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Foreword

The International Workshop on Principles of Diagnosis is an annual event that started in 1989,
originating in the Artificial Intelligence community. Its focus is on theories, principles and compu-
tational techniques for diagnosis, monitoring, testing, reconfiguration and repair of complex systems
and applications of these techniques to real world problems.

This year, DX-15 received 41 submissions (39 full papers and 2 tool papers) from 15 countries,
from 5 continents. Each paper was thoroughly peer reviewed by three reviewers. We accepted 17
regular papers (selection rate 43.6%), 18 posters and 2 benchmark/tool papers. We wish to thank all
the authors of submitted papers, the program committee members for the time and effort spent, the
invited speakers for their participation.

As the DX-15 workshop is co-located with the IFAC International Symposium SAFEPROCESS
2015, its organization would not have been possible without the full support of the SAFEPROCESS
organization team and especially Vincent Cocquempot who did a tremendous coordination job be-
tween the two events. Also special thanks to our local contact Nazih Mechbal at École Nationale
Supérieure d’Arts et Métiers (ENSAM), ParisTech, where DX-15 and SAFEPROCESS take place.
Thanks also to the local organization team at LAAS-CNRS and at the CNRS administrative depart-
ment of Toulouse (DR14) for their full technical and administrative support.

We also wish to thank our sponsors: Centre National de la Recherche Scientifique (CNRS), Uni-
versité de Toulouse), Laboratoire de Recherche en Informatique, Université Paris-Sud, École Nationale
Supérieure d’Arts et Métiers (ENSAM), Institut National des Sciences Appliquées de Toulouse (INSA-
Toulouse), Université Pierre et Marie Curie (UMPC), and ACTIA.

Yannick Pencolé, Louise Travé-Massuyès, Philippe Dague.
August 2015
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Louise Travé-Massuyès LAAS-CNRS, Univ. Fédérale Toulouse, France
Philippe Dague LRI, Université Paris-Sud, France
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A Divide-And-Conquer-Method for Computing Multiple Conflicts for Diagnosis

Kostyantyn Shchekotykhin1 and Dietmar Jannach2 and Thomas Schmitz2
1Alpen-Adria University Klagenfurt, Austria

e-mail: kostyantyn.shchekotykhin@aau.at
2TU Dortmund, Germany

e-mail: {firstname.lastname}@tu-dortmund.de

Abstract
In classical hitting set algorithms for Model-
Based Diagnosis (MBD) that use on-demand con-
flict generation, a single conflict is computed
whenever needed during tree construction. Since
such a strategy leads to a full “restart” of the
conflict-generation algorithm on each call, we
propose a divide-and-conquer algorithm called
MERGEXPLAIN which efficiently searches for
multiple conflicts during a single call.
The design of the algorithm aims at scenarios in
which the goal is to find a few leading diagnoses
and the algorithm can – due to its non-intrusive
design – be used in combination with various un-
derlying reasoners (theorem provers). An em-
pirical evaluation on different sets of benchmark
problems shows that our proposed algorithm can
lead to significant reductions of the required diag-
nosis times when compared to a “one-conflict-at-
a-time” strategy.

1 Introduction
In Model-Based Diagnosis (MBD), the concept of conflicts
describes parts of a system which – given a set of observa-
tions – cannot all work correctly. Besides MBD, the calcu-
lation of minimal conflicts is a central task in a number of
other AI approaches [1]. Reiter [2] showed that the minimal
hitting sets of conflicts correspond to diagnoses, where a di-
agnosis is a possible explanation why a system’s observed
behavior differs from its expected behavior. He used this
property for the computation of diagnoses in the breadth-
first hitting set tree (HS-tree) diagnosis algorithm.

Over time, the principle of this MBD approach was used
for a number of different diagnosis problems such as elec-
tronic circuits, hardware descriptions in VHDL, program
specifications, ontologies, and knowledge-based systems [3;
4; 5; 6; 7]. A reason for the broad utilization of hitting set
approaches is that its principle does not depend on the un-
derlying knowledge representation and reasoning technique,
because only a general Theorem Prover (TP) – a component
that returns conflicts – is needed.

The implementation of a TP can be done in different
ways. First, the conflict detection can be implemented as
a reasoning task, e.g., by modifying a consistency check-
ing algorithm [8; 9]. Second, “non-intrusive” conflict de-
tection techniques can be used with a variety of reasoning

approaches, since they require only a very limited reasoning
functionality like consistency or entailment checking with-
out knowing the internals of the reasoning algorithm. Such
methods can benefit from the newest improvements in rea-
soning algorithms, such as incremental solving, heuristics,
learning strategies, etc., without any modifications.

A non-intrusive conflict detection algorithm which has
shown to be very efficient in different application scenar-
ios is Junker’s QUICKXPLAIN [10] (QXP for short) which
was designed to find a single minimal conflict based on a
divide-and-conquer strategy. The algorithm was originally
developed in the context of constraint problems, but since
its method is independent of the underlying reasoner, it was
used in several of the hardware and software diagnosis ap-
proaches mentioned above.

In many classical hitting set based approaches, conflicts
are computed individually with QXP during HS-tree con-
struction when they are required, as in many domains not
all conflicts are known in advance [11]. This, however, has
the effect that QXP has to be “restarted” with a slightly dif-
ferent configuration whenever a new conflict is needed.

In this paper, we propose MERGEXPLAIN (MXP for
short), a divide-and-conquer algorithm which searches for
multiple conflicts during a single decomposition run. Our
method is built upon QXP and is therefore also non-
intrusive. The basic idea behind MXP is that (a) the early
identification of multiple conflicts can speed up the overall
diagnosis process, e.g., due to better conflict “reuses” [2],
and that (b) we can identify additional conflicts faster when
we decompose the original components into smaller subsets
with the divide-and-conquer strategy of MXP.

The paper is organized as follows. After a problem char-
acterization in Section 2, we present the details of MXP in
Section 3 and discuss the properties of the algorithm. Sec-
tion 4 presents the results of an extensive empirical evalua-
tion using various diagnosis benchmark problems. Previous
work is finally discussed in Section 5.

2 Preliminaries
2.1 The Diagnosis Problem
We use the definitions of [2] to characterize a system, diag-
noses, and conflicts.

Definition 1 (System). A system is a pair (SD, COMPS)
where SD is a system description (a set of logical sentences)
and COMPS represents the system’s components (a finite set
of constants).

Proceedings of the 26th International Workshop on Principles of Diagnosis
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A diagnosis problem arises when a set of logical sen-
tences OBS, called observations, is inconsistent with the
normal behavior of the system (SD, COMPS). The correct
behavior is represented in SD with an “abnormal” predicate
AB/1. That is, for any component ci ∈ COMPS the literal
¬AB(ci) represents the assumption that the component ci
behaves correctly.
Definition 2 (Diagnosis). Given a diagnosis problem (SD,
COMPS, OBS), a diagnosis is a minimal set ∆ ⊆ COMPS such
that SD ∪ OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ COMPS\∆}
is consistent.

A diagnosis therefore corresponds to a minimal subset of
the system components which, if assumed to be faulty (and
thus behave abnormally) explain the system’s behavior, i.e.,
are consistent with the observations.

Two general classes of MBD algorithms exist. One relies
on direct problem encodings and the aim is often to find one
diagnosis quickly, see [12; 13; 14]. The other class relies on
the computation of conflicts and their hitting sets (see next
section). Such diagnosis algorithms are often used when the
goal is to find multiple or all minimal diagnoses. In the con-
text of our work, techniques of the second class can imme-
diately profit when the conflict generation process is done
more efficiently.

2.2 Diagnoses as Hitting Sets
Finding all minimal diagnoses corresponds to finding all
minimal hitting sets (HS) of all existing conflicts [2].
Definition 3 (Conflict). A conflict CS for (SD, COMPS,
OBS) is a set {c1, . . . , ck} ⊆ COMPS such that SD ∪ OBS

∪{¬AB(ci) | ci ∈ CS} is inconsistent.
Assuming that all components of a conflict work correctly

therefore contradicts the observations. A conflict CS is min-
imal, if no proper subset of CS is also a conflict.

