
Decision Methods for Concurrent Kleene Algebra
with Tests : Based on Derivative

Yoshiki Nakamura

Tokyo Instutute of Technology, Oookayama, Meguroku, Japan,
nakamura.y.ay@m.titech.ac.jp

Abstract. Concurrent Kleene Algebra with Tests (CKAT) were introduced by
Peter Jipsen[Jip14]. We give derivatives for CKAT to decide word prob-
lems, for example emptiness, equivalence, containment problems. These
derivative methods are expanded from derivative methods for Kleene Al-
gebra and Kleene Algebra with Tests[Brz64][Koz08][ABM12]. Addition-
ally, we show that the equivalence problem of CKAT is in EXPSPACE.

Keywords: concurrent kleene algebras with tests, series-parallel strings,
Brzozowski derivative, computational complexity

1 Introduction

In this paper, we assume [Jip14, theorem 1] and we use CKAT terms as expres-
sions of guarded series-parallel language.

Let Σ be a set of basic program symbols p1,p2, . . . and T a set of basic boolean
test symbols t1, t2, · · · , where we assume that Σ ∩ T = ∅. Each α1, α2, . . . de-
notes a subset of T . Boolean term b and CKAT term p over T and Σ are defined
by the following grammar, respectively.

b := 0 | 1 | t ∈ T | b1 + b2 | b1b2 | b1

p := b | p ∈ Σ | p1 + p2 | p1p2 | p∗1 | p1 ∥ p2

The guarded series-parallel strings set GSΣ,T over Σ and T is a smallest set
such that follows

– α ∈ GSΣ,T for any α ⊆ T
– α1pα2 ∈ GSΣ,T for any α1, α2 ⊆ T and any basic program p ∈ Σ
– if w1α, αw2 ∈ GSΣ,T , then w1αw2 ∈ GSΣ,T .
– if α1w1α2, α1w2α2 ∈ GSΣ,T , then α1{|w1, w2|}α2 ∈ GSΣ,T .

Definition 1 (guarded series-parallel language). Let ⋄ and ∥ be binary operators
over GSΣ,T , respectably. They are defined as follows.

w1 ⋄ w2 =

{
w′

1αw
′
2 (w1 = w′

1α and w2 = αw′
2)

undefined (o.w.)

In particular, if w1 = w2 = α, then w1 ⋄ w2 = α.

2 Y. Nakamura

w1 ∥ w2 =


α1{|w′

1, w
′
2|}α2 (w1 = α1w

′
1α2 and w2 = α1w

′
2α2)

α (w1 = w2 = α)

undefined (o.w.)

L is a map from CKAT terms over Σ and T to this concrete model by

– L(0) = ∅, L(1) = 2T

– L(t) = {α ⊆ T | t ∈ α} for t ∈ T
– L(b) = 2T \ L(b)
– L(p) = {α1pα2 | α1, α2 ⊆ T} for p ∈ Σ
– L(p1 + p2) = L(p1) ∪ L(p2)
– L(p1p2) = {w1 ⋄ w2 | w1 ∈ G(p1) and w2 ∈ L(p2) and w1 ⋄ w2 is defined }
– L(p∗) =

∪
n<ω

{α0 ⋄ w1 ⋄ · · · ⋄ wn | α0 ⊆ T and w1, . . . , wn ∈ L(p) and α0 ⋄ w1 · · · ⋄ wn is defined }

– L(p1 ∥ p2) = {w1 ∥ w2 | w1 ∈ L(p1) and w2 ∈ L(p2) and w1 ∥ w2 is defined }

We expand L to L(P) =
∪

p∈P L(p), where P is a set of CKAT terms. Furthermore,
let Lα(p) = {αw | αw ∈ L(p)}.

In guarded series-parallel strings, α1{|w1, w2|}α2 has commutative(i.e. α1{|w1, w2|}α2 =
α1{|w2, w1|}α2). We define p1 = p2 for two CKAT terms p1 and p2 as L(p1) =
L(p2) (by means of [Jip14, Theorem 1]).

