
Reducing the Size of the Optimization Problems
in Fuzzy Ontology Reasoning

Fernando Bobillo1 and Umberto Straccia2

1 Dpt. of Computer Science & Systems Engineering, University of Zaragoza, Spain
2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

Email: fbobillo@unizar.es, straccia@isti.cnr.it

Abstract. Fuzzy ontologies allow the representation of imprecise struc-
tured knowledge, typical in many real-world application domains. A key
factor in the practical success of fuzzy ontologies is the availability of
highly optimized reasoners. This short paper discusses a novel optimiza-
tion technique: a reduction of the size of the optimization problems ob-
tained during the inference by the fuzzy ontology reasoner fuzzyDL.

1 Introduction

In recent years, we have noticed an increase in the number of applications for
mobile devices that could benefit from the use of semantic reasoning services [1].
Because of the limited capabilities of mobile devices, it is especially important to
develop reasoning algorithms performing efficiently in practice. In order to deal
with imprecise knowledge, such applications could use fuzzy ontologies [8]. In
fuzzy ontologies, concepts and relations are fuzzy. Consequently, the axioms are
not in general either true or false, but they may hold to some degree of truth.

However, little effort has been paid so far to the study and implementation of
optimization techniques for fuzzy ontology reasoning, which is essential to reason
with real-world scenarios in practice (some exceptions are [3,4,5,6]). This short
paper discusses some optimization techniques to improve the performance of
the reasoning algorithm by reducing the size of optimization problems obtained
during the inference. In particular, we will provide optimized MILP encodings of
the restrictions involving n-ary operators and fuzzy membership functions. Such
optimizations have been implemented in fuzzyDL, arguably the most popular
and advanced fuzzy ontology reasoner [2], and proved their usefulness.

2 Background on fuzzyDL reasoning

We assume the reader to be familiar with the syntax and semantics of fuzzy
Description Logics (DLs) [8]. The reasoning algorithm implemented in fuzzyDL
combines tableaux rules with an optimization problem. After some preprocess-
ing, fuzzyDL applies tableau rules decomposing complex concept expressions
into simpler ones, as usual in tableau algorithms, but also generating a system
of inequation constraints. These inequations have to hold in order to respect

the semantics of the DL constructors. After all rules have been applied, an opti-
mization problem must be solved before obtaining the final solution. The tableau
rules are deterministic and the optimization problem is unique.

This optimization problem has a solution iff the fuzzy KB is consistent. In
fuzzyDL, we obtain a bounded Mixed Integer Linear Programming [7] (MILP)
problem, that is, minimising a linear function with respect to a set of constraints
that are linear inequations in which rational and integer variables can occur.
The problem is bounded, with rational variables ranging over [0, 1] and some
integer variables ranging over {0, 1}. For example, in Lukasiewicz fuzzy DLs, the
restriction x1⊗ Lx2 = z can be encoded using the set of constraints {x1+x2−1 ≤
z, x1 + x2 − 1 ≥ z − y, z ≤ 1 − y, y ∈ {0, 1}}. Observe that the MILP encoding
of the restriction has introduced a new variable y: the two possibilities y = 0
and y = 1 encode the non-deterministic choice implicit in the interpretation
of the conjunction under Lukasiewicz fuzzy logic. The complexity of solving a
MILP problem is NP-complete and it depends on the number of variables, so it
is convenient to reduce the number of new variables.

Let x, z be [0, 1]-variables, and xu be a rational unbounded variable. fuzzyDL
has to solve some restrictions involving fuzzy connectives, such as x1 = 	x2,
x1 ⊗ x2 = z, x1 ⊕ x2 = z, or x1 ⇒ x2 = z. Furthermore, it also needs to solve
some restrictions d(xu) ≥ z involving fuzzy membership functions d such as the
trapezoidal(k1, k2, q1, q2, q3, q4) (see Table 1 (a)), the triangular(k1, k2, q1, q2,
q3), left(k1, k2, q1, q2), or right(k1, k2, q1, q2) [8].

