
Uniqueness, Density, and Keyness:
Exploring Class Hierarchies

Anja Jentzsch1, Hannes Mühleisen2, and Felix Naumann1

1 Hasso Plattner Institute (HPI), Potsdam, Germany
{anja.jentzsch, felix.naumann}@hpi.de

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands hannes@cwi.nl

Abstract. The Web of Data contains a large number of openly-available
datasets covering a wide variety of topics. In order to benefit from this
massive amount of open data, e.g., to add value to an organization’s
internal data, such external datasets must be analyzed and understood
already at the basic level of data types, uniqueness, constraints, value
patterns, etc.
For Linked Datasets and other Web data such meta information is cur-
rently quite limited or not available at all. Data profiling techniques are
needed to compute respective statistics and meta information. Analyzing
datasets along the vocabulary-defined taxonomic hierarchies yields fur-
ther insights, such as the data distribution at different hierarchy levels, or
possible mappings betweens vocabularies or datasets. In particular, key
candidates for entities are difficult to find in light of the sparsity of prop-
erty values on the Web of Data. To this end we introduce the concept of
keyness and perform a comprehensive analysis of its expressiveness on
multiple datasets.

1 Profiling Linked Data

Over the past years an increasingly large number of data sources has been pub-
lished as part of the Web of Data3. At the time of writing the Web of Data
comprised already roughly 1,000 datasets totaling more than 84 billion triples4,
including prominent examples, such as DBpedia [10], and LinkedGeoData [17].
Furthermore, more than 17 billion triples are available as RDFa, Microdata, and
Microformats in HTML pages [13]. With the growing number of Linked Data-
sets on the Web of Data its heterogeneity increases. Simultaneously the number
of existing schemas as well as the content and granularity of datasets increases
and thus also diverges. This trend makes it increasingly difficult to find and
understand relevant datasets, for instance for integration.

A Linked Dataset is represented in the Resource Description Framework
(RDF). In comparison to other data models, e.g., the relational model, RDF
often lacks explicit schema information that precisely defines the types of entities

3 The Linked Open Data Cloud visualizes this trend: http://lod-cloud.net
4 http://datahub.io/dataset?tags=lod



and their properties. Furthermore, Linked Datasets are often inconsistent and
lack even basic metadata. One of the main reasons for this problem is that
many of the data sources, such as DBpedia or YAGO, have been extracted from
unstructured datasets and their schemata usually evolve over time. Hence it is
vital to thoroughly examine and understand each dataset, its structure, and its
properties before usage. Algorithms and tools are needed that profile the dataset
to retrieve relevant and interesting metadata analyzing the entire dataset [14].

We focus on a specific metadata aspect, namely the identification of objects
with keys. Keys are important in many aspects of data management, such as
guiding query formulation, query optimization, indexing, etc. Furthermore, for
Linked Datasets key properties allow, e.g., for defining interlinking specification
rules to establish the underlying links as owl:sameAs that make the Web of Data
a linked one.

In OWL 2 a collection of properties can be assigned as a key to a class using
the owl:hasKey statement [6]. This means that each named instance of the class
is uniquely identified by the set of values. While in OWL 2 key properties are
not required to be functional or total properties, it is always possible to sepa-
rately state that a key property is functional, if desired. Though OWL allows
the definition of key properties, it has not yet fully arrived on the Web of Data.
Glimm et al. found that in 2012 only one dataset uses owl:hasKey, while prop-
erties like owl:sameAs are already widely used on the Web of Data [5]. Thus,
actually analyzing and profiling Linked Datasets to find key candidates requires
manual, time-consuming inspection or the help of tools.