To find the set of all minimal diagnoses for a given prob-
lem, [2] proposed a breadth-first HS-tree algorithm with tree
pruning and conflict reuse. A correction to this algorithm
was proposed by Greiner et al. which uses a directed acyclic
graph (DAG) instead of the tree to correctly deal with non-
minimal conflicts [15]. Our work, however, does not de-
pend on this correction as QXP as well as our proposed
MXP method always return minimal conflicts. Apart from
this, a number of algorithmic variations were suggested
in the literature which, for example, use problem-specific
heuristics [16], a greedy search algorithm, or apply paral-
lelization techniques [17], see also [18] for an overview.

2.3 QUICKXPLAIN (QXP)
QXP was developed in the context of inconsistent constraint
satisfaction problems (CSPs) and the computation of expla-
nations. E.g., in case of an overconstrained CSP, the prob-
lem consists in determining a minimal set of constraints
which causes the CSP to become unsolvable for the given
inputs. A simplified version of QXP [10] is shown in Al-
gorithm 1. The rough idea of QXP is to apply a recursive
procedure which relaxes the input set of faulty constraints
C by partitioning it into two sets C1 and C2 (line 6). If C1
is a conflict the algorithm continues partitioning C1 in the
next recursive call. Otherwise, i.e., if the last partitioning
has split all conflicts in C, the algorithm extracts a conflict
from the sets C1 and C2. This way, QXP finally identifies
single constraints which are inconsistent with the remaining
consistent set of constraints and the background theory.

Algorithm 1: QUICKXPLAIN(B, C)
Input: B: background theory, C: the set of possibly

faulty constraints
Output: A minimal conflict CS ⊆ C

1 if isConsistent(B ∪ C) then return ‘no conflict’;
2 else if C = ∅ then return ∅;
3 return GETCONFLICT(B,B, C)

function GETCONFLICT (B, D, C)
4 if D 6= ∅ ∧ ¬ isConsistent(B) then return ∅;
5 if |C| = 1 then return C;
6 Split C into disjoint, non-empty sets C1 and C2
7 D2 ← GETCONFLICT (B ∪ C1, C1, C2)
8 D1 ← GETCONFLICT (B ∪D2, D2, C1)
9 return D1 ∪D2

Theorem 1 ([10]). Let B be a background theory, i.e., a
set of constraints considered as correct, and C be a set of
possibly faulty constraints. Then, QUICKXPLAIN always
terminates. If B ∪ C is consistent it returns ‘no conflict’.
Otherwise, it returns a minimal conflict CS .

2.4 Using QXP During HS-Tree Construction
Assume that MBD is applied to find an error in the defini-
tion of a CSP. The CSP comprises the set of possibly faulty
constraints C. These are the elements of COMPS. The sys-
tem description SD corresponds to the semantics of the con-
straints in C. Finally, the observations OBS are encoded as
unary constraints and are added to the background theory
B. During the HS-tree construction, QXP is called when-
ever a new node is created and no conflict reuse is possi-
ble. As a result, QXP can either return one minimal conflict,
which can be used to label the new node, or return ’no con-
flict’, which would mean that a diagnosis is found at the tree
node. Note that QXP can be used with other algorithms,
e.g., preference-based search [19] or boolean search [20], in
the same way as with the HS-tree algorithm.

3 MERGEXPLAIN (MXP): Algorithm
Details

3.1 General Considerations
The pseudo-code of MXP, which unlike QXP can return
multiple conflicts at a time, is given in Algorithm 2. MXP,
like QXP, is generally applicable to a variety of problem do-
mains. The mapping to the terminology used in MBD (SD,
COMPS, OBS) is straightforward as discussed in the previous
section. In the following, we will use the notation and sym-
bols from [10], e.g., C or B, and constraints as a knowledge
representation formalism.

Note that there are applications of MBD in which the
function isConsistent has to be “overwritten” to take the
specifics of the underlying knowledge representation and
reasoning system into account. The ontology debugging
approach presented in [7] for example extends isConsis-
tent with the verification of entailments of a logical theory.
MXP can be used in such scenarios after the corresponding
adaptation of the implementation of isConsistent.

Furthermore, MXP can be easily extended for cases in
which the MBD approach has to support the specification
of (multiple) test cases, i.e., sets of formulas that must be
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consistent or inconsistent with the system description, e.g.,
[21; 22].

3.2 Algorithm Rationale
MXP (Algorithm 2) accepts two sets of constraints as in-
puts, B as the assumed-to-be-correct set of background con-
straints and C, the possibly faulty components/constraints.

In case C∪B is inconsistent, MXP returns a set of minimal
conflicts Γ by calling the recursive function FINDCONFLICTS

in line 3. This function again acceptsB and C as an input and
returns a tuple 〈C′,Γ〉, where Γ is a set of minimal conflicts
and C′ ⊂ C is a set of constraints that does not contain any
conflicts, i.e., B ∪ C′ is consistent.

The logic of FINDCONFLICTS is similar to QXP in that we
decompose the problem into two parts in each recursive call
(lines 7–9). Differently from QXP, however, we look for
conflicts in both splits C1 and C2 independently and then
combine the conflicts that are eventually found in the two
halves (line 10)1. If there is, e.g., a conflict in the first part
and one in the second, FINDCONFLICTS will find them inde-
pendently from each other. Of course, there might also be
conflicts in C whose elements are spread across both C1 and
C2, that is, the set C′1 ∪ C′2 ∪B is inconsistent. This situation
is addressed in lines 11–15. The computation of a minimal
conflict is done by two calls to GETCONFLICT (Algorithm 1).
In the first call this function returns a minimal set X ⊆ C′1
such thatX∪C′2∪B is a conflict (line 12). In line 13, we then
look for a subset of C′2, say Y , such that Y ∪X corresponds
to a minimal conflict CS . The latter is added to Γ (line 15).
In order to restore the consistency of C′1 ∪C′2 ∪B we have to
remove at least one element α ∈ CS from either C′1 or C′2.
Therefore, in line 14 the algorithm removes α ∈ X ⊆ CS
from C′1.

Note that MXP allows us to use different split functions
in line 7. In our default implementation we use a function
that splits the set of constraints C into two equal parts, i.e.,
split(n) = n/2, where |C| = n. In the worst case this split
function results in a perfect binary tree with n leaves. Con-
sequently, the total number of nodes is 2n − 1, which cor-
respond to 2(2n − 1) consistency checks (lines 5 and 11).
Other split functions might result in a similar number of
consistency checks in the worst case as well, since in any
case MXP has to traverse a binary tree with n leaves. For
instance, the function split(n) = n− 1 results in a tree with
one branch of the depth n − 1 and n leaves, that is, 2n − 1
nodes to traverse. However, while the number of nodes to
explore might be comparable, the important point is that the
computational costs for the individual consistency checks
can be different depending on the splitting strategy. Un-
der the reasonable assumption that consistency checking of
smaller sets of constraints requires less time, the function
split(n) = n/2 allows MXP to split the set of constraints
faster, thus, improving the overall runtime.

3.3 Example
Consider a CSP consisting of six constraints {c0, ..., c5}.
The constraint c0 is considered correct, i.e., B = {c0}. Let
{{c0, c1, c3}, {c0, c5}, {c2, c4}} be the set of minimal con-
flicts. Algorithm 2 proceeds as follows (Figure 1).

Since the input CSP (B ∪ C) is not consistent, the al-
gorithm enters the recursion. In the first step, FINDCON-
FLICTS partitions the input set (line 7) into the two subsets

1The calls in line 8 and 9 can in fact be executed in parallel.