2 The Brzozowski derivative for CKAT

Now, we give the naive derivative for CKAT. Derivative has applications to
many language theoretic problems (e.g. membership problem, emptiness prob-
lem, equivalence problem, and so on).

Definition 2 (Naive Derivative). We define Eα and Dw. They are maps from a
CKAT term to a set of CKAT terms, respectively. Eα is inductively defined as fol-
lows. We expand Eα and Dw to Eα(P) =

∪
p∈P Eα(p) and Dw(P) =

∪
p∈P Dw(p),

where P is a set of CKAT terms, respectively.

– Eα(0) = Eα(p) = ∅
– Eα(1) = Eα(p

∗
1) = {1}

– Eα(t) =

{
{1} (t ∈ α)

∅ (o.w.)

– Eα(b) = {1} \ Eα(b)
– Eα(p1 + p2) = Eα(p1) ∪ Eα(p2)
– Eα(p1p2) = Eα(p1 ∥ p2) = Eα(p1)Eα(p2)

Dw is inductively defined as follows.
For w = q | {|w′

1, w
′
2|} and any series-parallel string w′,

– Dαwα′w′α′′(p) = Dα′w′α′′(Dαwα′(p))
– Dαwα′(p1 + p2) = Dαwα′(p1) ∪Dαwα′(p2)
– Dαwα′(p1p2) = Dαwα′(p1){p2} ∪ Eα(p1)Dαwα′(p2)

CKAT is in EXPSPACE 3

– Dαwα′(p∗1) = Dαwα′(p1){p∗1}
– Dαwα′(b) = ∅ for any boolean term b

– Dαqα′(p) =

{
{1} (p = q)

∅ (o.w.)

– Dαqα′(p1 ∥ p2) = ∅
– Dα{|w1,w2|}α′(p) = ∅
– Dα{|w1,w2|}α′(p1 ∥ p2) = Eα′((Dαw1α′(p1) ∥ Dαw2α′(p2)) ∪ (Dαw1α′(p2) ∥
Dαw2α′(p1)))

The left-quotient of L ⊆ GSΣ,T with regard to w ∈ GSΣ,T is the set w−1L =
{w′ | w ⋄ w′ ∈ L}.

Lemma 1. For any series-parallel string αwα′,

1. 1 ∈ Eα(p) ⇐⇒ α ∈ Lα(p)
2. (αwα′)−1Lα(p) = Lα′(Dαwα′(p))

Proof (Sketch). 1. is proved by induction on the size of p.
2. is proved by double induction on the size of w and the size of p.

We can decide whether αwα′ ∈ L(p) to check 1 ∈ Eα′(Dαwα′(p)) by Lemma
1. We now define efficient derivative. This derivative is another definition of
derivative for CKAT. This derivative is useful for giving more efficient algo-
rithm than naive derivative in computational complexity. (In naive derivative,
we should memorize w1 and w2 to get Dα{|w1,w2|}α′(p). In particular, the size of
w1 and w2 can be double exponential size of input size in equivalence problem.)
We expand CKAT terms to express efficient derivative. We say these terms in-
termediate CKAT terms. Intermediate CKAT term is defined as following.

Definition 3 (intermediate CKAT term). Intermediate CKAT term is defined by
the following grammar.

q := b | p ∈ Σ | q1 + q2 | q1q2 | q∗1 | q1 ∥ q2 | Dx(q1)

We call x a derivative variable of Dx(q1).
The efficient derivative dpr(q) is defined in Definition 4, where q is an in-

termediate CKAT term, pr is a sequence of assignments formed x += αp or
x += αT (The sequence of assignments pr is formed x1 += term1; . . . ;xm +=
termm.) and T is formed by the following grammar. T := {|xlTl, xrTr|} |
{|xlTl,prxr|} | {|plxl, xrTr|} | {|plxl,prxr|}. Intuitively, dx+=αw(. . . Dx(q) . . .)

means (. . . Dx(D̆αw(joinα(q))) . . .).