Specifying or finding keys in RDF data has another dimension that dis-
tinguishes it from relational data: Ontology classes usually are arranged in a
taxonomic (subclass/superclass) hierarchy. The class owl:Thing is a superclass
of all OWL classes and thus, classes without an explicit superclass are direct
subclasses of it. While the Web of Data spans a global distributed data graph,
its ontology classes build a tree with owl:Thing as its root. Analyzing datasets
along the vocabulary-defined taxonomic hierarchies yields further insights, such
as the data distribution at different hierarchy levels, or possible mappings be-
tween vocabularies or datasets.

Given a Linked Dataset with a set of properties, a unique property combina-
tion is a set of one or more properties whose projection has only unique entities.
Our initial approach to efficiently detect keys in a given dataset regards all prop-
erty combinations to find those that together uniquely (and reliably) identify an
object. Unfortunately, due to poor specification and data sparsity, such unique
property combinations are rare. This insight leads us to the definition of three
relaxed dimensions of an RDF property:

– Uniqueness is the degree to which the values of a property are unique.
– Density is the degree to which a property is filled with values.
– Keyness combines the two former dimensions: Properties that are highly

unique and highly dense are good key candidates.

Each of these dimensions is determined at all levels of a class hierarchy, leading
to insights about which properties best distinguish objects of a class and its sub-



classes. We evaluate the usefulness of our approach by showing various insights
we gained analyzing the DBpedia and LinkedGeoData datasets.

2 Related Work

A plethora of tools for profiling Linked Datasets and gathering comprehensive
statistics, most tools focus on a specific profiling task. One example for the area
of schema induction is ExpLOD [8], which creates summaries for RDF graphs
based on class and property usage as well as statistics on the interlinking be-
tween datasets based on owl:sameAs links. Li describes a tool that can deduce
the actual schema of an RDF dataset [11]. It gathers schema-relevant statistics
like cardinalities for class and property usage, and presents the induced schema
in a UML-based visualization. In [9] the authors present RDFStats, which uses
a SPARQL query processor to collect statistics on Linked Datasets and thus
optimize queries. These statistics include histograms for subjects (URIs, blank
nodes) and histograms for properties and associated ranges. In [7] authors cal-
culate certain statistical information for the purpose of observing the dynamic
changes in datasets.

Others have worked more generally on generating statistics that describe
datasets on the Web of Data and thereby help understanding them. LODStats
computes statistical information for datasets from the Data Hub [3]. It calcu-
lates 32 simple statistical criteria, e.g., cardinalities for different schema ele-
ments and types of literal values (e.g., languages, value data types). In [4] the
authors automatically create VoID descriptions for large datasets using MapRe-
duce. Aether [12] generates VoID statistical descriptions of RDF datasets. It
also provides a Web interface to view and compare them. Roomba [2] gener-
ates and validates descriptive Linked Dataset profiles. Finally, ProLOD++ is a
web-based tool for profiling and mining Linked Datasets [1]. It comprises various
traditional data profiling tasks, adapted to the RDF data model. In addition, it
features many specific profiling results for open data, such as schema discovery
for user-generated attributes, or association rule mining to uncover synonymous
properties.

While there are some RDF profiling tools already available, few tackle key
discovery. KD2R allows the automatic discovery of composite key constraints in
RDF datasets by deriving maximal non-keys and from these minimal keys [15].
Symeonidou et al. introduce SAKey, which extends KD2R to find “almost keys” [18],
i.e., sets of properties that are not quite a key due to few exceptions. The set of al-
most keys is derived from the set of non-keys found in the data. Both approaches
take into account that Linked Data can be erroneous or contain duplicate data
but omit the missing density. ROCKER [16] uses a refinement operator that is
based on key monotonicity, finds candidate sets of key properties, and assigns
them with a discriminability score.

All these existing approaches do not deliver key candidates for each and every
dataset. This is where our approach is superior as it calculates the keyness for
all properties.



