermediate nodes in a path add much value to the association, and
including these paths will just add to the information overload problem. In addition,
we feel that very long �-path associations (i.e. greater than length 10) will not be easy
for humans to understand and thus are less valuable.

2.2 Difficulties of a Distributed Environment

Finding a solution to the �-path problem in a distributed environment brings a number
of challenges. The first one is the nature of a distributed environment. It requires an
efficient communication protocol to forward a search between knowledgebases and
later to gather results. Design decisions will include what data is sufficient to perform
a search and create the final result from the found parts. Furthermore, decisions must
be made about when and with what set of parameters to start searches in adjacent
knowledgebases.

The distribution of knowledge between nodes causes paths to span over multiple
knowledgebases, but a given path can cross the same knowledgebase many times. In a
centralized environment, the whole path is included in a single graph. On the
contrary, in a distributed environment only parts of the final path are fully included in
one knowledgebase. Therefore, it is possible that the final path will include two or
more ‘sub-paths’ from the same knowledgebase. This feature makes merging of final
paths from locally computed parts a hard task.

An additional challenge is dividing and optimizing computation to find parts of
final paths. For a given maximum length restriction of a path search, it may not be
trivial to decide the search length in each participating knowledgebase. We do not
want to perform too many calculations that end up being useless in constructing the
final result. However, since the number of paths between any two entities grows
exponentially with path length, we can gain performance by dividing a large data
store over a number of peers. It is likely that each peer will perform searches of length
significantly less than the overall hop limit.

4 Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

3 Related Work

There have been other proposals for querying and searching RDF metadata on P2P
networks. In [9] the authors propose a Peer-to-Peer framework for searching for
ontologies. In this paper the authors provide the motivation for using the P2P
framework as a means of realizing the Semantic Web vision. In [11] the authors
present a super-peer-based routing and clustering strategy for peers that maintains
RDF metadata. The main idea suggested by them is to use the RDF schema as a
means of organizing RDF data. They however enforce a definite topology on the
network of super-peers. This structure is a d-dimensional hypercube based on the
structure suggested in [15]. The choice of such a structure is motivated by the
bounded diameter of the networks realized using such structure. Further, since the
structure is built using information from the RDF schema of the data stored at the
peers, the hypercube structure is both structural and semantic. Aberer et al. [1]
propose what they call a “Semantic Gossiping” scheme where each peer has the
opportunity to learn about mappings with the data at other peers. This results in a
directed graph (with cycles) which is then used to further propagate mappings. This
graph then serves as the basis of the query propagation process which converges over
time. In [4] Bernstein et. al. address the data sharing issue that arises in a P2P
paradigm. They propose the Local Relational Model (LRM) which assumes that the
data P2P network is made up of several local (relational) databases, each with its set
of acquaintances. Further, they specify domain relations define translations rules
between data items and coordination formulas define semantic define dependencies
between databases. There has also been work on a structured P2P RDF repository
based on distributed hashing [5]. They propose a structured peer topology called
multi-attribute addressable network (MAAN) which uses a one-dimensional modulo-
2m circular identifier space for node identifiers and attribute hash values.

The types of queries that we seek to answer are fundamentally different from those
described in any of the above approaches. Queries in related approaches are mostly
concerned with locating a specific resource or finding all instances of a specific path
template. �-path queries require no knowledge of the RDF schema; the user only
needs to specify the two endpoints. Further, �-path queries are difficult to express
with existing query languages like RDQL [16] because a user would have to specify a
path template for each possible path length and direction. To compute �-path queries
efficiently we need to organize our data so that the neighborhood of a resource can be
explored with minimum network communication and so that we can determine search
length limits for each peer.

4 Our Approach

In this section we present system architecture and details of forming query plans.
Query plans are based on knowledgebase borders and distances between them.