Definition 4. The efficient derivative dpr(q) is inductively defined as follows, where
we assume that any derivative variable occurred in T are different. To define dpr(q), we
also define D̆αw and joinα. We expand dpr to dpr(Q) =

∪
q∈Q dpr(q), where Q is a set

of intermediate CKAT terms. We also expand joinα to joinα(Q) =
∪

q∈Q joinα(q).

4 Y. Nakamura

– dx+=αw;pr′(q) = dpr′(dx+=αw(q))
– dx+=αw(b) = {b}
– dx+=αw(p) = {p}
– dx+=αw(q1 + q2) = dx+=αw(q1) ∪ dx+=αw(q2)
– dx+=αw(q1q2) = dx+=αw(q1)dx+=αw(q2)
– dx+=αw(q

∗
1) = dx+=αw(q1)

∗

(= {q′∗ | q′ ∈ dx:=αw(q1)})
– dx+=αw(q1 ∥ q2) = dx+=αw(q1) ∥ dx+=αw(q2)
(= {q′1 ∥ q′2 | q′1 ∈ dx+=αw(q1), q

′
2 ∈ dx+=αw(q2)})

– dx+=αw(Dy(q1)) = Dy(dx+=αw(q1))

– dx+=αw(Dx(q1)) = Dx(D̆αw(joinα(q1)))

– D̆αp(q) = Dαp(q)

– D̆αT (b) = D̆αT (p) = ∅
– D̆αT (q1 + q2) = D̆αT (q1) ∪ D̆αT (q2)
– D̆αT (q1q2) = D̆αT (q1){q2} ∪ Eα(q1)D̆αT (q2)
– D̆αT (q

∗
1) = D̆αT (q1){q∗1}

– D̆αT (q1 ∥ q2) =



(Dxl
(D̆αpl

(q1)) ∥ Dxr (D̆αpr (q2)))

∪(Dxr
(D̆αpr

(q1)) ∥ Dxl
(D̆αpl

(q2))) (T = {|plxl,prxr|})
(Dxl

(D̆αTl
(q1)) ∥ Dxr (D̆αpr (q2)))

∪(Dxr (D̆αpr (q1)) ∥ Dxl
(D̆αTl

(q2))) (T = {|Tlxl,prxr|})
(Dxl

(D̆αpl
(q1)) ∥ Dxr (D̆αTr (q2)))

∪(Dxr (D̆αTr (q1)) ∥ Dxl
(D̆αpl

(q2))) (T = {|plxl, Trxr|})
(Dxl

(D̆αTl
(q1)) ∥ Dxr (D̆αTr (q2)))

∪(Dxr (D̆αTr (q1)) ∥ Dxl
(D̆αTl

(q2))) (T = {|Tlxl, Trxr|})
– joinα(b) = {b}, joinα(p) = {p}
– joinα(q1 + q2) = joinα(q1) ∪ joinα(q2), joinα(q1q2) = joinα(q1)joinα(q2)
– joinα(q1 ∥ q2) = joinα(q1) ∥ joinα(q2)
– joinα(q

∗
1) = joinα(q1)

∗

– joinα(Dy(q)) = Eα(joinα(q))

Efficient derivative is essentially equal to the derivative of Definition 1. Let
spx(pr) be the string corresponded to x of pr. (For example, spx0

(x0 += α{p1x1,p2x2};x1 +=
α′p3;x0 += α′′p4) = α{p1α

′p3,p2}α′′p4. spx1(x0 += α{p1x1,p2x2};x1 +=
α′p3;x0 += α′′p4) = αp1α

′p3)

Lemma 2. joinα′(dpr(Dx(p))) = Eα′(Dspx(pr)α′(p))

By Lemma 1 and Lemma 2, spx(pr)α′ ∈ L(p) ⇐⇒ 1 ∈ joinα′(dpr(Dx(p))).
Therefore, we can use effective derivative instead of naive derivative.

Next, we define the size of a intermediate CKAT term q, denoted by |q| as
follows.

