
Generating model with uncertainty by means of JTL
Gianni Rosa

Università degli Studi dell’Aquila
I-67100 L’Aquila, Italy

Email:gianni.rosa@univaq.it

Abstract—In Model-Driven Engineering, the potential advan-
tages of using bidirectional transformations are largely recog-
nized. Despite its crucial function, in certain cases bidirectionality
has somewhat limited success because of the ambivalence con-
cerning non-bijectivity. In fact, consistently propagating changes
from one side to the other is typically non univocal as more
than one correct solution is admitted. This gives place to a
form of uncertainty which means that, rather than having a
single model, we actually have a set of possible models but we
do not know what is the right one. In this paper, we discuss
how dealing with multiple solutions is important and requires
specialized tools and support. In particular, handling a set of
models explicitly is generally non-viable. Thus, we extended
the JTL semantics to generate a model with uncertainty which
is semantically equivalent to the set of models it represents.
The approach is implemented and a metamodel-independent
technique is proposed.

I. PROBLEM AND MOTIVATION

In Model-Driven Engineering [20] (MDE) bidirectionality in
transformations has been always regarded as a key mech-
anism [21]. Its employment comprises mapping models to
other models to focus on particular features of a system,
simulate/validate a given application, and primarily keeping a
set of interrelated models synchronized or in a consistent state.
Despite its relevance, bidirectionality has rarely produced
anticipated benefits as demonstrated by the lack of a lan-
guage comparable to what ATL1 represents for unidirectional
transformations. Probably the main reason why bidirectional
techniques had limited success can be found to some extent
in the ambivalence concerning non-bijectivity. For instance,
while MDE requirements demand enough expressiveness to
write non-bijective transformations [23], the QVT standard is
somewhat uncertain in asserting whether the language permits
such transformations [22]. In particular, when reversing a non-
injective bidirectional mapping more than one admissible solu-
tion can be found. This gives place to a form of uncertainty (as
known in [18]): rather than having a single model, we actually
have a set of possible models and we are not sure which is
the right one. On the other hand, while a transformation can
always be disambiguated at design-time by fixing those details
that leave the solution open to multiple alternatives, in many
cases this is non-viable because the designer does not detain
enough information beforehand for establishing a general
solution. Thus, harnessing declarative approaches capable of
dealing with the intrinsic uncertainty of non-bijective bidirec-
tional transformations in a rigorous and precise way can be

1http://www.eclipse.org/atl/

key to success. Recently, few declarative approaches [2], [3],
[16] to bidirectionality have been proposed. They are able to
cope with the non-bijectivity by generating all the admissible
solutions of a transformation at once. Among them, the Janus
Transformation Language [3] (JTL) is a model transformation
language specifically tailored to support bidirectionality and
change propagation. The problem of managing a set of models
explicitly is impractical as its size might be quite large,
designers need to be supported with suitable mechanism and
tools in order to avoid the effect of having multiple design
alternatives.

The solution proposed in this paper, is an extension of
the JTL semantics and of its engine capable of generating a
uniform characterization of the solution in terms of models
with uncertainty instead of a set of models, such that a)
the approach is metamodel-independent, in sense that starting
from an arbitrary base metamodel can automatically generate
the corresponding uncertainty metamodel; b) the resulting
model conforms to the uncertainty metamodel; and c) each
model with uncertainty has to be considered semantically
equivalent to the set of its concretizations, i.e. the models
obtainable from the uncertainty model by resolving the point
of uncertainties.

By way of example, consider the Collapse/Expand State
Diagrams round-trip benchmark [4]. The forward transforma-
tion −→T translates the hierarchical state machine in Fig. 1(a)
into the flatten version in Fig. 1(b). −→T is clearly non-injective
because different hierarchical machines can be translated into
the same model. Let us suppose now that the designer wants
to manually modify the target model by means of the changes
∆ highlighted in bold and with thicker lines in Fig. 1(c). More
in details, ∆ consists of the following modifications:

– a new state Printing is added,
– a new transition print from Active to Printing is

added,
– the transition done from Active to Idle is deleted and

replaced by a new transition completed,
– a new transition done from Printing to Idle is added,

and finally
– a new transition critical error from Out of

services to the initial state Off is added.

