Explicitly Modelling
Model Debugging Environments

Simon Van Mierlo
University of Antwerp

Simon.VanMierlo @uantwerpen.be

Abstract—Programmers spend a large portion of their time
debugging the code they write. This is supported by a variety
of debugging techniques such as pause/resume, the setting of
breakpoints, stepping over functions, etc. Today, modelling and
simulation become increasingly important enablers in the devel-
opment of complex, reactive, often real-time, software-intensive
systems, as they allow rapid prototyping and early validation
of designs. Simulation models, though at a higher level of
abstraction than code, can however still contain bugs. There
is hence a need for model-level debuggers, that are adapted
to the semantics of the modelling formalism(s) used, and can
properly deal with the timed nature of many of these models.
This paper presents a method for constructing model debugging
environments for deterministic, operational formalisms. In order
to manage the inherent complexity, the timed, reactive behaviour
of the debugger is modelled explicitly. The feasibility of the
approach is demonstrated by constructing a visual debugging
environment for Causal-Block Diagrams.

I. INTRODUCTION

Programmers spend a large portion of their time debugging
the code they write [1]. This is supported by a variety of
debugging techniques such as pause/resume, the setting of
breakpoints, stepping over functions, tracing runtime variables,
etc. More recently, advanced techniques such as program slic-
ing, algorithmic debugging, and omniscient debugging attempt
to speed up the debugging process. This has lead to what Zeller
calls “scientific debugging”, where programmers try to find the
source of an observable error by systematically formulating
and refuting hypotheses [2].

The systems we analyse, design, and develop today are
characterized by an ever growing complexity. Modelling and
Simulation (M &S) [3] become increasingly important enablers
in the development of such systems, as they allow rapid
prototyping and early validation of designs. Domain experts,
such as automotive or aerospace engineers, build models of the
(software-intensive) system being developed and subsequently
simulate them having a set of “goals” or desired properties
in mind. Ideally, every aspect of the system is modelled at
the most appropriate level(s) of abstraction, using the most
appropriate formalism(s) [4]. The M&S approach can only
be successful if there is sufficient tool support, including
debuggers that enable locating modelling errors. Often, code
is generated from models, which can be debugged using
traditional methods. In that case, however, the modeller has to
make a context switch, and errors in the generated code might
be difficult to link back to model elements. There is a need
for specialized model debugging environments at the correct
level of abstraction using the right notations and operations.

Constructing such environments is an inherently complex
task. The interplay of formalism execution semantics, different
notions of simulated time such as (scaled) real-time and as-
fast-as-possible execution semantics, as well as user interaction
through an interface are all challenging to capture and imple-
ment correctly using traditional code-centric software devel-
opment techniques. In this paper, we present a generic method
and architecture for constructing model debugging environ-
ments for deterministic, operational formalisms. In order to
manage the inherent complexity, the timed, reactive behaviour
of the debugger is modelled explicitly as a Statechart [5]
model. The model is derived from the behaviour of a simulator
or executor without debugging support, which is instrumented
with debugging operations using a process we call the “de-
and reconstruction” of the simulator. This simulator with
debugging support is combined with an appropriate visual
modelling environment that allows to visualize the state of the
system as it evolves over time, and allows the user to interact
with the simulator through an appropriate interface.

Section II explains how models can be debugged using a
variety of operations. Section III presents our generic method
for constructing a debugging environment for a formalism
for which only a simulator and modelling environment exist.
Section IV applies this method to construct a debugging
environment for the Causal-Block Diagrams [6] formalism.
Section V discusses related work, and Section VI concludes
the paper.

II. DEBUGGING MODELS

This section explores how models can be debugged. We
take an operational view and assume the model is simulated
by an appropriate simulator. After simulation, the modeller ob-
serves an erroneous result and—similar to what a programmer
would do—wants to inspect the dynamics of the simulation. An
appropriate debugger should offer functionality similar to code
debuggers: stepping, pausing, setting breakpoints, etc. Fur-
thermore, formalism-specific debugging operations should be
provided, especially if the model exhibits real-time behaviour.

First, a generic simulation algorithm is presented assuming
a formalism in which the state of the system evolves over
(simulated) time in steps. Second, the notion of simulated
time and its relation to the wall-clock time is explained. Then,
different operations on the state of the system are presented.
Last, the concept of breakpoint is investigated in the context
of model debugging.
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Fig. 1: Simulation time and steps.