Peer-to-Peer Discovery of Semantic Associations 5

4.1 Peer-to-Peer Architecture

We base our solution to the distributed �-path problem around a hierarchical P2P
network topology, see [18] for an overview. In our approach, the network consists of
a set P of peers and a set S of super-peers. System architecture is presented on Fig. 1.
Knowledgebases (RDF datastores) are stored at the peer level, while indexes are
stored at the super-peer level. Each peer contains one or more knowledgebases, and
each peer is associated with one super-peer group. Each super-peer keeps an inverted
index mapping resources to peers and/or super-peers. A super-peer does not store any
information about resources contained completely outside of its group. A super-peer
knows about all other super-peers in the network and can query them to determine
which group contains a given resource.

Fig. 1. P2P Architecture

In this scheme super-peers are responsible for query planning, while peers are
responsible for query execution. Upon receiving a query, the peer forwards it to its
super-peer and asks for a query plan. Acting as coordinator for the query, this super-
peer will communicate with other super-peers to form the plan. Query planning
consists of formulating subquery planning on two levels. The first task is to plan the
query on the super-peer level. The second step requires each super-peer to form a
more detailed plan within its group. After receiving the query plan, the peer that
initiated the query will directly communicate with the other peers to execute each
query.

4.2 Knowledgebase Borders

The solution for correct identification and disambiguation of resources that belong to
multiple knowledgebases is a necessary step to allow a search for semantic
associations in distributed knowledgebases. If we want to find semantic associations
that span over different knowledgebases, apriori we need to find what knowledge
they share. Shared resources are necessary for a path to go from one knowledgebase
to another, but the problem of finding them is not trivial. Consider an example where
an organization has a collection of metadata repositories where each repository deals
with a logically separate domain. Some real-world entities will have corresponding

6 Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

metadata in more than one repository. For example, Tiger Woods will most likely
have annotations from both the sports and business domains since he is both a golfer
and a spokesperson for an automotive company. Such a multi-classified entity
provides a means of linking the two repositories.

Different knowledgebases may have different schemas and different naming
conventions. It may often happen that the same resource in real life will have one
identifier in the first knowledge base and another in the second. It is a hard problem to
correctly merge or create an equivalence mapping between differently identified
resources that, in fact, describe the same entity. Many attempts have been made at
various forms of this problem, for example [6], [7]. In the process of finding
commonly shared knowledge we identify resources that belong to both
knowledgebases and create an equivalence mapping between them. Each of these
resources is called a border node. This is the joining point of two or more
knowledgebases. When a semantic association path reaches such a node, it can be
continued in another knowledgebase. We call the set of all such resources that belong
to the intersection of different knowledgebases a border. Each border node can
belong to only one border, and all borders are pair wise disjoint. This requirement is
stated for correct guidance of the search algorithm. Each border is identified by the set
of knowledgebases it connects. This determines which knowledgebases are possibly
‘reachable’ from a given border.

Fig. 2. Knowledgebase borders and Query Plan Graph

To illustrate how borders are defined, consider Fig. 2. In this example for knowledge
bases A, B, C we have four borders: AB, AC, BC and ABC. Nodes that belong to
border ABC do not belong to border AB, AC or AB. When a query search algorithm
reaches nodes in this border ABC, it can continue in any knowledgebase belonging to
this border. It also means that it can continue an association path search in borders
AB, AC or BC as all of them belong to knowledgebases that are reachable from border
ABC.

Peer-to-Peer Discovery of Semantic Associations 7

4.3 Notion of Minimum Distance between Borders

We use the notion of a minimum distance between knowledgebase borders in
combination with the k-hop limit to form a hop-limited �-path subquery. We define
the minimum distance, dist (B1, B2), between two borders B1 and B2 to be the
shortest path that connects some node in B1 to some node in B2. The query-specific
hop limit for the subquery is used to prune fragments of paths that exceed the k-hop
limit, thus reducing wasted computations and network traffic. For example, consider
the set of knowledgebases in Fig. 2. Assume that the start node is contained in
knowledge-base A and is a distance of 3 hops, 4 hops, and 3 hops from the AB, ABC,
and AC borders respectively. Also assume that the end node is located in
knowledgebase B at a distance of 2 hops, 4 hops, and 3 hops from the AB, ABC, and
BC borders respectively. With this knowledge of borders and minimum distances, if
we have a k-hop limit of less than 9, we can conclude that there is no point in looking
for paths through knowledgebase C. This results from the fact that dist (AC, ABC),
dist (BC, ABC), and dist (AC, BC) makes it impossible to find a path from start to end
which passes through any two of these borders. Further, we can compute the upper
bounds on the hop-limits of subqueries through knowledgebases A and B given the
border and minimum distance information.