Algorithm 2: MERGEXPLAIN(B, C)
Input: B: background theory, C: the set of possibly

faulty constraints
Output: Γ, a set of minimal conflicts

1 if ¬isConsistent(B) then return ‘no solution’;
2 if isConsistent(B ∪ C) then return ∅;
3 〈_,Γ〉 ← FINDCONFLICTS(B, C)
4 return Γ;

function FINDCONFLICTS (B, C) returns tuple 〈C′,Γ〉
5 if isConsistent(B ∪ C) then return 〈C, ∅〉;
6 if |C| = 1 then return 〈∅, {C}〉;
7 Split C into disjoint, non-empty sets C1 and C2
8 〈C′1,Γ1〉 ← FINDCONFLICTS(B, C1)
9 〈C′2,Γ2〉 ← FINDCONFLICTS(B, C2)

10 Γ← Γ1 ∪ Γ2;
11 while ¬isConsistent(C′1 ∪ C′2 ∪ B) do
12 X ← GETCONFLICT(B ∪ C′2, C′2, C′1)
13 CS ← X ∪ GETCONFLICT(B ∪X,X, C′2)
14 C′1 ← C′1 \ {α} where α ∈ X
15 Γ← Γ ∪ {CS}
16 return 〈C′1 ∪ C′2,Γ〉

C1 = {c1,c2,c3} and C2 = {c4,c5} and provides them as in-
put to the recursive calls (lines 8 and 9). In the next level
of the recursion – marked with 2 in Figure 1 – the input is
found to be inconsistent (line 5) and again partitioned into
two sets (line 7). In the subsequent calls, 3 and 4 , the two
input sets are found to be consistent (line 5) and, therefore,
the set {c1, c2, c3} has to be analyzed using GETCONFLICT

(lines 12 and 13) defined in Algorithm 1. GETCONFLICT

returns the conflict {c1,c3}, which is added to Γ. Finally,
FINDCONFLICTS removes c1 from the set C′1 and returns the
tuple 〈{c2,c3}, {{c1,c3}}〉 to 1 .

Next, the “right-hand” part of the initial input, the set
C2 = {c4,c5}, is provided as input to FINDCONFLICTS 5 .
Since C2 is inconsistent, it is partitioned into two sets
C1 = {c4} and C2 = {c5}. The first recursive call 6 re-
turns 〈{c4}, ∅〉 since the input is consistent. The second
call 7 , in contrast, finds that the input comprises only
one constraint that is inconsistent with the background the-
ory B. Therefore, it returns 〈∅,{{c5}}〉 in line 6. Since
C′1 ∪ C′2 = {c4} ∪ ∅ is consistent with B, FINDCONFLICTS 5
returns 〈{c4}, {{c5}}〉 to 1 .

Finally, in 1 the set of constraints C′1 ∪ C′2 = {c2,c3} ∪
{c4} is found to be inconsistent with B (line 11) and GET-
CONFLICT is called. The method returns the conflict {c2,c4}
and c2 is removed from C′1. The resulting set {c3,c4} is con-
sistent and MXP returns Γ = {{c1,c3}, {c5}, {c2, c4}}.

3.4 Properties of MERGEXPLAIN
Theorem 2. Given a background theory B and a set of con-
straints C, Algorithm 2 always terminates and returns

• ‘no solution’, if B is inconsistent,

• ∅, if B ∪ C is consistent, and

• a set of minimal conflicts Γ, otherwise.

Proof. In the first case, given an inconsistent background
theory B, the algorithm terminates in line 1 and returns ‘no
solution’. In the second case, if the set B ∪ C is consistent,
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1 :

C1 = {c1, c2, c3} C2 = {c4, c5}
〈{c2, c3} , {{c1, c3}}〉
〈{c4} , {{c5}}〉
Γ = {{c1, c3} , {c5}} ∪ {{c2, c4}}
C = {c3, c4}

2 :

C1 = {c1, c2} C2 = {c3}
〈{c1, c2} , ∅〉
〈{c3} , ∅〉
Γ = ∅ ∪ {{c1, c3}}
C = {c2, c3}

3 :
B ∪ C = {c0, c1, c2}
isConsistent X 4 :

B ∪ C = {c0, c3}
isConsistent X

5 :

C1 = {c4} C2 = {c5}
〈{c4} , ∅〉
〈∅, {{c5}}〉
isConsistent X

6 :
B ∪ C = {c0, c4}
isConsistent X 7 :

B ∪ C = {c0, c5}
isConsistent �
|C| = 1

yy

�� ��

%%

��
��

Figure 1: MERGEXPLAIN recursion tree. Each node shows values of selected variables in the FINDCONFLICTS function.

then no subset of C is a conflict. MXP terminates and re-
turns ∅.

Finally, if the set B ∪ C is inconsistent, the algorithm en-
ters the recursion in line 3. The function FINDCONFLICTS

in each call partitions the input set C into two sets C1 and
C2. The partitioning continues until either the found set
of constraints C is consistent or a singleton conflict is de-
tected. Therefore, every recursion branch ends after at most
log |C|−1 calls. Consequently, FINDCONFLICTS terminates if
the conflict detection loop in lines 11–15 always terminates.

We consider two situations. If the set C′1∪C′2 is consistent
with B, the loop terminates. Otherwise, in each iteration at
least one conflict in the set C′1 ∪ C′2 is resolved. This fact
follows from Theorem 1 according to which the function
GETCONFLICT in Algorithm 1 always returns a minimal con-
flict if the input parameter C is inconsistent with B. Since
the number of conflicts is finite and in each iteration one of
the conflicts in C′1 ∪ C′2 is resolved in line 14, the loop will
terminate after a finite number of iterations. Consequently,
Algorithm 2 terminates and returns a set of minimal con-
flicts Γ.

Corollary 1. Given a consistent background theory B and a
set of inconsistent constraints C, Algorithm 2 always returns
a set of minimal conflicts Γ such that there exists a diagnosis
∆i ⊆

⋃
CSi∈Γ CS i.

The proof follows from the fact that – similar to the HS-
tree algorithm – a conflict is resolved by removing one of its
elements from the set of constraints C1 in line 14. The loop
in line 11 guarantees that every conflict CS i ∈ C′1 ∪ C′2 is
hit. Consequently, FINDCONFLICTS hits every conflict in the
input set C and the set of constraints {α1, . . . , αn} removed
in every call of line 14 is a superset or equal to a diagnosis of
the problem. The construction of at least one diagnosis from
the found conflicts Γ can be done by the HS-tree algorithm.

MXP can in principle use several strategies for the res-
olution of conflicts in line 14. The strategy used in MXP
by default is conservative and allows us to find several con-
flicts at once. Two additional elimination strategies can be
used in line 14: (1) C′1 ← C′1 \X or (2) C′1 ← C′1 \ CS and
C′2 ← C′2 \ CS . These more aggressive strategies result in
a smaller number of conflicts returned by MXP in each call
but each call returns the results faster. However, for the latter

strategies MXP might not return enough minimal conflicts
for the HS-tree algorithm to compute at least one diagnosis.
For instance, let {{c1, c2} , {c1, c3} , {c2, c4}} be the set of
all minimal conflicts. If MXP returns Γ = {{c1, c2}}, which
is one of the possible valid outputs, then the HS-tree algo-
rithm fails to find a diagnosis as {c1, c2} must be hit twice.
In this case, the HS-tree algorithm must call MXP multiple
times or another algorithm for diagnosis computation must
be used, e.g., [23].
Corollary 2. Algorithm 2 is sound, i.e., every set CS ∈ Γ
is a minimal conflict, and complete, i.e., given a diagnosis
problem for which at least one minimal conflict exists, Algo-
rithm 2 returns Γ 6= ∅.

The soundness of the algorithm follows from Theorem 1,
since the conflict computation of MXP uses the GETCON-
FLICT function of QXP. The completeness is shown as fol-
lows: Let B be a background theory and C a set of faulty
constraints, i.e., B∪C is inconsistent. Assume MXP returns
Γ = ∅, i.e., no minimal conflicts are found. However, this is
impossible, since the loop in line 11 will never end. Con-
sequently, Algorithm 2 will not terminate which contradicts
our assumption. Hence, it holds that MXP is complete.

4 Evaluation
We have evaluated the efficiency of computing multiple con-
flicts at once with MXP using a number of different diagno-
sis benchmark problems. As a baseline for the comparison,
we use QXP as a Theorem Prover, which returns exactly
one minimal conflict at a time. Furthermore, we made mea-
surements with a variant of MXP called PMXP in which
the lines 8 and 9 are executed in parallel in two threads on a
multi-core computer.

4.1 Benchmark Problems
We made experiments with different benchmark problems.
First, we used the five first systems of the DX Competition
(DXC) 2011 Synthetic Track. For each system, 20 scenarios
are specified in which artificial faults were injected. In addi-
tion, we made experiments with a number of CSP problems
from the CSP solver competition 2008 and several CSP en-
codings of real-world spreadsheets. The injection of faults
was done in the same way as in [17].
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In addition to these benchmark problems, we developed
a diagnosis problem generator, which can be configured
to generate (randomized) diagnosis problems with varying
characteristics, e.g., with respect to the number of conflicts,
their size, or their position in the system description SD.