At this point, the original source model and the revised target
model are not consistent any longer. Therefore, the backward
transformation ←−T

−1
can be used to restore the consistency

by propagating the changes in ∆. Not surprisingly, there is

Fig. 1. Collapse/expand state diagrams in a round-trip process

not a unique way of updating the source model. In fact, the
added transitions in the target may be mapped to either of
the nested states as well as to the container state itself, as
illustrated in Fig. 1(d), where the dotted edges represent the
alternative transitions. Despite the changes on the target model
are relatively simple, their impact on the source model is
typically exponential. In fact, the overall number of admissible
models in this case is

|print| × |completed| × |critical error|
= 4× 4× 3 = 48

where |name| is the number of alternative model elements
called name. It is worth noting that the models in Fig. 1(d) are
represented by means of the dotted notation, which is informal:
in this case a bidirectional transformation implemented in
JTL would generate a collection of 48 distinguished models.
Clearly, whenever the implementor is unable to disambiguate
the transformation by making it deterministic, the decision
must be left to the modeler rather than to the language
internals.

It is not difficult to demonstrate that for a specific instance,
if n is the number of uncertainty points and m the number of
alternative model elements for each of them, then the result
consists of mn different alternative solutions. Hence, it is
of crucial relevance that modelers are adequately assisted in
dealing with the combinatorial explosion of design alternatives
as described in the sequel.

The paper is organized as follows. Section II describes
related work about this topic, Section III presents the proposed
approach to represent uncertainty by means of JTL, Section IV
proposes a new semantic for the JTL engine able to generate
and manage models with uncertainty. Finally, Section V draws
some conclusion and future work.

II. RELATED WORK

Uncertainty is ubiquitous within contexts such as requirements
engineering [6], software processes [15] and adaptive sys-
tems [19]. Uncertainty management has been studied in many

works, often with the intention to express and represent it
in models. In [10], the notion of partial model is introduced
in order to let the designer specify uncertain information by
means of a base model enriched with annotations and first-
order logic. Model transformation techniques typically operate
under the assumption that models do not contain uncertainty.
Nevertheless, the work in [11] proposes a technique for
adapting existing model transformations in order to deal with
models containing uncertainty. The main is a lifting operation,
which permits to adapt unidirectional transformations for be-
ing used over models with uncertainty preserving their original
behavior. In [17] a formal approach called MAVO is proposed
and applied to design models in order to express and allow
automated reasoning in presence of uncertainty.

Concerning the multiplicity of solutions in bidirectional
transformations, most of the existing languages are determin-
istic, i.e., they produce one model at a time. However, in [1]
the authors propose PROGRES, a bidirectional transformation
solution based on Triple Graph Grammars (TGGs) which is
able to recognize ambiguous mappings and in case resolve
them by interactively asking the user, who need to be an
expert in these techniques. In [22] the QVT-R bidirectional
transformation language is discussed. In particular, the author
observes that the formal semantics of QVT-R is ambiguous
and it is not possibile to conclude that QVT-R supports non-
bijective transformations. An attempt in making bidirectional
transformation deterministic by means of intentional updates is
represented by the BiFluX language [24], however the problem
that a transformation cannot be tested for non-determinism at
static-time reduces its effectiveness. Recently some interesting
solutions based on lenses have been proposed: [5] illustrates a
technique to support bidirectional transformations relying no
more on mapping between models but across manipulations
(or differences) operable on them. However, the management
of non-bijective problems is not clearly addressed. Although
researchers are actively working on bidirectional transforma-
tions in several communities [14], a lot effort must be made to
make such kind of transformations ripe for the industrial en-

vironment [13]. Finally, the ability to deduce and generate all
the possible solutions of an uncertain transformation has been
achieved by few approaches, including JTL [7], [8]. In [16]
the authors propose a bidirectional transformation approach
in which the QVT-R semantics is implemented by means of
Alloy. Different generated alternatives may be obtained from
the execution of a model transformation and reduced by adding
extra OCL constraints or by limiting the upper-bound search
criteria. While in [2] similar results are obtained by using
a variety of integer linear programming. These approaches
introduced over the last few years on one hand demonstrate
that there is a need for an in-depth discussion about the nature
of bidirectionality; and on the other hand, shown how mature
techniques and semantics are available for dealing with an
intrinsically difficult problem.