4.4 Computing Border Information

Super-peers are responsible for computing the borders in their own group, and super-
peers collectively discover borders between groups. The computation of borders
assumes that the entity disambiguation problem has been solved, and a single real-
world entity is identified by the same URI across knowledgebases. Upon joining a
group, a peer sends the corresponding super-peer the set of URIs it contains. Each
super-peer maintains a sorted list of all the URIs in its group with proper references to
peers. Super-peers exchange messages about their URIs to find overlap, where each
message contains one URI. To minimize message communication, an algorithm for
super-peer border discovery is based on finding the intersection of two sorted lists,
which is)(nΟ .

4.5 Query Plan Graph

To store the border node and minimum distance information we use a graph
representation termed a Query Plan Graph (QPG). In this weighted, directed graph,
the set of nodes represents the set of borders between datasets, and a pair of directed
edges (one in each direction) connects every border which shares a dataset (i.e. AB
and BC). In addition, a self-loop edge is added for each border. The weight on each
pair of edges is the minimum distance between the two borders. In the case of a loop,
the distance is the shortest distance between any two distinct nodes in the border.
Intuitively, edges in this graph represent �-path queries between the set of nodes in
each border. The right side of Fig. 2 shows the QPG resulting from the sub-network
on the left side of Fig. 2. For purposes of query planning (section 4.6), we would like

8 Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

to know the border topology both at the super-peer level and at the peer level (within
a group).

Fig. 3. Knowledgebases showing super-peer overlap

We form a super-peer level QPG known to all super-peers, and we form a peer
level QPG known only to the group’s super-peer. In addition, we need to add super-
peer border information to the peer level QPG so that we can form a mapping from
the peer level to the super-peer level. In order to integrate the peer level QPG with the
super-peer level graph, we think of the peer level graph as the expansion of an edge in
the super-peer level graph. In other words, the super-peer level graph acts as an
overlay network for the peer level graph. This recursive relationship has the added
benefit of allowing for the possible definition of multiple levels of super-peer
overlays. Fig. 3 and Fig. 4 illustrate how a super-peer augments its QPG for a peer
group to integrate super-peer border topology. Overlaps between other super-peers
and peers in the sub-network are computed. In this case, knowledgebases A and C
overlap with super-peer 3 and knowledgebase C overlaps with super-peer 2. Nodes
are created for these peer/super-peer borders, and one node is created for the
corresponding super-peer/super-peer border (gray nodes in Fig. 4) and connected by
zero-weight edges to each of the peer/super-peer borders. The integrated QPG allows
super-peers to find minimum distances between super-peer borders by finding
shortest paths between super-peer/super-peer nodes in the peer level QPG. These
super-peer/super-peer nodes in the peer level graph map to the nodes in the super-peer
level graph, and edge weight is computed by finding the shortest path between the
nodes in the peer level graph.

Peer-to-Peer Discovery of Semantic Associations 9

Fig. 4. Query Plan Graph showing super-peer border information. Note that each single edge
represents two directed edges and self-loops have been left out for clarity

4.6 From Query Plan Graph to Queries

The process of forming a query plan for a given �-query starts with the super-peer
level graph and moves to the peer level graph. It is based on finding the position of
the start and end node in the border topology, then finding paths from the start node to
the end node in the super-peer QPG, and then replacing edges in these super-peer
level paths with paths in the peer level QPG. After paths are found, we determine
upper-bounds on hop limits for queries and compile a list of queries for each
knowledgebase.

The first step in the query planning process is to augment the super-peer graph with
the location of the query endpoints. Upon receiving the �-query from one of its peers,
the super-peer locates the two endpoints for the query. After locating the end-points,
temporary nodes and edges are added to the super-peer QPG to reflect the position of
the endpoints in the border topology. If an endpoint is contained within its sub-
network, the super-peer will locate it with its inverted index. If an endpoint cannot be
located in the index, the super peer will broadcast a message to other super-peers to
determine its location in the topology. There are two cases for the location of an end-
point: either within a border or outside a border. In the latter case, the containing
super-peer will respond to the message with a list of edges that specify the endpoint’s
distance to each border for that super peer. A temporary node is created for the
endpoint and the temporary weighted edges are added to the query plan graph. In the
former case, the super-peer only notes that the node for the border should be treated
as an endpoint.

