Decision Methods for Concurrent Kleene Algebra
with Tests : Based on Derivative

Yoshiki Nakamura

Tokyo Instutute of Technology, Oookayama, Meguroku, Japan,
nakamura.y.ay@m.titech.ac.jp

Abstract. Concurrent Kleene Algebra with Tests (CKAT) were introduced by
Peter Jipsen[Jip14]. We give derivatives for CKAT to decide word prob-
lems, for example emptiness, equivalence, containment problems. These
derivative methods are expanded from derivative methods for Kleene Al-
gebra and Kleene Algebra with Tests[Brz64][Koz08][ABM12]. Addition-
ally, we show that the equivalence problem of CKAT is in EXPSPACE.

Keywords: concurrent kleene algebras with tests, series-parallel strings,
Brzozowski derivative, computational complexity

1 Introduction

In this paper, we assume [Jip14, theorem 1] and we use CKAT terms as expres-
sions of guarded series-parallel language.

Let X be a set of basic program symbols p1, p2, ... and T a set of basic boolean
test symbols tq,ts, - -, where we assume that ¥ N7 = (. Each oy, as,... de-
notes a subset of T'. Boolean term b and CKAT term p over T and X are defined
by the following grammar, respectively.

b:=0|1[teT|by+by|biby|bs

p=blpeX|p+p2|pip2|pi|p1l P2

The guarded series-parallel strings set GSx 1 over X and T is a smallest set
such that follows

acGSsrforanya CT

a1pag € GSx 1 for any a1, ap C T and any basic program p € X
- if wia, awy € GSx; 7, then wiawy € GSx; 7.

- if cqwr e, crwaas € GSx r, then oy {|w1, wa|}as € GSx 1.

Definition 1 (guarded series-parallel language). Let ¢ and || be binary operators

over GSx 1, respectably. They are defined as follows.
w1 0wy — whaw) (w1 = wia and wy = aw))
unde fined (o.w.)

In particular, if w1 = wy = «, then wy o we = o

2 Y. Nakamura

ap{Jwl, wh|tas (w1 = aywliag and we = aywhas)
wy || we =14 « (w1 = wa =)
unde fined (o.w.)
L is a map from CKAT terms over X and T to this concrete model by
- L(0) =0, L(1) =27
L(t) = {aCT|tEa}fort€T
(b) = 2T\ L(b)
(p) ={aapaz | a1, 00 CT} forpe X
(1 + p2) = L(p1) U L(p2)
(p1p2) = {w1 0wz | w1 € G(p1) and we € L(pa) and wy © wo is defined }
(»*

)= U{aoow1<> ~owy, | ap €T and wy, ..., w, € L(p) and ag o wy - - - o wy, is defined }

| |
hhhhh

L(pl || pg) = {w1 || Wao | wy € L(pl) and Wy € L(pg) and w1 H Wo is deﬁned}

We expand L to L(P) = Upep L(p), where P is a set of CKAT terms. Furthermore,
let Lo(p) = {aw | aw € L(p)}.

In guarded series-parallel strings, a1 {|wy, w2 |}z has commutative(i.e. o {|w1, wa|}as =
a1 {|wa, w1 |}as). We define p; = ps for two CKAT terms p; and ps as L(p;) =
L(p2) (by means of [Jip14, Theorem 1]).

2 The Brzozowski derivative for CKAT

Now, we give the naive derivative for CKAT. Derivative has applications to
many language theoretic problems (e.g. membership problem, emptiness prob-
lem, equivalence problem, and so on).

Definition 2 (Naive Derivative). We define E, and D.,,. They are maps from a
CKAT term to a set of CKAT terms, respectively. E,, is inductively defined as fol-
lows. WeexpandE and D, to E,(P) = Uper Ea(p) and D, (P) = Upep Duw(p),
where P is a set of CKAT terms, respectively.