4.2 Measurement Method
We implemented all algorithms in a Java-based MBD
framework, which uses Choco as an underlying constraint
solver, see [17]. The experiments were conducted on a lap-
top computer (Intel i7, 8GB RAM). As a performance indi-
cator we use the time needed (“wall clock”) for computing
one or more diagnoses. The reported running time num-
bers are averages of 100 runs of each problem setting that
were done to avoid random effects. We furthermore ran-
domly shuffled the ordering of the constraints in each run to
avoid effects that might be caused by a certain positioning
of the conflicts in SD. For the evaluation of MXP we used
the most aggressive elimination strategy (2) as described in
Section 3.4.

Since MXP can return more than one conflict at a time, it
is expected to be particularly useful when the problem is to
find a set of n first (leading) diagnoses, e.g., in the context of
applying MBD to software debugging [5; 7]. We therefore
report the results for the tasks “find-one-diagnosis” (as an
extreme case) and “find-n-diagnoses”.

The task of finding a single diagnosis is comparably
simple and “direct encodings” or algorithms like INVERSE-
QUICKXPLAIN [23] are typically more efficient for this
task than the HS-tree algorithm. For instance, INVERSE-
QUICKXPLAIN requires only O(|∆| log(|C|/|∆|)) calls to TP.
If TP can check the consistency in polynomial time, then
one diagnosis can also be computed efficiently. The prob-
lem of finding more than one diagnosis is very different and
computationally challenging, because deciding whether an
additional diagnosis exists is NP-complete [24]. In such set-
tings the application of methods that are highly efficient for
finding one diagnosis is not always advantageous. For in-
stance, the evaluation presented in [14] demonstrates this
fact for direct encodings. Therefore a comparison of our al-
gorithm with approaches for the “find-one-diagnosis” prob-
lem is beyond the scope of our work, as we are interested
in problem settings in which the HS-tree algorithm is fa-
vorable and no assumptions about the underlying reasoner
should be made. When the task is to find all diagnoses, the
performance of MXP is similar to that of QXP as all exist-
ing conflicts have to be determined.

4.3 Results
DXC Benchmark Problems Table 1 shows the charac-
teristics of the analyzed and CSP-encoded DXC benchmark
problems. Since we consider multiple scenarios per system,
the number of faults and the corresponding diagnoses can
vary strongly across the experiment runs.

Table 2 shows the observed performance gains when us-
ing MXP instead of QXP in terms of absolute numbers (ms)
and the relative improvement. For the problem of finding the
first 5 diagnoses (QXP-5/MXP-5), the observed improve-
ments range from 15% up to 45%. For the extreme case of
finding one single diagnosis, even slightly stronger improve-
ments can be observed. The improvements when searching
for, e.g., the first 10 diagnoses are similar for cases in which
significantly more than 10 diagnoses actually exist.

System #C #V #F #D #D |D| #Cf |Cf|
74182 21 28 4 - 5 30 - 300 139 4.66 4.9 3.3
74L85 35 44 1 - 3 1 - 215 66.4 3.13 5.9 8.3
74283 38 45 2 - 4 180 - 4,991 1,232.7 4.42 78.8 16.1
74181 67 79 3 - 6 10 - 3,828 877.8 4.53 7.8 10.6
c432 162 196 2 - 5 1 - 6,944 1,069.3 3.38 15.0 19.8

Table 1: Characteristics of selected DXC benchmarks. #C:
number of constraints, #V: number of variables, #F: num-
ber of injected faults, #D: range of the number of diagnoses,
#D: average number of the diagnoses, |D|: average diag-
nosis size, #Cf: average number of conflicts, |Cf|: average
conflict size.

System QXP-5 MXP-5 QXP-1 MXP-1
[ms] Improv. [ms] Improv.

74182 17.0 19% 17.0 19%
74L85 20.9 15% 16.1 19%
74283 61.2 29% 53.8 32%
74181 691.8 45% 637.0 47%
c432 707.5 25% 503.9 37%

Table 2: Performance gains for DXC benchmarks when
searching for the first n diagnoses of minimal cardinality.

Constraint Problems / Spreadsheets The characteristics
for the next set of benchmark problems (six CSP compe-
tition instances, five CSP-encoded real-world spreadsheets
with injected faults [17]) are shown in Table 3.

Scenario #C #V #F #D |D| #Cf |Cf|
c8 523 239 8 4 6.25 7 1.6
costasArray-13 87 88 2 >5 3.6 >565 45.6
domino-100-100 100 100 3 81 2 2 15
graceful–K3-P2 60 15 4 >117 2.94 >12 29.2
mknap-1-5 7 39 1 2 1 1 2
queens-8 28 8 15 9 10.9 15 2.8
hospital payment 38 75 4 40 4 4 3
profit calculation 28 140 5 42 4.25 11 9
course planning 457 583 2 3024 2 2 55.5
preservation model 701 803 1 22 1 1 22
revenue calculation 93 154 4 1452 3 3 15.7

Table 3: Characteristics of selected CSP settings.

The results for determining the five first minimal diag-
noses are shown in Table 42. Again, performance improve-
ments of up to 54% can be observed. The obtained im-
provements vary quite strongly across the different problem
instances: the higher the complexity of the underlying prob-
lem, the stronger are the improvements achieved with our
new method. Only in the two cases in which only one single
conflict exists (see Table 3), the performance can slightly de-
grade as MXP performs an additional check if further con-
flicts among the remaining constraints exist.

Systematically Generated MBD Problems To be able to
systematically analyze which factors potentially influence
the obtained performance improvements, we developed an
MBD problem generator in which we could vary (i) the

2The results for finding one diagnosis follow the same trend.
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Scenario QXP MXP
[ms] [ms] Impr.

c8 615 376 39%
costasArray-13 1,379,842 629,366 54%
domino-100-100 417 389 7%
graceful–K3-P2 1611 1123 30%
mknap-1-5 32 36 -11%
queens-8 281 245 13%
hospital payment 1,717 1,360 21%
profit calculation 86 76 12%
course planning 2,045 1,544 25%
preservation model 371 391 -5%
revenue calculation 109 87 21%

Table 4: Results for CSP benchmarks and spreadsheets
when searching for 5 diagnoses.

overall number of COMPS, (ii) the number of conflicts and
their average size (and as a consequence the number of diag-
noses), and (iii) the position of the conflicts in the database.
We considered the last aspect because the performance of
QXP and MXP can largely depend on this aspect3. If,
e.g., there is only one conflict and the conflict is represented
by the two “left-most” elements in SD, QXP’s divide-and-
conquer strategy will be able to rule out most other elements
very fast.

We evaluated the following configurations regarding the
position of the conflicts (see Table 5): (a) Random: The
elements of each conflict are randomly distributed across
SD; (b) Left/Right: All elements of the conflict appear in
exactly one half of SD; (c) LaR (Left and Right): Conflicts
are both in the left and right half, but not spanning both
halves; (d) Neighb.: Conflicts appear randomly across SD,
but only involve “neighboring” elements.

One specific rationale of evaluating these constellations
individually is that conflicts in some application domains
(e.g., when debugging knowledge bases) might represent
“local” inconsistencies in SD.

Since the conflicts are known in advance in this exper-
iment, no CSP solver is needed to determine the consis-
tency of a given set of constraints. Because zero compu-
tation times are unrealistic, we added simulated consistency
checking times in each call to the TP. The value of the sim-
ulated time quadratically increases with the number of con-
straints to be checked and is capped in the experiments at 10
milliseconds. We made additional tests with different con-
sistency checking times to evaluate to which extent the im-
provements obtained with MXP depend on the complexity
of an individual consistency check for the underlying prob-
lem. However, these tests did not lead to any significant
differences.

Table 5 shows some of the results of this simulation. In
this evaluation, we also include the results of the parallelized
PMXP variant. The following observations can be made.

(1) The performance of QXP strongly depends on the po-
sition of the conflicts. In the probably most realistic Random
case, MXP helps to reduce the computation times around
20-30%. In the constellations that are “unfortunate” for
QXP, the speedups achieved with MXP can be as high as
75%. When QXP is “lucky” and all conflicts are clustered

3We assume a splitting strategy in which the elements are sim-
ply split in half in the middle with no particular ordering of the
elements.

#Cp #Cf |Cf| Cf Pos. QXP MXP PMXP
[ms] Impr. Impr.