Once we have found the locations of the endpoints in the border topology, we can
search for various ways to piece together paths through different knowledgebases.
First, we find all paths (including cycles), with weight less than the original k-hop
limit, from the start node to the end node in the super-peer QPG.

10 Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

Knowledgebase Query

A �-path (AB, BC, 3)
A �-path (AB, ABC, 4)
A �-path (AB, A/SP3, 4)
A �-path (ABC, A/SP3, 5)
B �-path (AB, ABC, 4)
C �-path (AC, C/SP3, 2)
C �-path (BC, C/SP3, 4)
C �-path (ABC, C/SP3, 6)

Table 1. Resulting subqueries for �-path (SP1/SP2, SP1/SP3, 8)

Each edge e with weight w in a path p through the QPG now needs to be converted
into one or more k-hop limited �-path queries through the lower-level network, in this
case the peer level QPG. The first step in the transformation is to determine the upper
bound for the hop limit. Assume the original k-hop limit is n and the path p which
contains e has a total weight of W. The upper bound for the sub-query is w + (n –W).
The final weight for the query is the global maximum over all such paths. The second
step is to determine to which super-peers we should send the query. A border is
identified by the list of containers (super-peers or peers) which form the border. The
containers that receive the query are exactly those that appear in the intersection of
the container lists of the two borders. For example, an edge connecting the borders
SP2/SP3/SP4 and SP2/SP3 should go to both SP2 and SP3. After receiving a sub-
query, the super-peer will run the aforementioned algorithm for forming query plans
recursively on its peer level QPG (with end points equal to the adjacent nodes in the
super-peer level edge) and return a peer level query plan. Table 1 shows the sub-
query plan resulting from a �-path (SP1/SP2, SP1/SP3, 8) query plan request.

4.7 Query Execution

A peer executes a query plan by communicating directly with the corresponding
peers. This eliminates a potential super-peer bottleneck because query execution will
take much longer than query planning. The query plan groups queries based on the
peer that should receive them. The querying peer will then send each peer its entire
set of queries at one time. To execute each query, the peer performs a path search
using a trie-based bidirectional breadth-first-search algorithm. The peer merges the
result of each query to form a single RDF subgraph, which is then transmitted to the
calling peer as the result. Returning an RDF subgraph as opposed to a set of paths
both eliminates the exponential-time problem of path enumeration and minimizes
network traffic by eliminating node and edge redundancies in the result set. The
querying peer collects all such results and merges them to obtain the RDF subgraph
that contains the answer to the �-path query. At this point, path enumeration can be
done to form the final answer.

Peer-to-Peer Discovery of Semantic Associations 11

5 Conclusions and Future Evaluations

This paper presented an approach to efficiently execute Semantic Association queries
across a peer-to-peer network. The problem of executing path searches across
distributed RDF data sets brings many unique challenges. The network organization
used in existing approaches to searching RDF data over P2P networks makes path
searching difficult. This is due to network communication inefficiencies when piecing
together paths and difficulty determining when to stop a path search in one peer and
continue it in another. Our approach solves the first problem by keeping logically
related, and thus very connected, components of the RDF graph at the same peer.
Moreover, the use of border nodes and border distances solves the second problem of
when to stop a search in one peer and continue it in another.

Currently, we have a prototype implementation on top of a simulated network. We
plan to complete a full implementation with JXTA™ [8]. For performance
evaluations, we want to test its efficiency in terms of computation time and network
traffic. We will use a synthetic RDF graph generator developed in the LSDIS lab to
generate large, well-connected datasets. In addition we can test on real-world data by
using the Semantic Web Technology Evaluation Ontology[2] or TAP [17]. We would
like to compare network traffic data and running time for a path search on our system
versus other systems, for example [5]. In addition, we would like to analyze the
amount of data that is transferred over the network but not used in the final answer,
and it would be interesting to see what percentage of the dataset is transferred on
average for a query. We also want to see how the relative size of border node sets in
comparison with the over-all size of knowledgebases impacts performance. Finally,
we want to look at performance gains from parallelism over a distributed dataset
versus a path search in a single large dataset.