III. APPROACH AND UNIQUENESS

The main challenge to address in order to let JTL generate
the model with uncertainty is to detect those model elements
which are shared throughout the solution space, i.e., the certain
part of the solution. Referring to Fig. 1(d), it consists of all
elements in the model but the dotted edges. This is obtained by
logically connecting those elements in the source model which
originated the same target elements. Since the JTL engine is
a logic program written in ASP, it can derive how models are
related by means of a deductive process. In this respect, the
existing traceability management offers enough information to
understand how the models can be factorized by identifying
those elements which are connected among them. In particular,
tracing information stores relevant details about the linkage
between source and target model elements at execution-time
(including the applied transformation rules).

An excerpt of the implemented mechanism is given in
Listing 1. In particular, it contains (part) of the ASP encoding
of the transitions print present in the modified simple machine
in Fig. 1.(c) (line 1) and in the hierarchical state machine in
Fig. 1.(d) (lines 3-6); the corresponding trace links are given
in lines 8-11. During the execution of the transformation, the
engine is able to deduce both the concretization models and/or
the model with uncertainty. Any point of uncertainty is derived
by calculating the uncertainty set among model elements (lines
15-24).

1node(SM, p, transition).
2
3node(HSM, p1, transition).
4node(HSM, p2, transition).
5node(HSM, p3, transition).
6node(HSM, p4, transition).
7
8trace_link(tl1,s1,t1,r1).
9trace_link(tl2,s1,t2,r2).

10trace_link(tl1,s1,t3,r3).
11trace_link(tl2,s1,t4,r4).
12
13getID(p,s1). getID(p1,t1). getID(p2,t2). getID(p3,t3).

getID(p4,t4).
14
15get_uncertainty_set(t1,t2) :-
16trace_link(tl1,s1,t1), trace_link(tl2,s2,t2),
17equals_id(s1,s2), equals_id(t1,t2).
18
19node(UMM,ID,UMC) :-

20get_uncertainty_set(t1,t2), getID(ID,t1), getUMM(UMM,t1),
getUMC(UMC,t1).

21
22edge(UMM,IDe,URef,ID,IDt) :-
23get_uncertainty_set(t1,t2), getID(ID,t1), getUMM(UMM,t1),

getRefID(IDe,ID),
24getChildID(IDt,ID), getURef(URef,t1).

Listing 1. A fragment of the adapted JTL engine

With reference to the scenario described in Sect. I, the model
with uncertainty corresponding to the admissible 48 solutions,
is shown in Fig. 2. In particular, the alternative transitions
are collected in the uncertainty point (UTransition) print,
completed, new operation which contains the transitions
targeting each one of the nested states within Active as well
as to the composite state itself.

Fig. 2. UHSMm model

Due to the metamodel structure (Fig.4), models with un-
certainty may over-approximate the sets of transformation
candidates. For instance, the scenario in Fig. 1 suggests
that only one print transition can exist in the final model.
However, the generated model with uncertainty admits also
models with multiple print transitions giving place to more
concretizations than those expected. Therefore, in order to
avoid multiple print transitions, an operation of refining with
a constraint on the model is needed in order to reduce the
concretizations to cases with one print transition only. The

constraints are directly generated by the JTL engine, which
possesses all the information in the trace links between models
source and target.

IV. RESULTS

It is worth noting how uncertainty is becoming increasingly
important in today’s software based systems. Rather than
ignoring uncertainty, it should be considered as a first-class
concern in the design, implementation, and deployment of
those systems [12]. Typically, it occurs when the designer
does not have complete, consistent and accurate information
required to take a decision during any stage of software devel-
opment. Introducing uncertainty in modeling processes means
that, rather than having a single model, designer actually have
a set of possible models and she is not sure which is the correct
one [10]. In bidirectional transformations, uncertainty becomes
manifest only after the transformation is executed but clearly
originates from the inability of providing intentional updates
at design-time. The idea of representing a set of solutions
with a single model with uncertainty is the starting point for
extending a language like JTL.

