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Further, it is now possible to scan non-rigid objects much faster without using a robot and performing several calibra-
tion steps as it was necessary in [9]. This will substantially improve the system’s accuracy 
Nevertheless, real measurements show strong angle dependencies for the galvanometric setup. Figure 3a shows an opti-
cal scan of a forehead using the robot setup. Figure 3b shows the same forehead scanned using a prototypic galvanomet-
ric setup. As shown by our simulations [8] we assume that the blur is mainly caused by higher incident angles in that 
area. 

5 Conclusion 

We demonstrated a theoretical estimation for fast optical scans to improve optical tracking. We showed results of simu-
lations as they could influence the acquired data. The nDOF decreases for higher measuring distances d whereby the 
number of points in the area AF is maximized. As a consequence of these results, d should be maximized as long as it is 
possible to reliably extract optical features from the high dynamic range camera images. At the same time focus prob-
lems are handled. How far these angular influences are relevant for the results after post-processing the acquired data 
has to be evaluated in future work. 
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Abstract:

In robotic radiotherapy, systematic latencies have to be compensated by prediction of external optical surrogates. We 
investigate possibilities to increase the prediction accuracy using multi-modal sensors. The measurement setup includes 
position, acceleration, strain and flow sensors. To select the most relevant and least redundant information from the 
sensors and to limit the size of the feature set, a sequential forward selection (SFS) method is proposed. The method is 
evaluated with three prediction algorithms – the least means square (LMS) algorithm, a wavelet-based LMS algorithm 
(wLMS) and an algorithm using relevance vector machines (RVM). We show that multi-modal inputs can easily be inte-
grated into general algorithms. The relative root mean square error (RMSrel) of the best predictor, RVM, could be de-
creased from 60.5 % to 49.0 %. Furthermore, the results indicate that more complex algorithms can efficiently use dif-
ferent modalities like acceleration which are less correlated with the optical sensor to be predicted.  
 
Keywords: radiosurgery, respiratory motion prediction, feature selection 

1 Problem 

In extracranial radiotherapy, many tumors are constantly moving due to respiration of the patient. The movement has to 
be compensated to allow precise irradiation of the tumor while sparing critical surrounding structures. Modern technical 
systems, like multileaf collimators, robotic patient couches or the CyberKnife, allow active motion compensation based 
on the correlation between internal and external surrogates [1]. The internal motion is measured via stereoscopic X-ray 
cameras and the external surface of the patient via multiple optical markers. Each technical system has to compensate 
systematic latencies, due to image acquisition, data processing and mechanical limitations. The resulting systematic er-
ror can be decreased by time series prediction of the external surrogates. The latency of the current CyberKnife system 
is 115.5 ms. 
Several studies investigated the correlation between external and internal movements. Thereby, the focus was mainly on 
external optical markers. Even though the correlation was in general high, Ahn et al. [2] concluded that the correlation 
depends significantly on the marker placement, the tumor position and the breathing characteristics.  
We investigate how the prediction and correlation accuracy can be increased using a multi-modal sensor setup. The set-
up includes ultrasound, acceleration, flow, strain and optical tracking sensors. Preliminary results indicate that the corre-
lation between these sensors depends strongly on the breathing characteristics, the modality and the position of the sen-
sor [3]. Here, we want to present the first results to use this setup for multi-modal sensor prediction. In this study, a se-
quential forward selection (SFS) method is used to select the best input signals for the prediction. The potential of this 
approach is evaluated with three different prediction algorithms – a least mean square (LMS) algorithm, a wavelet based 
LMS (wLMS) algorithm and a relevance vector machine (RVM). Unfortunately, the concrete implementation of the 
CyberKnife algorithm is unknown and could not been used for this study. However studies on clinical data have shown 
that wLMS can outperform this algorithm [4].  