A. A Generic Simulator

Algorithm 1 A generic simulation algorithm.
: time <0
state < INITIALIZE ST AT E(model)
while not END_CONDITION (state, time) do
state < COMPUTE_NEXT (model, state)
time + INCREMENT_TIM E(model, state, time)
end while

BN

Algorithm 1 presents the pseudocode of a generic simu-
lation algorithm, capable of simulating models in a particular
formalism. First, in lines 1-2, the value of the simulated time is
initialized, as well as the model state. Then, lines 3—6 contain
the “main loop”: the simulation evolves the state of the system
until some end condition has been satisfied. A “step” consists
of updating the state of the system (as dictated by the model)
and incrementing the simulated time. The end condition can
depend on the state and the simulated time.

Fig. 1b depicts the evolution of the state (variable) over
simulated time. Three time steps (iterations of the while
loop) are shown. Note that the discontinuities and the fact
that state updates are performed in non-equidistant intervals
assume a variable step size or discrete-event formalism (such
as DEVS [7]). Simulators for discrete-time formalisms update
the state in equidistant intervals, while the state evolution of
continuous models approaches a continuous function.

The “meat” of the algorithm is the call to the function that
computes the next state, on line 4. This call constitutes one
“step” of the simulation, and after it has completed success-
fully, the system is in a valid state. In between, however, a
number of small computation steps may be involved. This is
visualized in Fig. 1b, where one “big step” is broken up into
a number of “small steps”. Note that the simulated time stays
constant in between small steps, and only increases after a big
step has been completed.

B. Time

The notion of time plays a prominent role in model
simulation. Simulated time differs from the wall-clock time:
it is, as explained above, the internal clock of the simulator.
Simulated time can, however, have a well-defined relation to
the wall-clock time.
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Fig. 2: Different notions of time.

Program code is always executed as fast as possible (i.e.,
the speed of the program is limited by the resources of the
machine executing it). Simulations, however, can either be run
as-fast-as-possible, or in (scaled) real-time. The latter is useful
for simulating models of real-time systems which might be
deployed as such on a real-time device. In this case, there is a
linear relation between the wall-clock time and the simulated
time. The different relations of the simulated time to the wall-
clock time are depicted in Fig. 2.

In as-fast-as-possible simulation, there is no relation be-
tween simulated time and wall-clock time, meaning that sim-
ulated time is simply a variable in the simulator. In real-time
simulation, simulated time is synchronized with the wall-clock
time. This implies that the simulation steps have a hard real-
time deadline (i.e., the values of the runtime variables have to
be computed before the wall-clock time reaches the simulated
time). A scale factor s can be applied to speed up or slow
down simulation, while maintaining the linear relation between
simulated time and wall-clock time.

Moreover, operations can be performed on simulated time,
such as pausing, or stepping back, which are obviously not
allowed on wall-clock time.

C. State

As explained, the system state evolves over (simulated)
time during simulation. Usually, the modeller knows the initial
state (since it is captured in the model), as well as the end
state (the result of simulation often is an aggregation of values
found herein). Inspecting the state during simulation is an
important part of debugging, as it allows to see how the system
evolves over (simulated) time. Certain simulators already allow
to define tracers which textually or visually output the state of
the system during simulation. What constitutes state depends
heavily on the formalism—in case of program code, it is the
data values found in memory, the program counter, the stack,
etc.

A debugging environment can, next to state visualization,
allow to manually change the state of the system during
simulation. This helps in refuting hypotheses related to the
source of an error: changing the value of a suspect variable and
observing how the system dynamics change can rule out that
particular value as being the cause of the error, for example.
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Fig. 3: The generic architecture.

D. Breakpoints

Manually pausing simulated time was discussed above.
Breakpoints allow to automatically pause the execution when
a condition is satisfied. In program code, breakpoints allow to
pause when a specific line of code is reached. Additionally,
it can be augmented with a condition on the runtime state.
A model debugger might expose, similarly, a way of setting
breakpoints that depend on the runtime state of the system.

III. METHOD

Taking the requirements from the previous section, this
section describes a method for constructing a model debugging
environment, starting from a simulator without debugging
support, and a (visual) modelling environment. First, a high-
level view of the architecture is presented. Then, a method
is given for modelling the behaviour of the simulator to add
debugging support.

A. Architecture

Fig. 3 shows the generic architecture for a debugging
environment. At the top, a model with two elements A and B is
shown inside a visual modelling environment. The formalism
this model conforms to is not defined, as it is irrelevant for
the discussion in this section. It could be a model of two
communicating processes which each have internal state and
can send and receive messages.