50 5 2 Random 351 27% 30%
50 5 2 Left 161 6% 10%
50 5 2 Right 481 69% 70%
50 5 2 LaR 293 51% 57%
50 5 2 Neighb. 261 54% 58%

100 5 2 Random 417 33% 35%
100 5 2 Left 181 14% 17%
100 5 2 Right 622 75% 76%
100 5 2 LaR 351 58% 63%
100 5 2 Neighb. 314 62% 65%
50 15 4 Random 2,300 22% 20%
50 15 4 Left 452 -8% -4%
50 15 4 Right 1,850 72% 73%
50 15 4 LaR 3,596 22% 18%
50 15 4 Neighb. 166,335 43% 43%

Table 5: Results when varying the problem characteristics.

in the left part of SD, some improvements or light deterio-
rations can be observed for MXP. The latter two situations
(all conflicts are clustered in one half) are actually quite im-
probable but help us better understand which factors influ-
ence the performance.

(2) When comparing the results of the first two blocks
in the table, it can be seen that the improvements achieved
with MXP are stronger when there are more components in
SD and more time is needed for performing the individual
consistency checks. This is in line with the results of the
other experiments.

(3) Parallelization can help to obtain modest additional
improvements. The strongest improvements are observed
for the LaR configuration, which is intuitive as PMXP by
design explores the left and right halves independently in
parallel. Note that in the experiments with the DXC and the
CSP benchmark problems, in most cases we could not ob-
serve runtime improvements through parallelization. This is
caused by two facts. First, the consistency checking times
are often on average below 1 ms, which means that the rel-
ative overhead of starting a new thread can be comparably
high. Second, the used CSP solver causes some additional
overheads and thread synchronization when used in multiple
threads in parallel.

5 Related Work
In [10], Junker informally sketches a possible extension of
QXP to be able to compute multiple “preferred explana-
tions” in the context of Preference-Based Search (PBS). The
general goal of Junker’s approach is partially similar to our
work and the proposed extended version of QXP could in
theory be used during the HS-tree construction as well.

Technically, Junker proposes to set a choice point when-
ever a constraint ci is found to be consistent with a partial re-
laxation during search and thereby look for (a) branches that
lead to conflicts not containing ci and (b) branches leading
to conflicts in which the removal of ci leads to a solution.

Unfortunately, it is not fully clear from the informal
sketch in [10] where the mentioned choice point should
be set. If applied in line 5 of Algorithm 1, conflicts are
only found in the left-most inconsistent partition. The
method would then return only a small subset of all conflicts
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MERGEXPLAIN would return. If the split is done for every
ci consistent with a partial relaxation during PBS, the result-
ing diagnosis algorithm corresponds to the binary HS-tree
method [25], which according to the experiments in [11] is
not generally favorable over HS-Tree algorithms, in partic-
ular when we are searching for a limited set of diagnoses.

From the algorithm design, note that QXP applies a con-
structive conflict computation procedure prior to partition-
ing, whereas MXP does the partitioning first – thereby re-
moving multiple constraints at a time – and then uses a
divide-and-conquer conflict detection approach. Finally, our
method can, depending on the configuration, make a guaran-
tee about the existence of a diagnosis given the returned con-
flicts without the need of computing all existing conflicts.

In general, our work is related to a variety of (com-
plete) approaches from the MBD literature which aim to
find diagnoses more efficiently than with Reiter’s original
method. Existing works for example try to speed up the
process by exploiting existing hierarchical, tree-like or dis-
tributed structural properties of the underlying problem [16;
26], through parallelization [17], or by solving the dual
problem [27; 28; 29]. A main difference to these works
is that we make no assumption about the underlying prob-
lem structure and leave the general HS-tree procedure un-
changed. Instead, our aim is to avoid a full restart of the
conflict search process when constructing a new node by
looking for potentially existing additional conflicts in each
call, and to thereby speedup the overall process.

Beside complete methods, a number of approximate di-
agnosis approaches have been proposed in the last years,
which for example use stochastic and heuristic search [30;
31]. The relation of our work to these approaches is limited
as we are focusing on application scenarios where the goal
is to find a few first diagnoses more quickly but at the same
time maintain the completeness property. Finally, for some
domains, “direct” and SAT-based, e.g., [32], or CSP-based,
e.g., [33], encodings, have shown to be very efficient to find
one or a few diagnoses in recent years. For instance, [33]
suggests an encoding scheme that first translates a given di-
agnosis problem (SD, COMPS, OBS) into a CSP. Then a spe-
cific diagnosis algorithm is applied that searches for conflict
sets with increasing cardinality, i.e., 1, 2, . . . , |COMPS|. The
same method is then used to search for diagnoses in the set
of all found conflict sets. In order to speed up the compu-
tations the author suggests a kind of hierarchical approach
that helps the user spot the relevant components. Generally,
most of the “direct” methods require the use of additional
techniques like hierarchical diagnosis or iterative deepening
that constrain the cardinality of computed diagnoses while
computing minimal diagnoses.

The concept of conflicts plays a central role in different
other reasoning contexts than Model-Based Diagnosis, e.g.,
explanations or dynamic backtracking. Specifically, in re-
cent years a number of approaches were proposed in the
context of the maximum satisfiability problem (MaxSAT),
see [34] for a recent survey. In these domains the con-
flicts are referred to as unsatisfiable cores or Minimally Un-
satisfiable Subsets (MUSes); Minimal Correction Subsets
(MSCes) on the other hand correspond to the concept of
diagnoses in this paper. In [35] or [36], for example, dif-
ferent algorithms were recently proposed to find one so-
lution to the MaxSAT problem, which corresponds to the
problem of finding one minimal/preferred diagnosis. Other

techniques such as MARCO [29] aim at the enumeration of
conflicts. In general, many of these algorithms use a similar
divide-and-conquer principle as we do with MXP. How-
ever, such algorithms – including the ones listed above –
often modify the underlying knowledge base by adding re-
laxation variables to clauses of a given unsatisfiable formula
and then use a SAT solver to find the relaxations. This strat-
egy roughly corresponds to the direct diagnoses approaches
discussed above. MXP, in contrast, acts completely inde-
pendently of the underlying knowledge representation lan-
guage. Moreover, the problem-independent decomposition
approach used by MXP is a novel feature which – to the
best of our knowledge – is not present in the existing con-
flict detection techniques from the MaxSAT field. Specifi-
cally, it allows our algorithm to find multiple conflicts more
efficiently because it searches for them within independent
small subsets of the original knowledge base. In addition,
MXP can find conflicts in knowledge bases formulated in
very expressive knowledge representation languages, such
as description logics, which cannot be efficiently translated
to SAT, see also [23].

6 Conclusions
We have proposed and evaluated a novel, general-pur-
pose and non-intrusive conflict detection strategy called
MERGEXPLAIN, which is capable of detecting multiple
conflicts in a single call. An evaluation on various bench-
mark problems revealed that MERGEXPLAIN can help to
significantly reduce the required computation times when
applied in a Model-Based Diagnosis setting in which the
goal is to find a defined number of diagnoses and in
which no assumption about the underlying reasoning engine
should be made.

One additional property of MERGEXPLAIN is that the
union of the elements of the returned conflict sets is guaran-
teed to be a superset of one diagnosis of the original prob-
lem. Recent methods like the one proposed in [23] can
therefore be applied to find one minimal diagnosis quickly.
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Abstract
We study the situation in which many systems
relate to each other. We show how to robustly
learn relations between systems to conduct fault
detection and identification (FDI), i.e. the goal is
to identify the faulty systems. Towards this, we
present a robust alternative to the sample correla-
tion matrix and show how to randomly search in
it for a structure appropriate for FDI. Our method
applies to situations in which many systems can
be faulty simultaneously and thus our method re-
quires an appropriate degree of redundancy. We
present experimental results with data arising in
photovoltaics and supporting theoretical results.

1 Introduction
The increasing number of technical systems connected to
the Internet raises new challenges and possibilities in di-
agnosis. Large amount of data needs to be processed and
analyzed. Faults need to be detected and identified. Sys-
tems exist in different configurations, e.g. two systems of
the same type that have different sets of sensors. Knowl-
edge about the system design is often incomplete. Data is
often unavailable due to unreliable data connections. Be-
sides these and other difficulties, the large amount of data
also opens new possibilities for diagnosis based on machine
learning.