2 Methods

2.1 Data set 
The data set consists of 18 subjects (11 male / 7 female, aged: 21 – 34 years). Each subject was asked to breathe nor-
mally for 20 minutes. The first and the last minutes of each recording were discarded to eliminate potential irregular 
breathing periods due to initialization or finalization of the measurement. Figure 1.a shows the placement of all six ex-
ternal sensors. As it is clinical standard for CyberKnife treatments, three optical markers (OM) were used. They were 
placed along the median line of the thorax and abdomen, starting with OM1 close to the areolas mammae, OM2 at the 
bottom end of the sternum and OM3 above the navel. The position was measured with an accuTrack 250 system 
(Atracsys LLC, Switzerland). The enlargement of the thorax was measured with a strain belt sensor (SleepSense Piezo 
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Effort Sensor) which was placed between OM1 and OM2. The air flow was measured indirectly with a thermistor 
(SleepSense Airflow Thermistor). The strain belt and the flow sensor were connected to a g.tec USB amplifier (g.tec 
medical engineering GmbH, Austria). An acceleration (ACC) sensor was placed between OM1 and the strain belt, 
which measured the acceleration in all three directions with a range of ±2 g. All sensors were synchronized via strobe 
values and downsampled to a sample frequency of fs = 26 Hz, which is used in the current CyberKnife system. The 3D 
position and acceleration signals were reduced to their first principal component. More details about the setup are given 
in [3].

2.2 Time series prediction 
To compensate the latency error, the prospective true signal amplitude of an external surrogate yt+δ can be predicted. 
Here, t is the index of the current time step and δ is the prediction horizon, which was fixed to δ = 3 according to the 
latency of the CyberKnife system. The output of a prediction algorithm is denoted by . In general, the prediction is 
based on an input vector yt = {yt, yt-1, …, yt-p+1} of the current and previously observed data points, where p is the num-
ber of features per input vector. In recent years, several prediction algorithms have been proposed, which try to learn the 
underlying function f(yt). As many of these algorithms are general prediction algorithms, they are not restricted 
to a certain signal modality or to a certain size of yt like e.g. Kalman Filters. Therefore, to predict for example the signal 
of the second optical marker , yt can be extended by the input vectors of OM1 and ACC to yt

OM2,OM1,ACC = 
{yt

OM2, yt
OM1, yt

ACC}. Assuming a constant p, the dimension of the input vector would increases by a factor of three.  
To evaluate our approach, we perform multi-modal prediction with three prediction algorithms. The first algorithm is 
the classical LMS algorithm which performs predictions according to  = wTyt. The weight vector w is adaptively 
learned at each time step t by minimizing the current prediction error et = yt - wTyt. To increase the prediction accuracy 
and stability, the error of M points can be considered simultaneously at each time step t. To account for information be-
yond the signal history M, an averaging parameter µ  [0, 1] is added. 
The second algorithm is the wLMS algorithm [5]. The algorithm decomposes a signal into J+1 scales using an à trous 
wavelet. A separate LMS predictor can be applied to each scale. The predicted point  is the sum of all predicted 
points per scale. Ernst el al. [6] showed on a dataset of 304 motion traces that, using J = 3, M = 193 and µ = 0.0204, the 
wLMS algorithm can outperform support vector regression, LMS and Kalman Filter.  
Finally, we used a predictor based on relevance vector machines (RVM). The RVM is a probabilistic approach using 
Bayesian inference. In [7], it has been shown that the RVM can outperform wLMS on average. Here, a multi-modal 
RVM with a linear function was implemented, to reduce the computational complexity.  
To compare the results of N predicted points, irrespective of the patient-specific respiration amplitude, all results were 
evaluated with respect to the relative root mean square RMSrel = . A RMSrel = 
100 % means that the prediction accuracy could not be improved compared to no prediction and for values above 100 % 
that the RMS error of the specific predictor is higher than for no prediction.  