A simulator capable of simulating models in that formal-
ism is shown below. The internals of the simulator will be
discussed in the next subsection. The simulator can simulate a
model M, which is an exported (possibly compiled) version
of the model from the modelling environment. It exposes
some interface to control the simulation—in the simplest case,
allowing the simulation to be started and collecting the results
upon termination of the simulation. This is depicted by the
purple rectangles. The modelling environment was augmented
with a toolbar that allows to control the simulation— pressing
a button will send a message to the simulator, which will react
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Fig. 4: The modal part of the generic simulation algorithm.

appropriately. This means that the model editing environment
can also serve as a simulation environment.

We require the modelling environment to have a software
interface as well, such that it can be interacted with, not just
interactively through a UL but also programmatically. This
interface should at least support Create, Read, Update, and
Delete (CRUD) requests to alter the model, as well as functions
to highlight elements. This allows the simulator to alter the
state of the model during simulation, which is necessary to
display the state of the model during simulation, for animation,
and ultimately debugging.

B. Adding Debugging Support

Any simulation algorithm can be written in the form
presented in Algorithm 1. This form separates the modal part
of the simulator (the flow of control, mainly consisting of
the “main simulation loop”) from the non-modal part. This
modal part can be “lifted out” and modelled in an appropriate
formalism, for which we choose Statecharts [5]. Fig. 4 shows
the modal part of the generic simulator. When this model
is combined with an appropriate executor that implements
the semantics of the Statecharts formalism, and combined
with the non-modal part of the simulator (implemented in the
functions called in the actions of the Statechart transitions),
we obtain a version of the simulator that implements identical
semantics. It is now simply broken up in two parts. In Fig. 3,
its components SIM,,oq4 and SIM\ ;04 are shown.

In Fig. 5, the last step in creating a simulator which
supports debugging is shown. We merge the modal part of
the simulator behaviour model with a model capturing the
debugging operations we want to add. This results in an
instrumented model of the modal behaviour of the simulator.
The last step is to replace SIM,,,q in Fig. 3 with this
instrumented model. For continuity reasons, the behaviour of
the simulator should be unaltered if the user does not make
use of the debugging functionality. Extra behaviour has been
added, but running the simulator as before is still possible.
In the example shown, the debugger includes the concepts of
start, pause, resume, and stop. The simulator only has two
states: running, and stopped. This is a trivial (and fictional)
example, but it demonstrates the process which we call de-
and reconstruction of the simulator.

The result of reconstructing the simulator is an instru-
mented version of the original simulator, enriched with de-
bugging capabilities. From this model, a debugging and exper-
imentation environment for formalism F can be automatically
generated using a Statecharts compiler.

IV. EXAMPLE: CBD DEBUGGING ENVIRONMENT

Causal Block Diagrams (CBDs), also known as Syn-
chronous Data Flow, is a modelling language that consists of
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Fig. 6: A generated visual modelling and simulation/debugging
environment for Causal Block Diagrams.

a network of blocks denoting mathematical operators, expres-
sions that evaluate to Boolean values, memory, and constants.
Connections between blocks denote signals (values as function
of time).

An example CBD is shown in Figure 6. It models a set
of mathematical equations. It is built in AToMPM [8], the vi-
sual environment we use for modelling language engineering.
AToMPM can synthesize visual modelling environments from
a definition of the abstract and concrete syntax of a modelling
language. In this case, we have modelled the syntax of CBDs
and modelled the example in the generated environment.
AToMPM is web-based and exposes a public interface, which
can be called using HTTP requests. It can furthermore be
extended with plug-ins, that are exposed to the user through
toolbars. We will use these two mechanisms to extend the
behaviour of AToOMPM and implement the architecture shown
in Fig. 3.

A CBD is simulated by updating the values of all its blocks
in every step. The pseudocode for the algorithm of the CBD

1: time < 0

2: while not END_CONDITION (time) do

3. schedule «+~ LOOPDETECT(DEPGRAPH (cbd))
4:  for gblock in schedule do
5 COM PUTE(gblock)
6: end for

7 time < time + 04

8: end while

simulator is shown in Algorithm 2.

Three functions are central to the algorithm:

e LOOPDETECT computes all loops found in the CBD.
A loop exists when the input of a block is computed by
another block reachable from the original block. The
function returns a collection of all blocks and loops,
in the order that they need to be computed.

e DEPGRAPH computes dependencies between blocks,
which is needed for the loop detection algorithm.

e COMPUTE contains the code that performs each
block’s computation on its input signals, updating the
value of its outgoing signals (for example, the current
value of the output signal of a sum block equals the
sum of the current values of its input signals).