The idea of our approach is to conduct fault detection and
identification (FDI) by comparing data of similar systems.
We assume to have data of machines, devices, systems of a
similar type and want to know if some system is faulty and if
so, to identify the faulty systems. This situation may deviate
from classic diagnosis problems in that we just have limited
information (e.g. sensor or control information) of system
internals. Moreover, we may have incomplete knowledge
about the system design. This makes manual system mod-
eling hard or even impossible. The problem is then to com-
pare the limited information of the working systems (per-
haps only input-output information) to identify faulty sys-
tems.

In this work we tackle one concrete problem of this kind.
It is motivated by photovoltaics. We describe it in more de-
tail below. The problem that arises in our and other appli-
cations is that not every two systems can be compared. We
thus need to learn relations between systems.

There are different approaches to learn structure, e.g.
learning Bayesian networks, Markov random fields, or sim-
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Figure 1: Learning relations between 6 systems. We draw
an edge between two systems if there is a strong linear re-
lation between them. First, we compute the fitness matrix,
1(a), our robust alternative to the sample correlation matrix.
Darker colors mean a stronger linear relation. Going from
Fig. 1(a) to 1(b) is a discretization step via thresholding. The
digraph is the input for conducting FDI.

ilar concepts. The concept that fits our needs are correlation
networks. A correlation network is some structure in the
correlation matrix, e.g. a minimum spanning tree or a clus-
tering. In our application we have n variables which rep-
resent the produced energy per photovoltaic system. Given
that a single system correlates strongly with enough other
systems, we use this information for FDI via applying a me-
dian.

We can also think of correlation networks as a method
for knowledge discovery. It has been applied in areas such
as biology [18; 10] and finance [12] to analyze gene co-
expression and financial markets. In our situation, the first
step is to learn linear relations between systems. For learn-
ing we need historical data. A sample result of this step is
depicted in Fig. 1. In Fig. 1(a) the fitness matrix, our robust
alternative to the correlation matrix, is shown. It represents
the degree of linearity between any two systems. For FDI,
the second step of our method, we work with the result as
depicted in 1(b) and current data. In the example, we derive
for every of the six systems an estimation m̂i of its current
value yi from its neighbors current values, e.g. for system
1 we get an estimate from the current values of the systems
2, 3, 4 and for system 5 from system 6. Finally, we test for a
fault by checking if |m̂i − yi| is large.

The major difficulty we try to tackle with this approach
is the presence of many faults. Faults influence both the
learning problem and the FDI problem. Robustness is an
essential property of our algorithms. Our result can be seen
as a robust structure learning algorithm for the purpose of
FDI. Robustness is a preferable property of many learning
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and estimation algorithms. However, the underlying opti-
mization problems unlike their non-robust variants are often
NP-hard. This is for example the case for computing robust
and non-robust estimators for linear regression, e.g. Least
Median of Squares versus Ordinary Least Squares [16]. We
avoid NP-hardness by a careful modeling of our problem.
In particular, our algorithms are computationally efficient.
Under some conditions, FDI can be done in (almost) linear
time in the number of systems n.

To summarize our contributions, we introduce a novel al-
ternative to the sample correlation matrix and present a first
use of it to discover structure appropriate for general FDI
and in particular for identifying faulty photovoltaic systems
(PV). Our method works in the presence of many faults. Our
algorithms are computationally efficient. Our method incor-
porates a couple of techniques from machine learning and
statistics: (Repeated) Theil-Sen estimation for robust sim-
ple linear regression. Trimming to obtain a robust fitness
measure. Randomized subset selection for improved run-
ning time. And a median mechanism to conduct FDI.

In Sec. 2 we discuss our method. In Sec. 3 we present
experimental and theoretical results.

1.1 Motivating Application: Identifying Faulty
Photovoltaic Systems

Faults influence the performance of photovoltaic systems
(PV). PV systems produce less energy than possible if faults
occur. We can distinguish between two kinds of faults.
Faults caused by an exogenous event such as shading, (melt-
ing) snow, and tree leafs covering solar modules. And faults
caused by endogenous events such as module defects and
degradation, defects at the power inverter, and string dis-
connections.

We are going to detect faults by estimating the drop in
produced energy. Most of the common faults result in such
a drop. The particular problem is given by the sensor setup.
We just assume to know the produced energy and possible
but not necessarily the area (e.g. the zip code) where the PV
system is located.

We apply our method to PV system data. Difficulties in
the application are different system types and deployments
of systems. For example, different number of strings and
modules per string and differing orientation (north, west,
south, east) of the modules; see Fig. 2. Moreover, the lack of
information due to the lack of sensors and incomplete data
due to unreliable data connections. Faults occur frequently,
in particular exogenous faults during winter.

The novelty of our work in the context of photovoltaics
is that it works in an extremely restrictive (only power mea-
surement) sensor setting. To the best of our knowledge, we
are the first to consider this restrictive sensor setting. We
only need to know the produced energy of a PV system.
There is also the implicit assumption, which is tested by
the learning algorithm, that the systems are not too far from
each other so that we can observe them in similar working
(environmental) conditions. Distances of a couple of kilo-
meters are possible. Systems which are very close to each
other and have the same orientation such as systems in a
solar power plant yield the best results. Other approaches
assume the presence of a plane-of-array-irradiance sensor
which are mostly deployed for solar power plants. Irradi-
ance estimations via satellite imaging are usually not accu-
rate enough.

1.2 Related Work
Correlation networks have applications in biology and fi-
nance. See e.g. [12; 18; 10] and the references therein. In
biology [18; 10], they are applied to study gene interactions.
The correlation matrix is the basis for clustering genes and
the identification of biologically significant clusters. In [18;
10], a scale-free network is derived via the concept of topo-
logical overlap. Scale-free networks tend to have few nodes
(genes) with many neighbors, so called hubs.

Correlation networks are primarily used for knowledge
discovery. In particular, concepts such as clusters, hubs, and
spanning trees are interpreted in the context of biology and
finance. In our work, we introduce a robust alternative to
correlation networks.

Other structural approaches, i.e. approaches based on
graphical models, are based on Bayesian networks, Markov
random fields and similar concepts. Gaussian Markov ran-
dom fields are loosely related to correlation networks. Their
structure is described by the precision matrix, the inverse
covariance matrix (ch. 17.3, [9].)

Another structural approach is FDI in sensor networks [7;
4; 19; 20]. The current approach [7; 4; 19] mainly deals with
wireless sensor networks. The algorithms usually use the
median for FDI such as we do. The difference is that FDI
in wireless sensor networks uses a geometric model similar
to interpolation methods. It requires the geographic location
of the sensors. It is assumed that two sensors close to each
other have a similar value. This cannot be assumed in gen-
eral. To overcome these problems of manual modeling, we
apply machine learning techniques.

Models for PV systems are compared in [14]. All these
models require the plane-of-array irradiance. Fault de-
tection of PV systems is the topic of e.g. [3; 8; 5; 2;
17]. Firth et al. [8] consider faults if the PV system gen-
erates no energy. Another type of fault occurs if the pan-
els are covered by snow, tree leaves, or something else.
In this case, we can observe a drop in energy. It is con-
sidered e.g. in [5]. The fraction of panel area covered
is a crucial parameter. All these approaches [3; 8; 5; 2;
17] require at least the knowledge of the plane-of-array irra-
diance, i.e. it requires an irradiance sensor installed. We do
make this assumption.

The median is common in fault detection and identifica-
tion. One reason for this circumstance is its optimal break-
down point [16]. We also make use of (repeated) Theil-
Sen algorithms [6; 15] for learning. An ingredient of our
fault identification algorithm is the algorithm for median
selection [1] and an algorithm for generating uniform sub-
sets efficiently (see e.g. the Fisher-Yates or Knuth shuffle
in [13].) In our algorithm analysis we derive bounds for a
partial Cauchy-Vandermonde identity (pg. 20 in [11]).

2 Method
2.1 Data Model for Incomplete Data
We have data from n systems and one data stream per sys-
tem. A data stream for system i ∈ {1, . . . , n} is given by a
set Ni ⊆ {1, . . . , N} of available data and values xi,t ∈ R
with t ∈ Ni. We can think of the parameter t as discrete
time. WithNi, we explicitly model data availability. Incom-
plete data is a common problem in our situation. Causes in
practice are unreliable data connections or unreliable sen-
sors. We call D := {(xi,t)t∈Ni

: i ∈ {1, . . . , n}} a data
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set. Sets of historical and current data are the inputs to our
algorithms.