Acknowledgements

We thank all SemDIS project members for their insightful comments and revision
suggestions. This project is funded by NSF-ITR-IDM Award#0325464 (SemDIS:
Discovering Complex Relationships in the Semantic Web) and NSF-ITR-IDM
Award#0219649 (Semantic Association Identification and Knowledge Discovery for
National Security Applications).

References

1. Aberer, K. and Hauswirth, M., Semantic gossiping. in Database and Information Systems
Research for Semantic Web and Enterprises, Invitational Workshop, (University of Georgia,
Amicalola Falls and State Park, Georgia, 2002).

2. Aleman-Meza, B., Halaschek, C., Sheth, A., Arpinar, I.B. and Sannapareddy, G., SWETO:
Large-Scale Semantic Web Test-bed. in 16th International Conference on Software
Engineering and Knowledge Engineering (SEKE2004): Workshop on Ontology in Action,
(Banff, Canada, 2004), 490-493.

12 Matthew Perry, Maciej Janik, Cartic Ramakrishnan, Conrad Ibañez, Budak
Arpinar, Amit Sheth

3. Anyanwu, K. and Sheth, A., r-Queries: Enabling Querying for Semantic Associations on the
Semantic Web. in The Twelfth International World Wide Web Conference, (Budapest,
Hungary, 2003).

4. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L. and
Zaihrayeu, l., Data Management for Peer-to-Peer Computing: A Vision. in Fifth
International Workshop on the Web and Databases, (Madison, Wisconsin, 2002).

5. Cai, M. and Frank, M., RDFPeers: A Scalable Distributed RDF Repository based on A
Structured Peer-to-Peer Network. in The Thirteenth International World Wide Web
Conference, (New York, New York, 2004).

6. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R.V., Jhingran, A., Kanungo, T.,
Rajagopalan, S., Tomkins, A., Tomlin, J.A. and Zien, J.Y., SemTag and Seeker:
Bootstrapping the semantic web via automated semantic annotation. in The Twelfth
International World Wide Web Conference, (Budapest, Hungary, 2003), 178-186.

7. Dong, X., Halevy, A. and Madhavan, J., Reference Reconciliation in Complex Information
Spaces. in ACM SIGMOD/PODS Conference, (Baltimore, Maryland, 2005).

8. JXTA. http://www.jxta.org/.
9. Maedche, A., Motik, B., Stojanovic, L., Studer, R. and Volz, R., An Infrastructure for

Searching, Reusing and Evolving Distributed Ontologies. in The Twelfth International
World Wide Web Conference, (Budapest, Hungary, 2003).

10. Milgram, S. The Small World Problem. Psychology Today, May 1967. 60-67.
11. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I. and Löser,

A., Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-To-Peer
Networks. in The Twelfth International World Wide Web Conference, (Budapest, Hungary,
2002).

12. Pike, W., Ahlqvist, O., Gahegan, M. and Oswal, S., Supporting Collaborative Science
through a Knowledge and Data Management Portal. in ISWC 2003 Workshop Semantic
Web Technologies for Searching and Retrieving Scientific Data, (Sanibel Island, Florida,
2003).

13. RDF. http://www.w3.org/RDF/.
14. RDFS. http://www.w3.org/TR/rdf-schema/.
15. Schlosser, M., Sintek, M., Decker, S. and Nejdl, W., HyperCuP – Hypercubes, Ontologies

and Efficient Search on P2P Networks. in International Workshop on Agents and Peer-to-
Peer Computing, (Bologna, Italy, 2002).

16. Seaborne, A. RDQL - A Query Language for RDF, 2004.
17. TAP. http://tap.stanford.edu/.
18. Yang, B. and Garcia-Molina, H., Designing a Super-Peer Network. in 19th International

Conference on Data Engineering, (Bangalore, India, 2003).