3 Uniqueness, Density, and Keyness of Data

As Linked Datasets are usually sparsely populated, minimal unique property
combinations (key candidates) often consist of either multiple low-density prop-
erties or cannot be found at all. Novel property attributes, such as the unique-
ness, density, and keyness of a property are needed to discover the set of prop-
erties that likely identifies an entity, the key candidates. Furthermore, since
ontologies are topically clustered by their underlying ontologies, these attributes
can be determined per cluster and give some detailed insights into the properties
that serve as key candidates per topic.

3.1 Statistics for class hierarchies

A Linked Dataset’s class hierarchy is the taxonomy defined by its ontology and
therein the rdfs:subClassOf relations between the classes. A cluster Cc for a class
c consists of all the entities e that are of rdf:type c, which includes all subclasses
of c.

Cc = {e|e rdf :type−−−−−→ c}

Clusters can contain entities e that are not in any of its subclusters d. We cluster
these entities separately and call the resulting clusters unspecialized clusters,
denoted as C ′

c.

C ′
c = Cc \ {e | e

rdf :type−−−−−→ d, d
rdfs:subClassOf−−−−−−−−−−−→ c}

We omit the c subscript where it is irrelevant in the context. As an additional
complication, properties on the Web of Data can have multiple property values.
E.g., in the DBpedia dataset we find the following four values for the property
dbpedia:birthPlace for the entity of Albert Einstein:
dbpedia:Albert Einstein dbpedia:birthPlace dbpedia:Ulm,

dbpedia:Kingdom of Wuerttemberg,
dbpedia:German Empire
dbpedia:Baden-Wuerttemberg .

We denote the set of property values of an entity e and property p as V (e, p).
To count the number of entities in a cluster C that have at least one value for
p, we define V (C, p) = {e | |V (e, p)| > 0, e ∈ C}. Property values of a property p
and two entities e1 and e2 are equal if V (e1, p) = V (e2, p), i.e., if the two sets
are identical. With this definition we further define the set of unique value sets
as Vuq(C, p) = {V (e, p) | e ∈ C}.

We are now ready to define the three attributes, uniqueness, density, and
keyness, of a property. The uniqueness uq of a property p for a cluster C is the
number of unique value sets Vuq(C, p) per number of total value sets V (C, p) for
the given property.

Uniqueness: uq(C, p) =
|Vuq(C, p)|
|V (C, p)|

(1)



The density d of a property p for a cluster C is the ratio of entities in C that
have p to the overall number of entities in C.

Density: d(C, p) =
|V (C, p)|
|C|

(2)

We call a property full key candidate if its density and uniqueness are both 1.
For cases where they are not both 1 we define its keyness as a useful attribute.
The keyness k of a property p for a cluster C is the harmonic mean of its
uniqueness and density. The harmonic mean emphasizes that both parameters
must be high to achieve an overall high keyness:

Keyness: k(C, p) =
2 · uq(C, p) · d(C, p)

uq(C, p) + d(C, p)
(3)

We call a property key candidate if its keyness is above some threshold.
We investigate the three attributes of an RDF property, uniqueness, density,

and keyness, for the given cluster types C, and C ′. Determining uniqueness, den-
sity, and keyness for a property p in a cluster Cc requires analyzing all property
value sets for all entities in the given cluster. We observe all kinds of specifici-
ties of properties for clusters and their subclusters that allow for a fine-grained,
cluster-based retrieval of key candidates.

4 Evaluation

Our approach has been implemented in ProLod++, a web-based tool for pro-
filing and mining Linked Datasets [1]5. It comprises various traditional data
profiling tasks, adopted to the RDF data model. In addition, it features many
specific profiling results for Linked Datasets, such as schema discovery for user-
generated attributes, association rule discovery to uncover synonymous proper-
ties, and, in particular, key discovery along ontology hierarchies. It allows to
navigate a Linked Dataset via an automatically computed topical and hierar-
chical clustering as well as along its ontology class tree. The latter allows the
user to observe the evolution of key features along hierarchies, thus determining
class-specific properties and key candidates.

In combination, having these property attributes at hand, the user can better
decide on which properties serve as keys, especially on class level and gain further
insight into the completeness and structure of the dataset at hand.