3 Optimizing Lukasiewicz N-ary Operators

Let us start with the case of conjunction concepts in Lukasiewicz fuzzy DLs.
An n-ary concept of the form (C1 u C2 u · · · u Cn) can be represented, using
associativity, only using binary conjunctions (C1u(C2u(· · ·uCn)) . . .). A binary
conjunction concept introduces a restriction of the form x1 ⊗ L x2 = z which, as
shown in Section 2, can be encoded adding a new binary variable y. Hence, in
order to represent the n-ary conjunction, n−1 new variables yi would be needed.
However, it is possible to give a more efficient representation by considering the
conjunction as an n-ary operator. Indeed, a restriction of the form x1 ⊗ L x2 ⊗
· · ·⊗xn = z can be encoded using only one new binary variable and, thus, saves
2n−2 possible alternative assignments to the variables yi.

n∑
i=1

xi − (n− 1) ≤ z,

y ≤ 1− z,
n∑

i=1

xi − (n− 1) ≥ z − (n− 1)y,

y ∈ {0, 1}.

i y3 y2 y1 condition

1 0 0 0 x1 = z
2 0 0 1 x2 = z
3 0 1 0 x3 = z
4 0 1 1 x4 = z
5 1 0 0 x5 = z

Table 1. (a) Trapezoidal membership function; (b) Encoding of 5 states.

y = 0 encodes the case z =
∑n

i=1 xi−(n−1) ≥ 0, and y = 1 encodes the case
z = 0 and

∑n
i=1 xi − (n − 1) < 0. Let us consider now disjunction concepts in

 Lukasiewicz fuzzy DLs. A binary disjunction can be represented adding a new
binary variable y as {x1 +x2 ≤ z+y, y ≤ z, x1 +x2 ≥ z, y ∈ {0, 1}}. Again, n−1
new binary variables would be needed but, similarly as before, considering the
disjunction as an n-ary operator we would need only one new binary variable:

n∑
i=1

xi ≤ z + (n− 1)y,

y ≤ z,
n∑

i=1

xi ≥ z,

y ∈ {0, 1}.

4 Optimizing Göedel N-ary Operators

An n-ary conjunction can be represented using binary conjunctions adding re-
strictions of the form x1 ⊗G x2 = z, which can be encoded as follows:

z ≤ x1,

z ≤ x2,

x1 ≤ z + y,

x2 ≤ z + (1− y),

y ∈ {0, 1}.

The idea is that if y = 0, x1 = z is the minimum; whereas if y = 1, x2 = z is
the minimum. This adds a new variable y, so in the case of n-ary conjunctions
there would be n−1 new variables. Treating the conjunction as an n-ary operator,
a more efficient representation is possible. An n-ary conjunction introduces a
restriction of the form x1 ⊗G x2 ⊗ · · · ⊗ xn = z. To represent that the minimum
of n variables xi is equal to z, we can use n binary variables yi such that if yi

takes the value 0 then xi (representing the minimum) is equal to z, and such that
the sum of the yi is 1, so z takes the value of some xi. Note that the minimum
may not be unique. Such a representation is as follows:

z ≤ xi, for i ∈ {1, . . . , n},
xi ≤ z + yi, for i ∈ {1, . . . , n},

n∑
i=1

yi = 1,

yi ∈ {0, 1}, for i ∈ {1, . . . , n}.

Now, we will show that it is possible to give a more efficient representation,
Essentially, we need to encode n possible states. However, n possible states can
be encoded using m = dlog2 ne new binary variables only. For instance, for n = 5,
only dlog2 5e = 3 binary variables are necessary, where we use the encoding of
the n = 5 states in Table 1 (b).

The main point is now to correctly encode the condition xi ≤ z+yi of the old
encoding. We proceed as follows. Let bi be a string of length m, representing the
value i− 1 in base 2 (1 ≤ i ≤ n). For instance, for i = 4, b = 011, as illustrated
in the table above. Let us define the expression eij (1 ≤ i ≤ n, 1 ≤ j ≤ m) as:

eij =

{
yj if the jth bit of bi is 0
1− yj otherwise.

For i = 4, we have b = 011 and, thus, e41 = 1−y1, e42 = 1−y2, and e43 = y3.
Now we are ready to provide the whole encoding:

z ≤ xi, for i = 1, . . . , n

xi ≤ z +
m∑
j=1

eij , for i = 1, . . . , n

m∑
j=1

2j−1yj ≤ n− 1,

yj ∈ {0, 1}, for j = 1, . . . ,m.

The first condition is the same as before. The second condition guarantees
that xi ≤ z in the state bi. Finally, the third condition ensures that we are not
addressing more than n states. For instance, for n = 5 we have:

z ≤ x1,
z ≤ x2,
z ≤ x3,
z ≤ x4,
z ≤ x5,
x1 ≤ z + y1 + y2 + y3,

x2 ≤ z + (1− y1) + y2 + y3,
x3 ≤ z + y1 + (1− y2) + y3,
x4 ≤ z + (1− y1) + (1− y2) + y3,
x5 ≤ z + y1 + y2 + (1− y3),
y1 + 2y2 + 4y3 ≤ 4,
y1 ∈ {0, 1},
y2 ∈ {0, 1},
y3 ∈ {0, 1}.