2.3 Sequential forward selection  
As in many classification and regression problems, the selection of the optimal feature set Sopt among all possible fea-
tures F becomes essential to prevent overfitting and to reduce computation time, once the amount of input features in-
creases. Feature selection methods can be divided into wrapper and filter methods [8]. Filter methods use information 
criteria like correlation coefficient or mutual information to estimate the relevance of a feature to the output and the re-
dundancy between features.  
 In contrast, wrapper methods use a specific prediction algorithm and evaluate the relevance and redundancy of a fea-
ture depending on the prediction accuracy. Even though wrapper methods are often computationally expensive, they 
find the optimal features set for the specific algorithm. They can roughly be divided into forward selection and back-

a) 

Figure 2: a) Placement of the optical markers (OM1-3), strain belt, flow and acceleration
(ACC) sensors; b) Rel. RMS error difference for LMS, wLMS and RVM, defined as the differ-
ence between RMSrel using S1, S2 or F and S0.
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  Mean RMSrel (standard deviation) in %
LMS wLMS RVM

S0  251.6 (314.6) 63.3 (14.2) 60.5 (19.8) 
SFS, S1  104.3 (120.4) 57.1 (12.4) 51.3 (12.7) 
SFS, S2  103.0 (120.6) 58.3 (17.0) 49.0 (12.8) 

F  97.2 (14.1) 60.4 (12.4) 47.6 (12.4) 

Table 1: Mean RMSrel and standard deviation (in parentheses) of the LMS, 
wLMS and RVM  algorithms using the initial feature set S0 with data only 
of OM2, the feature sets S1 and S2 determined by SFS and the set of all F. 

ward elimination [8].  
Here, the features correspond to the used sensors. The complete feature set is F = {OM1, OM2, OM3, STRAIN, FLOW, 
ACC}. For the prediction of an external optical sensor, a sequential forward selection (SFS) method is very applicable 
compared to backward elimination, as within all possible features the optical sensor itself will have the highest rele-
vance to the output. Therefore, the initial feature set S0 of the SFS method is not the empty set. Assuming that OM2 
shall be predicted, the initial feature set is S0 = {OM2}. With this feature set a prediction error RMSrel-S0 can be 
achieved. In the next step, S0 will be expanded to S1 by one of the remaining features F\{OM2}. The feature that has the 
lowest RMSrel-S1 is selected. This procedure can be repeated up to a certain size d of the feature set S or until no features 
are found which further decrease RMSrel.  

2.4 Experiment 
In our experiment, OM2 was exemplarily chosen to be the prediction target. We divided each measurement into a train-
ing set (ttrain = 1 min) and a test set (ttest = 17 min). The learning factor µ and the number of features per input vector p 
were optimized on the training set using exhaustive grid search. All wavelet scales of wLMS use the same p. The histo-
ry length was set to MLMS = 1, MwLMS = 193 [5], MRVM = 1000 [7] and J = 3. The initial feature set was set to 
S0 = {OM2}.The maximum size of the feature set was set to d = 2, leading to two subset S1 and S2. For comparison, the 
RMSrel was also computed for the complete features set F. 

3 Results 

Fig. 1.b shows a boxplot of the rel. RMS error differences ΔRMSrel, which is defined as the difference between RMSrel 
using S1, S2 or F and RMSrel using S0. The median ΔRMSrel is negative for all prediction algorithms and all feature sets, 
indicating that, in general, prediction accuracy is increased by using multiple sensors. The mean RMSrel (and standard 
deviation) for all feature sets and all algorithms is listed in table 1. On average, LMS has the highest prediction error, 
followed by wLMS and RVM across all feature sets. Using the complete set F, the error decreases on average by 
154.4 percentage points (pp) for LMS, by 2.9 pp for wLMS and by 12.9 pp for RVM compared to the results using S0. 
Using the SFS method with S1 and S2, the mean RMSrel is smaller than the mean RMSrel using F for LMS and wLMS.  
Table 2 shows the composition of the feature sets S1 and S2. The algorithms use different features to improve the predic-
tion accuracy. While the LMS algorithm uses mostly information from the optical sensors, wLMS and RVM use optical, 
strain and acceleration information. The flow sensor is the least used sensor. Furthermore, table 2 shows nS1 and nS2, the 
number of cases for which a feature set S1 or S2 was actually computed – meaning that there was another feature which 
decreased the RMSrel. RVM could find an improved subset S1 and S2 for all cases. In contrast, nS1 is 12 and 17 and nS2 is 
6 and 11 for LMS and wLMS, respectively. 