Ea(0) = Ea(p) =0
Ea(1) = Ea(p) = {1}

_ {1} (tea)
Eu(t) = 0 (ow)
- Eu(b) = {1} \ Eu(b)
- E.(p1 +p2) Eo(p1) U Eo(p2)
= Eo(p1p2) = Ea(p1 || p2) = Ea(p1)Ea(p2)

D,, is inductively defined as follows.
For w = q | {|w}, wh|} and any series-parallel string w’,

- Dawa’w’a” (p) = Ea’w’a” (Dawo/(p))
- Dawa’ (pl + p2) = Yawa! (pl) U Daw(x/(p2)
- Dawa’ (plp?) - Dawo/ (pl){pQ} U Ea (pl)Docwa’ (p2)

CKAT is in EXPSPACE 3

- D o' (P1) = Dawar (p1){p1}
wa (b) = 0 for any boolean term b

- Dugerle) = §31 (P

= Daqar(p1 || p2) = 0

- Da{|w1,w2|}a’ (p) =0

- Da{|w1,w2|}a’(p1 | p2) = Eor((Dawiar (P1) || Dawsar(p2)) U (Daw,ar (P2) ||
Deowsar (P1)))

The left-quotient of L C GSx r with regard to w € GSx 1 is the set w L =
{w' |wow" € L}.

—

el
|

2

Lemma 1. For any series-parallel string awa’,

1 1€ Eap) <= ac La(p)
2. (awa’) 'Ly (p) = Lo (Dawe (P))

Proof (Sketch). 1. is proved by induction on the size of p.
2. is proved by double induction on the size of w and the size of p.

We can decide whether awa’ € L(p) to check 1 € Eo/ (D gy (p)) by Lemma
1. We now define efficient derivative. This derivative is another definition of
derivative for CKAT. This derivative is useful for giving more efficient algo-
rithm than naive derivative in computational complexity. (In naive derivative,
we should memorize w; and ws to get D fjw, w.|1a’ (). In particular, the size of
wy and wy can be double exponential size of input size in equivalence problem.)
We expand CKAT terms to express efficient derivative. We say these terms in-
termediate CKAT terms. Intermediate CKAT term is defined as following.

Definition 3 (intermediate CKAT term). Intermediate CKAT term is defined by
the following grammar.

g=blpeX|la+elae|dglal el D)

We call x a derivative variable of D, (q1).

The efficient derivative dy,.(q) is defined in Definition 4, where ¢ is an in-
termediate CKAT term, pr is a sequence of assignments formed = += ap or
z += o7 (The sequence of assignments pr is formed z; += termy;...; 2z, +=
termy,.) and 7 is formed by the following grammar. 7 = {|z;7;,2,7|} |
{leiTi, prael} | {IP1ze, 2 To |} | {lPiz1, Prar|}. Intuitively, dyy—auw (... Dy(q) - -)
means (... Dy (Daw(join, (q))) . . .).

Definition 4. The efficient derivative d,,(q) is inductively defined as follows, where
we assume that any derivative variable occurred in T are different. To define d,,(q), we
also define Do, and join_ . We expand d,,, to d,(Q) = | e dpr(q), where Q is a set
of intermediate CKAT terms. We also expand join , to join,(Q) = U,cq join.(q).

4 Y. Nakamura

— dyt=awpr (q) = d pr’ oy =aw(q))
- der aw()_ {b}
1+ aw() {p}
- 1:+ aw(q1 + q2) - dm+ aw(ql) U d:er aw(q2)
- w+ aw(q1q2) - dm-i— aw(ql)dw-&-faw(QQ)
- dr+—aw(Q1) =dyy=aw ((J1)
(={¢" 1 ¢ € de.=aw(q1)})
- dx+=ocw(q1 ” Q2) = dpt=aw ((h) || dac+=aw(Q2)
(: {qll ” ql2 | (h € dr+:aw(ql)a Qé € dm+:aw(q2)})
- dw-i-:aw(D (ql) Dy(dw-i-:aw((h))

)
- dvar:aw(Dz(Ch) :bw(lu)awwa((h»)
(

- Dot = Dot(a
= Da7(q7) = Dar(@){ai} o
(D, (Dozupz (q1)) |l Dmr(Daipr((h)))
U(Ds, (Dap,(91) | Dai(Dap,(a2)) (T = {[pes, pra|})
(De (D (@) | D, (Da, (42)))
- U(Dz, (Dap, (q1)) | Dz, (Dai(g2))) (T = {|Tizi, praer|})
D@19 = B (Dopy(a1)) | D, (Dars (02))
U(Ds, (Dar,.(@1)) || Da: (Dap, (¢2))) (T = {Ipss, Trzr|})
(7wz(DoiTz(QI)) [bwr(Doiﬂ' q2)))
U(Da, (Dot (@) | Day(Da7i(92))) (T = {|Tiwi, Tra,|})