4.1 Datasets

We evaluated our approach using two datasets, DBpedia v.3.9 [10]6 and Linked-
GeoData [17]. DBpedia is a Linked Data version of Wikipedia and thus a cross-
domain dataset. It has evolved into a hub on the Web of Data with many other

5 A ProLod++ demo is available at http://prolod.org
6 Our evaluation uses the English DBpedia, excluding the raw infobox properties.



datasets linking to it. LinkedGeoData is a spatial dataset that publishes Open-
StreetMap data as Linked Data. It is one of the bigger and constantly evolving
datasets on the Web of Data.

For DBpedia we analyzed the Person cluster and several subclusters including
Athlete and its subclusters, and Scientist (see Table 1). We deliberately omit the
artificial class Agent, subclass of owl:Thing and superclass of dbpedia:Person, due
to its main function to define properties that are also needed for the Organization
and Family class on the same class hierarchy level as Person.

Table 1 lists some subclasses of the DBpedia Person class along with the
number of entities and number of properties in the respective cluster. 35% of
the entities in DBpedia are persons due to Wikipedia mainly covering persons,
places, and sports topics. The Person cluster is a diverse one with 255 properties
being used, half of them (127) also occurring on the Athlete subclass. The Athlete
class has several subclasses from which we chose representative ones. Further-
more, we included the Scientist class as a comparison in our evaluation, which
has no further subclasses and only 40 properties.

Class # Entities # Properties

owl:Thing 3,221,405 1,376

Person 831,558 255

Person’ 110,726 56

Athlete 185,081 127

Athlete’ 16,224 18

AmericanFootballPlayer 11,884 44

BaseballPlayer 19,807 44

BasketballPlayer 6,487 33

Cyclist 3,828 18

IceHockeyPlayer 11,535 31

RugbyPlayer 11,098 32

SoccerPlayer 89,078 37

Scientist 14,894 40
Table 1. Number of entities and properties for some classes of the DBpedia Person
class hierarchy.

This analysis shows that having some basic profiling results on property usage
at hand can already be useful. While there are 2,333 properties defined in the
DBpedia 3.9 ontology, only 1,376 are used by at least one entity. When browsing
through Linked Dataset class hierarchies, the information on which properties
are actually being used, compared to the defined ones, can help to narrow down
the properties of interest for tasks like key discovery.

For LinkedGeoData we analyzed the 2013 version and therein the Amenity
cluster and the subclusters shown in Table 2. Due to its automatic conversion
from OpenStreetMaps, which is publicly curated by a large number of people,
the number of properties to describe amenities is very high.



Class # Entities # Properties

owl:Thing 49,355,161 16,278

Amenity 6,824,892 12,371

Amenity’ 5,543,014 10,467

Shop 1,130,204 3,790

Shop’ 1,008,344 3,530

Butcher 20,432 294

Bakery 57,204 544

IceCream 2,643 140
Table 2. Number of entities and properties for some classes of the LinkedGeoData
Shop class hierarchy.

4.2 Density, uniqueness, and keyness

Figure 1 plots the uniqueness and density for all properties in the DBpedia Per-
son, Athlete, and SoccerPlayer cluster, highlighting selected properties. Overall,
the property densities are noticeably low, while the uniqueness is distributed over
the entire x-axis. The DBpedia Person cluster has only two properties (foaf:name
and rdfs:label) with a high uniqueness (above 0.9) and density (roughly 0.7).
For the subclasses there are a few more properties with a high density and
uniqueness. We can already see that there is different behaviour in property
uniqueness and density along the class hierarchy. While the uniqueness for db-
pedia:birthPlace stays approximately equal for Person, Athlete, and SoccerPlayer,
dbpedia:team becomes more unique for Athlete than for Person and even more
unique for SoccerPlayer. The density of both properties increases.