The case of the disjunction in Gödel fuzzy DLs is dual. If an n-ary concept
of the form (C1 t C2 t · · · t Cn) is represented using binary disjunctions, n− 1
new binary variables are needed. However, if we consider it as an n-ary concept,
it is possible to use dlog2 ne new binary variables only:

z ≥ xi, for i = 1, . . . , n

xi +
m∑
j=1

eij ≥ z for i = 1, . . . , n

m∑
j=1

2j−1yj ≤ n− 1,

yj ∈ {0, 1} for j = 1, . . . ,m.

5 Optimizing Fuzzy Membership Functions

Let us start with the case of trapezoidal functions, which introduce a restriction
of the form trapezoidal(k1, k2, q1, q2, q3, q4)(xu) ≥ z. A restriction of that form
can be represented by adding 5 new binary variables yi as follows:

xu + (k1 − q1)y2 ≥ k1,

xu + (k1 − q2)y3 ≥ k1,

xu + (k1 − q3)y4 ≥ k1,

xu + (k1 − q4)y5 ≥ k1,

xu + (k2 − q1)y1 ≤ k2,

xu + (k2 − q2)y2 ≤ k2,

xu + (k2 − q3)y3 ≤ k2,

xu + (k2 − q4)y4 ≤ k2,

xu ≤ 1− y1 − y5,

xu ≥ y3,

xu + (q1− q2)xu + (k2 − q1)y2 ≤ k2,

xu + (q1− q2)xu + (k1 − q2)y2 ≥ k1 + q1− q2,

xu + (q4− q3)xu + (k2 − q3)y4 ≤ k2 + q4− q3,

xu + (q4− q3)xu + (k1 − q4)y4 ≥ k1,

y1 + y2 + y3 + y4 + y5 = 1,

yi ∈ {0, 1}, for i = 1, . . . , 5.

To reduce now the number of binary variables, the idea is to have 5 binary
variables encoding the 5 possible states: xu ≤ q1 (y1 = 1), xu ∈ [q1, q2] (y2 = 1),
xu ∈ [q2, q3] (y3 = 1), xu ∈ [q3, q4] (y4 = 1), and xu ≥ q4 (y5 = 1). However, as
shown in Table 1 (b), it is possible to represent 5 states using only 3 variables.

The case of other fuzzy membership functions is similar. In triangular func-
tions, a näıve encoding introduces 4 new variables to represent the 4 possible
states, but it is possible to consider only 2. Finally, in left and right shoulder
functions, it is necessary to consider 3 states, which can be achieved by adding 2
new binary variables, instead of the 3 ones needed in the non-optimal encoding.

By considering the fact that even for moderate sized ontologies we may eas-
ily generate thousands of such constraints, it is evident that the number of
saved binary variables n, and hence the number of saved assignments 2n, is
non-negligible.

Acknowledgement This research work has been partially supported by the
CICYT project TIN2013-46238-C4-4-R and DGA-FSE.

References

1. C. Bobed, R. Yus, F. Bobillo, and E. Mena. Semantic reasoning on mobile devices:
Do androids dream of efficient reasoners? Journal of Web Semantics, In press.

2. F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description logic reasoner.
In Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE 2008), pages 923–930, 2008.

3. F. Bobillo and U. Straccia. On partitioning-based optimisations in expressive fuzzy
description logics. In Proceedings of the 24th IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2015), 2015.

4. F. Bobillo and U. Straccia. Optimising fuzzy description logic reasoners with general
concept inclusions absorption. Fuzzy Sets and Systems, In press.

5. V. Haarslev, H.-I. Pai, and N. Shiri. Optimizing tableau reasoning in ALC extended
with uncertainty. In Proceedings of the 20th International Workshop on Description
Logics (DL 2007), volume 250, pages 307–314. CEUR Workshop Proceedings, 2007.

6. G. S. N. Simou, T. Mailis and G. Stamou. Optimization techniques for fuzzy de-
scription logics. In Proceedings of the 23rd International Workshop on Description
Logics (DL 2010), volume 573. CEUR Workshop Proceedings, 2010.

7. H. M. Salkin and K. Mathur. Foundations of Integer Programming. North-Holland,
1989.

8. U. Straccia. Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies
in Informatics Series. Chapman & Hall, 2013.

	Reducing the Size of the Optimization Problems in Fuzzy Ontology Reasoning