– |0| = |1| = |t| = |p| = 1
– |b| = 1 + |b|
– |q∗1 | = |Dx(q1)| = 1 + |q1|

CKAT is in EXPSPACE 5

– |q1 + q2| = |q1q2| = |q1 ∥ q2| = 1 + |q1|+ |q2|
Definition 5 (Closure). ClX is a map from a intermediate CKAT term to a set of in-
termediate CKAT terms, where X is a set of intersection variables. ClX is inductively
defined as follows.

– ClX(a) = {a} for a = 0 | 1 | t
– ClX(b) = {b} ∪ ClX(b) for any boolean term b
– ClX(p) = {p,1}
– ClX(q1 + q2) = {q1 + q2} ∪ ClX(q1) ∪ ClX(q2)
– ClX(q1q2) = {q1q2} ∪ ClX(q1){q2} ∪ ClX(q2)
– ClX(q∗1) = {q∗1} ∪ ClX(q1){q∗1}
– ClX(q1 ∥ q2) = {q1 ∥ q2} ∪ {Dx1(q

′
1) ∥ Dx2(q

′
2) | q′1 ∈ ClX(q1), q

′
2 ∈

ClX(q2), x1, x2 ∈ X}
– ClX(Dx(q1)) = {Dx(q1)} ∪Dx(ClX(q1))

We expand ClX to ClX(Q) =
∪

q∈Q ClX(q), where Q is a set of intermediate
CKAT terms. ClX is a closed operator. In other words, ClX satisfies (1) Q ⊆
ClX(Q), (2) Q1 ⊆ Q2 ⇒ ClX(Q1) ⊆ ClX(Q2) and (3) ClX(ClX(Q)) = ClX(Q).
We also define the intersection width iw(q) over intermediate CKAT terms and
iw(w) over GIΣ,T as follows.

– iw(b) = iw(p) = 1 for any boolean term b and any basic program p ∈ Σ
– iw(q1 + q2) = iw(q1q2) = max(iw(q1), iw(q2))
– iw(q∗1) = iw(Dx(q1)) = iw(q1)
– iw(q1 ∥ q2) = 1 + iw(q1) + iw(q2)
– iw(α) = 1 for any α ⊆ T
– iw(α1pα2) = 1
– iw(w1αw2) = max(iw(w1α), iw(αw2))
– iw(α1{|w1, w2|}α2) = 1 + iw(w1) + iw(w2)

Lemma 3 (closure is bounded). For any intermediate CKAT term q and any se-
quence of program pr and any set of derivative variables X , where X contains any
derivative variables in pr,

|ClX(q)| ≤ 2 ∗ |X|2∗iw(q) ∗ |q|iw(q)

Proof (Sketch). This is proved by induction on the structure of q. We only consider the
case of q = q1 ∥ q2.

|ClX(q1 ∥ q2)| ≤ 1 + |X| ∗ |ClX(q1)| ∗ |X| ∗ |ClX(q2)|
≤ 1 + |X|2 ∗ 2 ∗ |q1|iw(q1) ∗ |X|2∗iw(q1) ∗ 2 ∗ |q2|iw(q2) ∗ |X|2∗iw(q2)

= 1 + 4 ∗ |X|2∗iw(q1∥q2) ∗ |q1|iw(q1) ∗ |q2|iw(q2)

≤ 2 ∗ |X|2∗iw(q1∥q2) ∗ (|q1|+ |q2|)iw(q1)+iw(q2)

≤ 2 ∗ |X|2∗iw(q1∥q2) ∗ |q1 ∥ q2|iw(q1∥q2)

Lemma 4 (derivative is closed). For any intermediate CKAT term q and any se-
quence of program pr and any set of derivative variables X , where X contains any
derivative variables in pr,

dpr(q) ⊆ ClX(q)

Proof (Sketch). This is proved by double induction on the size of pr and the size of q.

6 Y. Nakamura

3 CKAT equational theory is in EXPSPACE

By Lemma 1 and Lemma 2, L(p1) = L(p2) iff joinα′(dpr(Dx(p1))) = joinα′(dpr(Dx(p2)))

for any pr and any α′. Thus we find some pr such that joinα′(dpr(Dx(p1))) ̸=
joinα′(dpr(Dx(p2))) to decide p1 ̸= p2. We must consider all the patterns of pr at
first glance. But, we need not to check if pr is too long. We are enough to check
the cases of iw(sp(pr)) ≤ max(iw(p1), iw(p2))(≤ l) by the following Lemma 5.