2.2 Fitness Matrix – Definition and Robustness
The fitness matrix is intended as a robust replacement for
the sample correlation matrix. The sample correlation co-
efficient such as the sample covariance is well known to be
sensitive to faults (outliers) [16]. As an example, we gener-
ated the data for Fig. 1 with faults. The non-robust sample
correlation matrix would have yield a digraph without edges
instead of the digraph in Fig. 1(b).

A fault can be an arbitrary corruption of a single data item
xi,t. That is, xi,t = x̃i,t + ∆, ∆ 6= 0, where ∆ is the fault.
We think of x̃i,t as the actual or true but unobserved value.

We do not make any assumptions on faults themselves
but only on their number. This is at core of the definition of
the breakdown point. This statistical concept is defined for
a particular estimation or learning problem. In our case for
simple linear regression.

Linear regression is closely related to the correlation co-
efficient. For simple linear regression – a regression model
with one independent and one dependent variable – the
correlation coefficient can be seen as a fitness measure of
the line which fits the data best w.r.t. vertical squared dis-
tances. See e.g. [16]. However, the corresponding estimator,
namely `2-regression a.k.a. ordinary least squares, is known
to be sensitive to outliers [16]. On the other hand, there are
estimators for simple linear regression which are robust to
a large number of faults, i.e. they have a large breakdown
point.

The idea underlying the fitness matrix is thus to replace
the correlation coefficient (and `2-regression) by a robust
notion of fitness based on robust linear regression. In the re-
mainder of this section we recall the definition of the break-
down point following [16], pg. 9, and we are going to for-
malize the notion of fitness matrices.

We define the breakdown only for simple linear regres-
sion. We fix two systems i, j ∈ {1, . . . , n} and define
Z := Zi,j := {(xi,t, xj,t) : t ∈ Ni ∩ Nj}. Let T be a
regression estimator, i.e. T (Zi,j) = θ̂ ∈ R2 is the intercept
and slope for the data set Zi,j . For Z, we define Z ′ as Z
with m data points arbitrarily corrupted. Define

bias(m;T,Z) := sup
Z′
‖T (Z)− T (Z ′)‖.

If bias(m;T,Z) is infinite, then m faults (outliers) have an
arbitrarily large effect on the estimate T (Z ′). The (finite
sample) breakdown point of T and Z is defined as

ε∗(T,Z) := min

{
m

|Z| : bias(m;T,Z) =∞
}
.

To explain this notion, we consider four typical examples.
The breakdown point ε∗(T`2 , Z) is 1/n for `2-regression.
This holds for any Z. The situation is different for `1-
regression in that ε∗(T`1 , Z) = 1/n for some Z.

In this work we are going to use the Theil-Sen estimator1

TTS a.k.a. median slope selection. The reason is its break-
down point of at least 1− 1√

2
≥ 0.292 (see e.g. [6]) and the

1There is a subtle issue here we have to deal with. Regres-
sion problems are optimization problems. The solution to the con-
crete optimization problem does not need to be unique. In our
situation, intercept and slope are unique for `2-regression but not
for `1-regression. The estimator T`1 is however unique for a (de-
terministic) algorithm solving the optimization problem. We thus
think of T`1 as the output of a particular (deterministic) algorithm.

wide availability of efficient implementations of near-linear
time algorithms. There is also a variant of TTS, called the
repeated Theil-Sen estimator, which has a breakdown point
of 0.5, but less efficient implementations. The concrete def-
inition of TTS can be found e.g. in [6]. It is however not
important for our application, only its robustness property
and the existence of efficient implementations are.

To define the breakdown point of a fitness matrix, let f
be a real-valued function defined on any finite data set. We
define the fitness matrix as

Fji := f(Zi,j)

and its breakdown point as

ε∗(F ) := min
i,j

ε∗(f, Zi,j).

Next, we provide the fitness matrix we are going to use. It
has the property that Fji is close to zero if xi and xj are
strongly linearly related and it has a high breakdown point.

Let yt := xi,t and ŷt := xj,t · θ̂2 + θ̂1, t ∈ Ni ∩Nj , for
the Theil-Sen estimate θ̂ of Zij . Let rt := ŷt − yt be the
residuals. And let i1, . . . , ik ∈ Ni∩Nj with k := |Ni∩Nj |
be such that |ri1 | ≤ · · · ≤ |rik |. We define

fTS(Zij) :=
1

∑bk/√2c
t=1 |yit |

·
bk/
√

2c∑

t=1

|rit |. (1)

We define FTS w.r.t. fTS, i.e.

FTS
ji := fTS(Zi,j).

Note that the sum goes from 1 up to bk/
√

2c. This trim-
ming together with the high breakdown point of Theil-Sen
directly implies the following result.
Theorem 1. It holds that ε∗(FTS) ≥ 1− 1√

2
.

Finally, we compare the sample correlation matrix and the
fitness matrix. Let C denote the sample correlation matrix
and define C ′ji = 1−|Cji|. Both matrices have the property
that if some entry is close to 0 then xi and xj have a strong
linear relation. It is guaranteed thatC ′ji is at most 1. A value
close to 1 means a weak linear relation. For FTS

ji , it is not
guaranteed that FTS

ji ≤ 1, but experimental results suggest
that it is usually the case. We also note that both matrices
obey a weak form of the triangle inequality since if xi and
xj correlate strongly and xj and xk correlate strongly, then
also xi and xk correlate.

There are two important benefits of fitness matrices over
correlation matrices. They are robust and are also defined
for incomplete data. On the negative side, the fitness matrix
is not positive semi-definite, in particular not symmetric.

2.3 Structure in Fitness Matrices – Algorithm
LEARN and IDENTIFY

We want to identify faulty systems. In a first step, we learn
a structure appropriate for FDI; see algorithm LEARN. We
obtain it via thresholding the fitness matrix. Most of the
correlation networks, i.e. structures arising from the sample
correlation matrix, are obtained in this way [12; 18; 10].
We denote the threshold by θ ≥ 0 and the threshold fitness
matrix as

Fji;θ :=

{
Fji if Fji ≤ θ
0 if Fji > θ

.
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Algorithm 1 Algorithm LEARN with inputD (data set) and
parameter θ (fitness threshold). Output is a digraph G with
edge labels (intercept, slope) representing the threshold fit-
ness matrix.

Let G = (V,E) be a digraph with V = {1, . . . , n} and
E = {}.
for all i ∈ V and j ∈ V \ {i} do

Learn (Theil-Sen) the intercept aj,i and slope bj,i be-
tween xi (dependent variable) and xj (independent vari-
able).
end for
for all i ∈ V and j ∈ V \ {i} do

Compute the trimmed fitness f = fTS (Eq. 1) of Zi,j .
end for
if f ≤ θ then

Add to G the directed edge from j to i with edge la-
bels (aj,i, bj,i).
end if

The input to algorithm LEARN is a data set D as described
in Sec. 2.1. It outputs a digraph G = (V,E), i.e. the (pos-
sible sparse) threshold fitness matrix FTS

θ . Additionally, in-
tercept and slope of the simple linear regressions are added
as edge labels.

Algorithm 2 Algorithm IDENTIFY with input G (digraph
with edge labels), current data yi for the i-th system, and
parameters k and s (deviation). It outputs the set of all faulty
systems H .

Set H = {}.
for all i ∈ V = {1, . . . , n} do

Let N−i := {j ∈ V : (j, i) ∈ E}.
if |N−i | = 0 then

Continue with the next (system) i.
end if
if |N−i | ≥ k then

Select uniformly at random a k-element
subset S from N−i .

else
Set S := N−i .

end if
Compute Mi := {ŷj = bj,i · yj + aj,i : j ∈ S}.
Compute the median m̂i of Mi.
Add i to H if |m̂i − yi| > s

end for
Output H .

In the second step, we identify the faulty systems; see
algorithm IDENTIFY. Its input is the result of algorithm
LEARN. Algorithm IDENTIFY constructs a random di-
graph of in-degree at most k for FDI. It works as follows. In-
dependently for every system, we choose uniformly at ran-
dom at most k of its neighbors in the digraphG and compute
the median m̂i of estimated values derived from the selected
neighbors values. We compare the median m̂i to the current
system value and decide whether it has a fault or not via the
deviation parameter s.