Fig. 1. Uniqueness and density for properties of the DBpedia Person, Athlete, and
SoccerPlayer clusters.



Ontology Property Uniq. Density Keyness

foaf:name 0.94 0.69 0.80

rdfs:label 1.00 0.69 0.59

foaf:surname 0.26 0.63 0.36

dbpedia:team 0.32 0.38 0.34

dbpedia:currentMember 0.45 0.23 0.30

foaf:givenName 0.19 0.64 0.30

dbpedia:birthPlace 0.19 0.52 0.28

dbpedia:occupation 0.73 0.15 0.25

dbpedia:careerStation 1.00 0.12 0.21

...

rdf:type 0.00 1.00 0.00

...

dbpedia:pseudonym 0.99 0.00 0.00

...

dbpedia:espnId 1.00 0.00 0.00
Table 3. Uniqueness, density, and keyness for the DBpedia Person cluster.

Table 3 shows some of the 255 properties in the Person cluster along with
their uniqueness, density, and keyness, ordered by keyness. What can already
be observed from this selection are some typical characteristics of Linked Data-
sets. They often contain properties with only few property values but a high
uniqueness (nearly 1), e.g., dbpedia:pseudonym. Many properties have a high
uniqueness but their density is not 1, e.g., foaf:name, and rdfs:label. The density
rarely reaches 0.5 (for only eight properties) and only in one of 255 properties
(rdf:type) reaches 1. 86 % of the properties have only up to 5 % values available.

For example out of the 185,081 athletes in DBpedia, only 36 have a dbpe-
dia:espnId value, yet all of these values are unique. This would identify dbpe-
dia:espnId as a key candidate for athletes using traditional key discovery ap-
proaches. This observation emphasizes the need to take into account further
details like the keyness of a property when choosing key candidates.

Figure 2 shows the uniqueness and density for all properties in the Linked-
GeoData Amenity, Shop, and Bakery clusters, again highlighting selected prop-
erties. wgs84:lat is the latitude of an amenity’s position. Uniqueness and density
stay approximately equal for the classes along the hierarchy. The same can be
observed for the label rdfs:label of entities in LinkedGeoData. Positions and la-
bels are the two most used properties in LinkedGeoData. The overall property
density is again low, which is due to the enormous mostly manual effort to add
metadata for all the 49,355,161 entities in OpenStreetMaps/LinkedGeoData.

Even more than DBpedia, LinkedGeoData is sparsely populated with prop-
erty values. Table 4 shows some of the 12,371 properties in the Amenity cluster
along with their uniqueness, density, and keyness, ordered by keyness. Only five
properties have a keyness above 0.8 and as we have already observed in Fig-
ure 2, the overall property density is low. Only ten properties have a density
above 0.5, and two of them, dcterms:modified and lgd:changeset, are metadata



Fig. 2. Uniqueness and density for properties of the LinkedGeoData Amenity, Shop,
and Bakery clusters.

Ontology Property Uniq. Density Keyness

geovocab:geometry 1.00 1.00 1.00

owl:sameAs 0.98 0.70 0.82

wgs84:long 0.96 0.70 0.81

wgs84:lat 0.95 0.70 0.81

dcterms:modified 0.49 1.00 0.66

rdfs:label 0.53 0.55 0.54

lgd:changeset 0.17 1.00 0.29

lgd:gnis:feature id 1.00 0.08 0.15

lgd:addr:street 0.19 0.08 0.12

lgd:operator 0.14 0.06 0.08

...

rdf:type 0.00 1.00 0.00

...

lgd:housenumber 1.00 0.00 0.00
Table 4. Uniqueness, density, and keyness for the LinkedGeoData Amenity cluster.

properties. The average property uniqueness is 0.64, the average property den-
sity and keyness are 0.00. These numbers reflect the enormous number of places
in LinkedGeoData and the according effort to add metadata for all of them.