4 Discussion 

The results of the experiment indicate that, in general, prediction accuracy can be increased using multi-modal sensors. 
However, using simply all features does not necessarily lead to the best RMSrel as shown in fig. 1.b for the wLMS algo-
rithm. Using all features can lead to overfitting of the data. Even though not analyzed here, using the complete data set 
F also results in a strong increase of the computation time. Using a sequential forward selection of the features, an im-
proved predictor-specific feature set can be found that uses multiple features and prevents overfitting of the data. The 
computational requirements and the size of the feature set can be limited with the factor d.  
Comparing the three evaluated prediction algorithms reveals that RVM has the highest prediction accuracy, being in 
agreement with [7]. Furthermore, RVM can use the complete feature set F without overfitting of the data. However, the 
RMSrel difference between S2 and F is only 1.4 pp while the size of the features set is doubled. The high error of LMS 
was expected, as LMS is implemented in its simplest version with M = 1. With increasing M, the error would decrease. 
LMS serves here more as an example of a less complex algorithm. On average, the prediction performances of wLMS 
and RVM are worse compared to other publications [6], [7]. One reason is that even though, all subjects were asked to 
remain still, several movement artifacts could be identified in the measurements. The artifacts lead to the strong outliers. 
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Using SFS or the complete data set F, the RMSrel could be decreased strongly (crosses in fig. 2). Even though a real 
treatment would be interrupted at the occurrence of a strong motion artifact, these results indicate that also the effect of 
smaller motion artifacts could be better compensated using multi-modal sensors.  
Table 2 illustrates that there is not only one optimal feature which could be added to decrease RMSrel in general. The 
features selected for S1 and S2 strongly depend on the prediction algorithm. Thereby, the complexity of the algorithm 
seems to be correlated to the selected features. The less complex LMS model uses basically only optical features. As 
shown in [3], these features have a high correlation to OM2 as they are measuring the same signal modality. More com-
plex models can incorporate features based on different modalities which are less correlated to OM2 [3]. These features 
are potentially more relevant for the output and less redundant to the already selected features. This results also in the 
different numbers of nS1 and nS2. As the optical features are highly correlated to each other, they contain redundant in-
formation. As in the case of LMS, the expansion of S1 by another optical feature does not decrease the RMSrel as much 
of this information is already contained in the first two optical features. Consequently, the SFS method stops and nS2 is 
small for LMS. In contrast, RVM and wLMS can use features which are less redundant to each other leading to higher 
values of nS2. There is a strong variation of the added features for S1 and S2 in case of wLMS and RVM. This variation is 
most likely due to the heterogeneous subject group (male / female) and different breathing patterns which each subject 
has. The flow sensor is only selected in two cases. A probable reason could be the dead times of the airways and the 
thermistor, which lead to temporal delays between the mechanical movement of the torso / abdomen and the tempera-
ture difference of the air flow in front of the nose / mouth. Latter could be decreased by using an aeroplethysmograph.
As mentioned in section 2, the SFS method itself can be computationally expensive depending on the algorithm and the 
training set. This could impede the use of this method in real time applications. An alternative feature selection method 
could be based on filter methods. However, it has to be further investigated how these methods could be used efficiently 
to find the optimal feature set. 

5 Conclusion and summary 

In this paper, we used a multi-modal sensor setup to increase the prediction accuracy in respiratory motion prediction. 
We demonstrated that the most relevant and least redundant sensors can be selected by an SFS method, which lead to a 
decrease in RMSrel. We show that all evaluated algorithms can be easily adapted to use multi-modal inputs. As all sen-
sors are relatively inexpensive, this technique could be easily integrated in treatment rooms. 
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  OM1  OM3 Flow Strain ACC  nS1 / nS2 

LMS 
S1  2  10 0 0 0 12 
S2  5  1 0 0 0 6 

wLMS 
S1  0  3 0 10 4 17 
S2  0  7 0 3 1 11 

RVM 
S1  0  3 0 12 3 18 
S2  1  10 1 2 4 18 

Table 2: Distribution of the features which were selected by SFS to be added to the subset S1 and 
S2 and number of cases ns1 / ns2 in which a feature set S1 and S2 could be computed for LMS, 
wLMS and RVM over all 18 subjects.  
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sors are relatively inexpensive, this technique could be easily integrated in treatment rooms. 
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