(Da
- join, (b) = {b}, join ,(p) = {p}
- jOina (q1 + q2) -]Olna (ql) UjOina (q2)'j0ina ((I1QQ) = jOina (ql)jOina (QQ)
- join,(q1 || g2) = join,(q1) || join,,(q2)
- join, (47) —]Om (ql)
- join_ (D, E(join (g

Efficient derivative is essentially equal to the derivative of Definition 1. Let
sps (pr) be the string corresponded to x of pr. (For example, sp,, (2o += a{p1x1, p2x2}; 21 +=
a'p3;xo += a'pa) = a{p1a'ps, P2} Pa. sps, (0 += a{p1z1, P2z2}iz1 +=
a'p3;zg += 'ps) = ap1a'p3)

Lemma 2. join_, (dpr(Dy(p))) = Ea(Dsp, (pryar (D))

[e3%

«

By Lemma 1 and Lemma 2, sp,(pr)a’ € L(p) <= 1 € join_,(dp.(Dz(p)))-
Therefore, we can use effective derivative instead of naive derivative.

Next, we define the size of a intermediate CKAT term ¢, denoted by |g| as
follows.

- [0l =1 =[t| = |p| =1
- [0 =1+ 0]
- |¢i| = [Do(q1)| = 1+ |

CKAT is in EXPSPACE 5

-l + @ =|ael =|a || ¢ =1+ |l + el

Definition 5 (Closure). Clx is a map from a intermediate CKAT term to a set of in-
termediate CKAT terms, where X is a set of intersection variables. Clx is inductively
defined as follows

Clx(a)={a}fora=0]1]t
() = {b} U Clx(b) for any boolean term b
CZX()_ {pv }
Clx(q1 + ¢2) ={q1 + @2} U Clx(q1) U Clx(q2)
Clx(q192) = {q1¢2} U Clx (q1){q2} U Clx (go)
- ClXEQl) ={¢i} U Clx(q){ai}
(

[I I |
Q
><

- Clx(q | a2) = {@ | @2} U{Day(q1) || Day(a2) | @1 € Clx(ar) o €
¢2),z1,22 € X} .

= Clx(Dz2(q1)) = {Dz(q1)} U D (Clx (q1))
We expand Clx to Clx(Q) = Ugeq Clx(g), where @ is a set of intermediate

CKAT terms. Clx is a closed operator. In other words, Clx satisfies (1) Q C
Clx(Q), (2) @1 € Q2 = Clx(Q1) € Clx(Q2) and (3) Clx (Clx(Q)) = Clx(Q).
We also define the intersection width iw(q) over intermediate CKAT terms and
iw(w) over GIyx r as follows.

— iw(b) = iw(p) = 1 for any boolean term b and any basic program p € X

- w(q1 + Q2) = iw(q192) = max(iw(q), iw(gz))

— aw(gp) = w(Dalqr)) = iw(q)

wlan) = max(iw(wi), iw(aws))
= w(oq{Jwr, we|}ag) =1 4+ iw(wy) + iw(ws)

Lemma 3 (closure is bounded). For any intermediate CKAT term g and any se-
quence of program pr and any set of derivative variables X, where X contains any
derivative variables in pr,
‘Clx (q)| < 2% |X|2*iw(q) % |q|iw(q)
Proof (Sketch). This is proved by induction on the structure of q. We only consider the
caseof ¢ = q1 || qo-
[Clx(q || g2)| < 14X [Clx(qu)] * [X] * |Clx (g2)]
<1+ X2 %2 |q1|iw(q1) * |X|2*iw(q1) %2 % |q2|iw(q2) % ‘X|2*iw(tI2)
=144x% |X|2*iw(q1\|q2) * |q1|iw(q1) % |q2|iw(q2)
< 2 | X |Priwlaillan) o (|gp] + |go])iwla) Fiwle)
< 2% |X‘2*iw(q1|\q2) s |qr || q2|iw(q1 llg2)
Lemma 4 (derivative is closed). For any intermediate CKAT term g and any se-
quence of program pr and any set of derivative variables X, where X contains any

derivative variables in pr,
dpr(q) € Clx(q)

Proof (Sketch). This is proved by double induction on the size of pr and the size of q.