Lemma 5. If iw(sp(pr)) > iw(q), dpr(q) = ∅.

By Lemma 5, we are enough to check the case of iw(sp(pr)) ≤ max(iw(p1), iw(p2)) ≤
l. By iw(sp(pr)) ≤ l, We are enough to prepare 1 + 3 ∗ (l − 1) derivative vari-
ables. By Lemma 3, |ClX(q)| ≤ 2∗ |q|iw(q) ∗ |X|2∗iw(q) ≤ 2∗ ll ∗ (1+3∗ (l−1))2∗l.
Therefore, |ClX(Dx(p1))| = O(2p(l)) and |ClX(Dx(p2))| = O(2p(l)), where p(l)
is a polynomial function of l.

We can give a nondeterministic algorithm. We nondeterministically select
the syntax of pr. (pr is x += αp or x += αT .) If there exists a sequent of assign-
ments pr and α′ such that joinα′(dpr(Dx(p1))) ̸= joinα′(dpr(Dx(p2))), p1 ̸= p2.
Otherwise, p1 = p2. (See Algorithm 1 if you know more details.)

It holds the Theorem 1 by this algorithm.

Theorem 1. CKAT equivalence problem is in EXPSPACE.

Corollary 1. if iw(p) is a fixed parameter, then CKAT equivalence problem is PSPACE-
complete.

Note that PSPACE-hardness is derived by [Hun73].

4 Concluding Remarks

We have given the derivative for CKAT and shown that CKAT equational the-
ory is in EXPSPACE. We finish with the following some of our future works.

– Is this equivalence problem EXPSPACE-complete? (We expect that this claim
is True.)

– If we allow ϵ (for example, α{|p, ϵ|}α), can we give efficient derivative?
(It become a little difficult because we have to memorize α in the case of
x += α{|p1x1, ϵ|}. We should give another derivative to show the result
like Corollary 1.)

A Pseudo Code

REFERENCES 7

Algorithm 1 Decide p1 = p2, given two CKAT terms p1 and p2
Ensure: Whether p1 ̸= p2 or not?(True or False)

step ⇐ 0, P1 ⇐ {Dx0(p1)}, P2 ⇐ {Dx0(p2)}
while step ≤ 2|ClX (Dx0 (p1))| ∗ 2|ClX (Dx0 (p2))| do

Let α be a subset of T , which is picked up nondeterministically.
if join

α
(P1) ̸= join

α
(P2) then

return True
end if
Let pr be x += αp or x += αT , which is picked up nondeterministically, where
iw(pr) ≤ max(iw(p1), iw(p2)).
step ⇐ step+ 1, P1 ⇐ dpr(P1), P2 ⇐ dpr(P2)

end while
return False

References

[ABM12] Ricardo Almeida, Sabine Broda, and Nelma Moreira. “Deciding KAT
and Hoare Logic with Derivatives”. In: Proceedings Third Interna-
tional Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2012, Napoli, Italy, September 6-8, 2012. 2012, pp. 127–140.

[Brz64] Janusz A Brzozowski. “Derivatives of regular expressions”. In: Jour-
nal of the ACM (JACM) 11.4 (1964), pp. 481–494.

[Hun73] Harry B Hunt III. “On the time and tape complexity of languages
I”. In: Proceedings of the fifth annual ACM symposium on Theory of com-
puting. ACM. 1973, pp. 10–19.

[Jip14] Peter Jipsen. “Concurrent Kleene algebra with tests”. In: Relational
and Algebraic Methods in Computer Science. Springer, 2014, pp. 37–48.

[Koz08] Dexter Kozen. On the Coalgebraic Theory of Kleene Algebra with Tests.
Tech. rep. http://hdl.handle.net/1813/10173. Computing
and Information Science, Cornell University, Mar. 2008.