4.3 Class hierarchies

Furthermore, we evaluated the uniqueness, density, and keyness of selected prop-
erties along the class hierarchy. Table 5 shows the uniqueness, density, and key-
ness for the properties dbpedia:birthDate and dbpedia:team along the Person class
hierarchy. As already observed in Figure 1, the keyness for dbpedia:team increases
for Athlete and subclasses of Athlete as it is specific to the sports theme but not
existent for the Scientist cluster at all. The dbpedia:birthDate property has a high



density for all persons but its uniqueness is naturally not very high. The cover-
age of athletes’ birth dates starts only in the 17th century: the oldest athlete on
DBpedia is a cricketer called William Bedle, born 1679.

In the Person’ and Athlete’ clusters only few properties are used, which ex-
plains the missing dbpedia:team property. Generally, these clusters contain en-
tities that could not be further classified. When identifying key candidates, we
observe that the keyness for dbpedia:birthDate is an outlier compared with the
main clusters. Thus the keyness of Person and Athlete are of higher confidence.
Table 6 in the appendix shows the analogous analysis for selected LinkedGeo-
Data properties.

To summarize our findings, we identified three types of property keyness
along the class hierarchy:

– Less specific, i.e., keyness decreases per class level in the class hierarchy. An
example is dbpedia:deathPlace whose keyness for Person is 0.18, for Athlete
0.14, and for SoccerPlayer 0.08.

– Generic, i.e., keyness stays approximately equal throughout the class hierar-
chy. An example is dbpedia:birthPlace, whose keyness for Person is 0.28, for
Athlete 0.29, and for SoccerPlayer 0.28.

– More specific, i.e., keyness increases per class level in the class hierarchy. An
example is dbpedia:team which keyness for Person is 0.34, for Athlete 0.61,
and for SoccerPlayer 0.93.

Figures 1 and 2 already depict these types of property keyness. In DBpedia we
can find all three types of property keyness: the keyness for dbpedia:birthPlace
stays approximately equal for Person, Athlete, and SoccerPlayer (generic). For
dbpedia:team the keyness increases significantly from Person to Athlete and finally
to SoccerPlayer (more specific). The keyness for dbpedia:deathPlace decreases

Ontology Class
dbpedia:birthDate dbpedia:team

Entities Uniq. Dens. Keyn. Uniq. Dens. Keyn.

owl:Thing 3,221,405 0.05 0.21 0.08 0.12 0.28 0.17

Person 831,558 0.07 0.55 0.12 0.32 0.38 0.34

Person’ 110,726 0.28 0.75 0.41 — — —

Athlete 232,082 0.07 0.91 0.14 0.65 0.25 0.61

Athlete’ 16,224 0.56 0.90 0.69 — — —

Am.FootballPlayer 11,884 0.55 0.98 0.70 0.22 0.70 0.34

BaseballPlayer 19,807 0.67 0.93 0.78 0.31 0.94 0.46

BasketballPlayer 6,487 0.69 0.98 0.81 0.11 0.41 0.17

Cyclist 3,828 0.83 0.98 0.90 0.59 0.04 0.08

IceHockeyPlayer 11,535 0.55 0.96 0.70 0.04 0.54 0.08

RugbyPlayer 11,098 0.63 0.71 0.67 0.11 0.05 0.07

SoccerPlayer 89,078 0.14 0.95 0.24 0.87 1.00 0.93

Scientist 14,894 0.84 0.74 0.79 — — —
Table 5. Uniqueness, density, and keyness for DBpedia properties dbpedia:team and
dbpedia:birthDate along exemplary classes of the Person class hierarchy.



along the class hierarchy to SoccerPlayer (less specific). This can be explained
with the fact that DBpedia is an ever-evolving knowledge base and at the time
of writing most death places covered for soccer players were in a certain town
in England, namely Stoke-on-Trent. In LinkedGeoData the properties’ keyness
is mostly generic, like rdfs:label and wgs84:lat, but also sometimes gets more
specific on the lower class hierarchy levels.