Each time step, the simulator iterates over all blocks in the
correct order and computes the values of each block’s outgoing
signals. Debugging a CBD simulation requires “lifting out” the
outer while loop, allowing us to interactively step through each
iteration. On a more fine-grained level, the inner loop can be
lifted out too, allowing one to interactively step through the
computation of individual blocks.

The end condition depends on the simulated time. It
is modelled in the ‘“simulation parameters” element in the
graphical user interface (see Fig. 6). Here, the simulation will
end after 100 time steps. Furthermore, the time increment (J;)
is set to 0.1. The model and parameters are compiled to the
format the simulator requires (this is not necessarily the same
as the format the user interface requires). When the simulator
completes a run, it returns the final state, which is displayed
in the user interface. A mapping between elements in the
user interface model and the compiled model (and back) is
necessary in order to realize this visualization.

Fig. 7 shows the Statecharts model resulting from de- and
reconstructing the CBD simulation algorithm, as described in
the previous section, now with debugging features woven in.
It supports the following debugging operations:

e  Continuous simulation runs the simulation until com-
pletion, and then shows the final state of the system.

e Realtime simulation runs the simulation until com-
pletion, but synchronizes the simulated time with the
wall-clock time. The state is shown each time step,
such that the modeller can see how the system evolves
over time. A scale factor can be applied to slow down
or speed up simulation.
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e Pause interrupts a running simulation. In continuous
simulation, it stops after the currently executing “big
step” has finished, ensuring the system is in a stable
state. In realtime simulation, however, the simulation
is paused as soon as possible. This means that the
simulator can be “in between” two big steps, as it
might have been waiting for the appropriate wall-clock
time to elapse when the pause was requested.

e Big step advances the simulation with one “big step”
(one iteration of the outer while loop) and shows the
system state.

e Small step advances the simulation with one “small
step” (one iteration of the inner while loop) and
shows the system state. This allows stepping through
individual block computations.

e Reset allows to reset the simulation to the initial state.

e Breakpoints can be modelled using a breakpoint
block. This pauses the simulation when its input signal
becomes 1. This allows to model arbitrary conditions
in the CBD model on which to pause.

e If non-linear (unsolvable) components are found, the
debugger indicates which blocks belong to that com-
ponent, in order for the modeller to be notified so
appropriate changes can be made to the model.

The toolbar in Fig. 6 allows the modeller to send requests to the
debugging-capability augmented simulator, as they generate
HTTP requests that are translated to event instances and
sent to the input port of the Statechart, which will react
appropriately. Visualization of state is performed by translating
the state returned by the Statechart to CRUD requests that are
sent to the interface for changing the structure of the model. In
Fig. 6, the simulation is paused and the current signal values
are shown on the links between blocks. The “simulation info”
block shows how many time steps have passed and what the
current simulated time is. This allows the modeller to see how
the model evolves over time and to control the simulation in
order to isolate any observed bugs.

V. RELATED WORK

Simulation debugging is a relatively new research area.
In [10], Mannadiar and Vangheluwe address the need for
debugging models in domain-specific languages and propose a
mapping of code debugging concepts to model-based design.

Debuggers for simulation formalisms do exist, though
they are typically hand-crafted. A debugger for Modelica for
example was developed by hand, not modelled [11].

Modelled debuggers for some formalisms already exist.
In [9], Mustafiz and Vangheluwe construct a debugging en-
vironment for Statecharts with a technique similar to ours.
They embed the model to be debugged directly in the model
of the debugger, however. This technique only works because
both models are in the same formalism (Statecharts). In
constrast, in our approach, we merge the Statechart models
of the simulator and the debugger.

We have already used the techniques described in this paper
to prototype debugging environments for other formalisms. A
previous version of a CBD debugger, which had no visual
user interface, and hence did not use the generic architecture
described in this paper, was developed in [12]. A debugger for
the Parallel DEVS formalism was developed in [13].

VI. CONCLUSION

This paper describes a method for constructing debug-
ging environments for deterministic, operational formalisms.
Starting from an existing simulator (implemented in code),
we build a Statecharts model of its modal behaviour. This
model is combined with a model of debugging operations such
as step, pause, real-time simulate, etc., producing a model
of the behaviour of a simulator with debugging, from wich
code is synthesized. This simulator is coupled with a visual
modelling interface that allows two-way communication and
model manipulation. This allows modellers to simulate and
debug their models in the modelling tool in which they built
the model.

To demonstrate feasibility, we used our technique to construct
a visual debugging environment for Causal-Block Diagrams
using AToMPM [8].
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