In order to reduce the burden of managing a collection
of models, a metamodel-independent approach to uncertainty
representation based on preliminary work in [9] is shown
below.

The uncertainty metamodel U(M) is obtained by extending
a base metamodel M with specific connectives to represent
the multiple outcomes of a transformation. These connectives
denote the uncertainty points where alternative model ele-
ments are attached. Moreover, such points of uncertainty are
traceable in order to ease the traversal of the solution space
and to permit the identification of specific concretizations,
i.e., instances. Let us consider the metamodel HSM of the
hierarchical state machines given in Fig. 3. The uncertainty
metamodel U(HSM) in Fig. 4 is automatically obtained by
extending the base metamodel as follows:

1) the abstract metaclass TracedClass with attributes
trace and ref is added,

2) for each metaclass c in HSM, such that it is non-abstract
and does not specialize other metaclasses:

2.1) a direct sub-metaclass uc of c is added,
2.2) c is generalized by TracedClass,

3) each metaclass uc is composed with c, enabling the rep-
resentation of a point of uncertainty and its alternatives,
finally

4) the cardinality of attributes and references are relaxed and
made optional in order to permit to express uncertainty
also over them.

In particular, the metaclasses UStateMachine, UState and
UTransition in U(HSM) are derived from StateMachine,
State and Transition in HSM, which are in turn gener-
alized by TracedClass. The purpose of TracedClass is
to maintain information about the relationships between the
uncertainty points and the correspondent own alternatives in
the concretization models.

Fig. 3. The HSM metamodel

Fig. 4. The U(HSM) metamodel

The above metamodel permits to represent with a single
model a set of state machines. For instance, in Fig. 1(d) a set of
hierarchical machines are given. Most of the model elements
(all the nodes and part of the transitions) are shared among
them, they represent the certain part of the models. Whilst, the
dotted alternative transitions denoted by print, completed,
and critical error correspond to three different uncer-
tainty points of type UTransition, each connected to the
related alternative Transition elements.

The main advantage of the approach is that the uncertainty
represented by a set of alternative models is leveraged to a
first-class status. A complete set of models can therefore be
manipulated as whole, for instance with an automated transfor-
mation, without iterating over each individual in the set. The
above discussion captures the fact that non-injective mappings
when reversed can produce multiple results. However, as
discussed in the previous section managing a multitude of
models is impractical. What is needed is a construction capable
of representing a set of models generated by a transformation
in an intensional way. Hence, the revised JTL engine is able
to distinguish among two different behaviors:

– extensional, generate all the models satisfying the relation
defined in the bidirectional transformation;

– intensional (or with uncertainty), generate a model with
uncertainty which is semantically equivalent to the mod-
els of the extensional case, i.e., the corresponding set of
models can be generated from it.

However, one important issue arising from this scenario
is that models with uncertainty may be over-approximations

of the sets of transformation candidates. This is due to the
”combinatorial” nature of these models since each point of
uncertainty collects the different alternatives. Consequently, it
can happen that certain combinations produce concretizations
which are not part of the extensional solution space. Therefore,
besides the models with uncertainty it is important to generate
also those constraints which limit the solution to the admissible
concretization only.

V. CONCLUSION

Bidirectional model transformations represent at the same
time an intrinsically difficult problem and a crucial mecha-
nism for keeping consistent and synchronized a number of
related models. One of the prevalent factors within software
engineering is the problem of non-determinism in bidirectional
transformations. When modellers are not able to fix a design
decision they may encode ambiguities in their model transfor-
mation specification, e.g. not providing additional constraints
that would make the transformation deterministic. The lack of
information affects models, for instance ambiguous mapping
may cause the generation of multiple solution models each
one representing a different design decision.

Therefore, the proposed approach is based on the refinement
of the JTL engine, which permits the generation of models
with uncertainty in order to leverage the solution space to a
first-class concern. The approach has been implemented and
can be used for any Ecore artifact.

ACKNOWLEDGMENT

This research was supported by the EU through the Model-
Based Social Learning for Public Administrations (Learn Pad)
FP7 STREP project (619583)2.

REFERENCES

[1] S. M. Becker, S. Herold, S. Lohmann, and B. Westfechtel. A graph-based
algorithm for consistency maintenance in incremental and interactive
integration tools. Software and System Modeling, 6(3):287–315, 2007.