Fig. 3. Keyness distribution for properties along the DBpedia class hierarchy.

Finally, Figure 3 shows the keyness distribution for all properties along the
DBpedia class hierarchy. Class level 1 contains all properties of owl:Thing, level 2
all properties of subclasses of owl:Thing and so forth. Overall, the keyness is
increasing per class level. For the root class level 1 out of 1,376 properties only
one has a keyness higher than 0.8, for class level 7 this increases to 7 out of 22
properties. This observation leads to the conclusion that class level-based keys
are a better choice than high-level keys. Key features for athletes might be too
high-level for soccer players and should be redefined on that level.

Our evaluation shows that the property keyness can help discovering key
candidates for Linked Datasets. It also highlights the advantages of analyzing
the class hierarchy in order to observe property behaviour for classes along it
and make better choices when identifying key candidates for specific classes.

5 Conclusion and Future Work

We have introduced the concept of keyness (and therein uniqueness and density)
of a property to address the sparsity on the Web of Data and thus create the
possibility to find key candidates where traditional approaches fail.

Our approach has been implemented in ProLod++ and provides users with
the uniqueness, density, and keyness for all properties. Having these profiling
results at hand helps users in finding key candidates and analyzing the relevance
of properties along class hierarchies in Linked Datasets.

While the keyness of a property is already useful for discovering key candi-
dates, the keyness values rarely reach 0.8 due to dataset sparsity. Thus we plan
to extend the keyness concept to sets of properties. Because minimal unique
property combinations rely only on a high combined density, they are not the
ideal approach here. It seems reasonable, for instance, to consider the amount
of overlap of properties in combination with the properties’ keyness.
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9. A. Langegger and W. Wöß. RDFStats – an extensible RDF statistics generator
and library. In Proceedings of the International Workshop on Database and Expert
Systems Applications (DEXA), pages 79–83, 2009.

10. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia – a large-scale,
multilingual knowledge base extracted from Wikipedia. Semantic Web Journal,
6(2):167–195, 2015.

11. H. Li. Data Profiling for Semantic Web Data. In Proceedings of the International
Conference on Web Information Systems and Mining (WISM), pages 472–479,
2012.
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key discovery in RDF data. In Proceedings of the International Semantic Web
Conference (ISWC), pages 33–49, 2014.



A Keyness analysis for selected LinkedGeoData
properties

In analogy to Table 5 for persons, Table 6 shows the uniqueness, density, and
keyness for the selected LinkedGeoData properties wgs84:lat and rdfs:label along
the Amenity class hierarchy. For the position properties it is noticeable that the
keyness stays high (above 0.79) for all the classes along the hierarchy. The fewer
the entities in the class cluster (butchers and ice cream shops), the higher the
property keyness. For the label the keyness also is quite stable along the class
hierarchy (around 0.6) but is especially high in bakeries due to the uniqueness
in labels and a high density.

Ontology Class
wgs84:lat rdfs:label

Entities Uniq. Dens. Keyn. Uniq. Dens. Keyn.

owl:Thing 49,355,161 0.93 0.16 0.27 0.53 0.14 0.22

Amenity 6,824,892 0.95 0.70 0.81 0.53 0.55 0.54

Amenity’ 5,543,014 0.95 0.68 0.79 0.55 0.51 0.53

Shop 1,130,204 0.99 0.79 0.88 0.49 0.77 0.60

Shop’ 1,008,344 0.99 0.78 0.87 0.79 0.61

Butcher 20,432 1.00 0.89 0.94 0.71 0.73 0.72

Bakery 57,204 0.54 0.74 0.62 1.00 0.90 0.95

IceCream 2,643 1.00 0.89 0.94 0.70 0.78 0.74
Table 6. Uniqueness, density, and keyness for LinkedGeoData properties wgs84:lat and
rdfs:label along exemplary classes of the Amenity class hierarchy.