6 Y. Nakamura
3 CKAT equational theory is in EXPSPACE

By Lemma 1 and Lemma 2, L(p1) = L(p2) iffjoin_, (dpr (D4 (p1))) = join,, (dpr(Dx (p2)))
for any pr and any o. Thus we find some pr such that join_, (d,-(Dy(p1))) #

join_, (dpr(Dz(p2))) to decide py # p2. We must consider all the patterns of pr at

first glance. But, we need not to check if pr is too long. We are enough to check

the cases of iw(sp(pr)) < max(iw(p1), iw(p2))(< 1) by the following Lemma 5.

Lemma 5. If iw(sp(pr)) > iw(q), dpr(q) = 0.

By Lemma 5, we are enough to check the case of iw(sp(pr)) < max(iw(p1),iw(p2)) <
I. By iw(sp(pr)) < I, We are enough to prepare 1 + 3 = (I — 1) derivative vari-
ables. By Lemma 3, |Clx (q)| < 2% |q|™(@ | X 2@ < 251 % (143 (1 — 1))
Therefore, |Clx (D (p1))] = O(2*®) and |Clx (D, (p2))| = O(2°®), where p(1)
is a polynomial function of {.

We can give a nondeterministic algorithm. We nondeterministically select
the syntax of pr. (pris « += ap or z += «T.) If there exists a sequent of assign-
ments pr and o’ such that join_, (d,-(Ds(p1))) # join,, (dpr(Dz(p2))), p1 # pe.
Otherwise, p1 = p2. (See Algorithm 1 if you know more details.)

It holds the Theorem 1 by this algorithm.

Theorem 1. CKAT equivalence problem is in EXPSPACE.

Corollary 1. if iw(p) is a fixed parameter, then CKAT equivalence problem is PSPACE-
complete.

Note that PSPACE-hardness is derived by [Hun73].

4 Concluding Remarks

We have given the derivative for CKAT and shown that CKAT equational the-
ory is in EXPSPACE. We finish with the following some of our future works.

— Is this equivalence problem EXPSPACE-complete? (We expect that this claim
is True.)

- If we allow ¢ (for example, a{|p, ¢|}a), can we give efficient derivative?
(It become a little difficult because we have to memorize « in the case of
x += af|p121,€|}. We should give another derivative to show the result
like Corollary 1.)

A Pseudo Code

REFERENCES 7

Algorithm 1 Decide p; = p2, given two CKAT terms p; and po

Ensure: Whether p; # p2 or not?(True or False)

step <=0, P < {Dﬂfo(pl)}/ P <= {Dl’o (pZ)}

while step < 2lCx (Dag (P1))] y 91Clx (Dag (P2))| qq
Let a be a subset of T', which is picked up nondeterministically.
ifﬁa(Pl) # EQ(PQ) then

return 7T'rue

end if
Let pr be x += ap or x += a7, which is picked up nondeterministically, where
iw(pr) < max(iw(p1), iw(p2))-
step <= step + 1, P1 <= dpr (P1), P2 <= dpr(P2)

end while

return False

References

[ABM12] Ricardo Almeida, Sabine Broda, and Nelma Moreira. “Deciding KAT
and Hoare Logic with Derivatives”. In: Proceedings Third Interna-
tional Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2012, Napoli, Italy, September 6-8, 2012. 2012, pp. 127-140.

[Brz64] Janusz A Brzozowski. “Derivatives of regular expressions”. In: Jour-
nal of the ACM (JACM) 11.4 (1964), pp. 481-494.

[Hun73] Harry B Hunt IIl. “On the time and tape complexity of languages
1”. In: Proceedings of the fifth annual ACM symposium on Theory of com-
puting. ACM. 1973, pp. 10-19.

[Jip14] Peter Jipsen. “Concurrent Kleene algebra with tests”. In: Relational
and Algebraic Methods in Computer Science. Springer, 2014, pp. 37-48.

[Koz08] Dexter Kozen. On the Coalgebraic Theory of Kleene Algebra with Tests.
Tech. rep. http://hdl.handle.net/1813/10173. Computing
and Information Science, Cornell University, Mar. 2008.