[2] G. Callow and R. Kalawsky. A Satisficing Bi-Directional Model Trans-
formation Engine using Mixed Integer Linear Programming. Journal of
Object Technology, 12(1):1: 1–43, 2013.

[3] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. JTL: a
bidirectional and change propagating transformation language. In Procs.
of SLE 2010, LNCS 6563, pages 183–202. Springer, 2011.

[4] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-
williger. Bidirectional Transformations: A Cross-Discipline Perspective
- GRACE meeting notes, state of the art, and outlook. In Procs. of
ICMT2009, volume 5563 of LNCS, pages 260–283. Springer, 2009.

[5] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based
bidirectional model transformations. pages 61–76, 2010.

[6] C. Ebert and J. D. Man. Requirements uncertainty: influencing factors
and concrete improvements. In Procs. of ICSE, pages 553–560. ACM
Press, 2005.

[7] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio.
A model-driven approach to automate the propagation of changes among
Architecture Description Languages. SOSYM, 1(25):1619–1366, 2010.

[8] R. Eramo, A. Pierantonio, J. R. Romero, and A. Vallecillo. Change
management in multi-viewpoint system using asp. In Procs of EDOCW,
pages 433–440, Washington, DC, USA, 2008. IEEE Computer Society.

[9] R. Eramo, A. Pierantonio, and G. Rosa. Uncertainty in bidirectional
transformations. In Procs. of MiSE 2014, 2014.

2www.learnpad.eu

[10] M. Famelis, R. Salay, and M. Chechik. Partial models: Towards
modeling and reasoning with uncertainty. In ICSE, pages 573–583,
2012.

[11] M. Famelis, R. Salay, A. D. Sandro, and M. Chechik. Transformation
of models containing uncertainty. In MoDELS, pages 673–689, 2013.

[12] D. Garlan. Software engineering in an uncertain world. In Proceedings
of the FSE/SDP workshop on Future of software engineering research,
pages 125–128. ACM, 2010.

[13] J. Hutchinson, M. Rouncefield, and J. Whittle. Model-driven engineering
practices in industry. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 633–642. IEEE, 2011.

[14] D. Hutchison, T. Kanade, J. Kittler, J. Kleinberg, F. Mattern, J. Mitchell,
M. Naor, O. Nierstrasz, C. P. Rangan, B. Steffen, et al. Bidirectional
transformations: A cross-discipline perspective, grace meeting notes,
state of the art, and outlook. In Theory and Practice of Model
Transformations, Second International Conference, ICMT 2009, Zurich,
Switzerland, June 29-30, 2009. Proceedings, volume 5563. Springer,
2009.

[15] H. Ibrahim, B. H. Far, A. Eberlein, and Y. Daradkeh. Uncertainty
management in software engineering: Past, present, and future. In
CCECE, pages 7–12. IEEE, 2009.

[16] N. Macedo and A. Cunha. Implementing qvt-r bidirectional model
transformations using alloy. In V. Cortellessa and D. Varró, editors,
FASE, volume 7793 of Lecture Notes in Computer Science, pages 297–
311. Springer, 2013.

[17] R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro. Managing
requirements uncertainty with partial models. Requir. Eng., 18(2):107–
128, 2013.

[18] R. Salay, M. Famelis, and M. Chechik. Language independent refine-
ment using partial modeling. In FASE, pages 224–239, 2012.

[19] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein.
Requirements-aware systems: A research agenda for re for self-adaptive
systems. In RE, pages 95–103. IEEE Computer Society, 2010.

[20] D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
Computer, 39(2):25–31, 2006.

[21] S. Sendall and W. Kozaczynski. Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5):42–
45, 2003.

[22] P. Stevens. Bidirectional model transformations in QVT: semantic issues
and open questions. Software and Systems Modeling, 8, 2009.

[23] S. Witkop. MDA users’ requirement for QVT transformations. In OMG
doc 05-02-04, 2005.

[24] T. Zan, H. Pacheco, and Z. Hu. Writing bidirectional model transfor-
mations as intentional updates. In ICSE Companion, pages 488–491,
2014.