We discuss the threshold parameter θ and the deviation
parameter s in Sec. 3.1. They essentially depend on the vari-
ance in the data setD. Parameter k in algorithm IDENTIFY
has the purpose of improving running time efficiency. In

particular, we have the following result.

Theorem 2. Let D be a data set with n systems and let
m := maxi |Ni|. The running time of LEARN is O(n2 ·m ·
log(m)). The running time of IDENTIFY is O(k · n).

Proof. LEARN. There are O(n2) pairs of systems. The
Theil-Sen estimator can be computed in time O(m log(m))
[6]. The computation of fTS, Eq. 1, is done via sorting and
thus takes time O(m log(m)).

IDENTIFY. Assume |N−i | ≥ k. We uniformly at ran-
dom choose a k-element subset out of N−i and compute
the median. For random selection we can use for example
the Fisher-Yates (or Knuth) shuffle [13] which runs in time
O(k) and for median selection the algorithm in [1] which
also runs in timeO(k). The second case, 1 ≤ |N−i | ≤ k−1,
is analogous. This shows that the overall running time of
IDENTIFY is O(kn).

In Sec. 3.2, we provide some sufficient conditions that
IDENTIFY works correctly even if k = O(log(n)). This
is a strong running time improvement from O(n2) to O(n ·
log(n)).

3 Results
3.1 Experimental
In this section we are going to discuss how to apply our
method, Sec. 2, to photovoltaic data. In particular, it re-
mains to discuss how the use-case fits to the model. More
precisely, why there is strong correlation between PV sys-
tems. Finally, we present experimental results to verify the
estimation and fault identification quality of our algorithms.

Use-Case Photovoltaics
A simple system model for PV systems is as follows:

Pi = ci · Ii.
Here, Pi is the power, Ii the plane-of-array (POA) irradiance
of the i-th system, and ci a constant of the system which can
be interpreted as the efficiency of converting solar energy
into electrical energy. More complex physical models in-
clude system variables such as the module temperature [14;
17]. Our considerations translate to the more complex mod-
els as long as they are time-independent. We also note that
these models are more accurate, but only slightly, since the
POA-irradiance has the most critical influence on the pro-
duced energy.

We get from the above considerations that Pi = c′ij · Pj
given that Ii = Ij . In our situation we cannot test the condi-
tion Ii = Ij since we do not know the POA-irradiance, but
Ii ≈ Ij holds if the system operate under similar weather
conditions and have a similar orientation. The former holds
if the systems are close to each other. To reduce the effect of
different orientations, see Fig. 2, we consider the following
model: P∆

i = uij ·P∆
j + vij . The variable P∆

i is the power
within a time interval ∆, usually one hour. The variables
uij and vij are the unknowns.

In more general words, let Yi be the output of the i-th
system and let Xi describe the system input and system in-
ternals. Our model assumption is that for a reasonable num-
ber of system pairs (i, j), the system outputs Yi are Yj are
linearly related given that Xi ≈ Xj . By the above consid-
erations, it is plausible that PV systems fulfill these require-
ments.
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Figure 2: Four power curves of a sunny day in August, data
set DK. Two PV systems have their maximum power peak
before and the other two after 13:00. They have different
orientations, i.e. they produce more energy in the morning
or evening.

We next describe our experimental setup to verify it by
real data.

Experimental Setup
To demonstrate our method, we use two data sets DA and
DK. DA arises from 13 systems from a solar park located in
Arizona2. The PV systems there are geographically close.
We use data for one year. DK arises from 40 systems spread
across a typical municipality located in Austria, i.e. the sys-
tems can be up to some kilometers apart. Their orientation
can differ significantly. Some systems may be orientated to
the west, others to the east. We have data for almost a year.

A system is faulty if it produces considerable less energy
than estimated; see Fig. 3. This definition is motivated by
the fact that most faults imply a drop in energy. The dif-
ficulty in setting up an experiment is that we do not know
if a PV system is faulty in advance, i.e. we do not have la-
beled data. We thus design our experiment as follows: We
verify the accuracy of the energy estimation, namely the rel-
ative deviation |m̂i − yi|/|m̂i| for every system i and over
the period of a week, m̂i and yi as in algorithm IDENTIFY.

This relative deviation is noted in column Hour of Table
1 for the time period 12:00 to 13:00. In column Day of
Table 1 we note the same but for a whole day, i.e. m̂i is the
estimated energy (power) for the whole day calculated from
the hourly estimates and yi the actual energy for the whole
day. For the whole day we consider the time period from
9:00 to 16:00.

The number |m̂i − yi|/|m̂i| can be read as some relative
deviation, i.e. the estimation is 100 ·x% away from the truth
value where x is some entry in the column Hour and Day.

2http://uapv.physics.arizona.edu/
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Figure 3: A faulty system. The real power curve of observed
values shows a fault from roughly 11:00 to 14:30. The es-
timated values are considerable higher during this period.
The PV system has a plane-of-array irradiance sensor in-
stalled. A cross check with its power curve reveals that the
fault was detected correctly.

The entry x is an average over all systems and 7 days. The
first day is noted in column Start.

Algorithm LEARN is executed once for every week and
with θ = 0.8 and roughly three months of historical data,
e.g. for the months January, February, and March to get es-
timates for the days April, 1. to April, 7. Algorithm IDEN-
TIFY is executed with s = 0.25 · |m̂i| and k = 11 for both
data sets. The choice of parameters θ and s depend on the
variance of the input data and were chosen manually, so to
get a reasonable number of good estimates. Similar for k.
The difficulty in choosing the parameters is that increasing θ
will usually reduce the number of neighbors. For a reason-
able number of good estimates we need both: A strong lin-
ear relation of a system to its neighbors and enough neigh-
bors. The parameters were chosen accordingly. For param-
eter k, we derive a theoretical result in Sec. 3.2 which says
that k = O(log(n)) is a good choice for n the number of
systems.

Experimental Results
The false positive rate (FPR), the false negative rate (FNR),
and the estimation accuracy are the most interesting num-
bers for us. As remarked above, we do not have labeled
data. The faults as recorded in Table 1 are faults as detected
by our algorithm.

We make a worst case assumption, namely that all de-
tected faults are false positives. This yields a FPR of at most
0% to 5% per 7 day period (rows in the table.) To get an un-
derstanding of FNR, we simulated faults by subtracting 33%
percent of energy. The FNR in this case is at most 10% per
7 day period. In the rows Sum and Sum−33% in Table 1 we
summed up the faults to get the FPR and FNR for the whole
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(a) Results for DA.

Start Hour Faults Day Faults
April, 1. 0.058 2/77 0.037 1/77
May, 1. 0.040 2/77 0.014 0/77
June, 1. 0.019 0/91 0.021 0/91
July, 1. 0.068 7/88 0.071 7/88
Aug., 1. 0.362 12/91 0.250 7/91
Sept., 1. 0.096 4/65 0.034 1/78
Oct., 1. 0.019 0/84 0.016 0/84
Nov., 1. 0.039 0/72 0.025 0/72
Dec., 1. 0.135 10/84 0.130 7/84
Sum 37/729 23/742
Sum−33% 673/729 682/742

(b) Results for DK.

Start Hour Faults Day Faults
June, 1. 0.056 7/269 0.068 11/273
June, 15. 0.055 7/238 0.097 17/258
July, 1. 0.077 7/267 0.068 9/280
July, 15. 0.025 0/267 0.044 6/280
Aug., 1. 0.037 2/279 0.030 3/280
Aug., 15. 0.031 1/280 0.032 0/280
Sept., 1. 0.040 0/280 0.033 0/280
Sept., 15. 0.092 20/280 0.056 0/280
Sum 42/2160 46/2211
Sum−33% 1960/2154 2033/2207

Table 1: The values in column Hour and Day contain the
relative deviation |m̂i − yi|/|m̂i|, m̂i and yi as in algorithm
IDENTIFY. They are averages over all systems and the pe-
riod of a week. Column Start contains the start date of the
7 day period. The two columns labeled Faults contain the
number of (possible false detected) faults relative to the to-
tal number of analyzed hours and days, respectively. The
rows Sum contain the summed up number of faults, once for
the actual data sets and then with a simulated fault of−33%
less energy.

data sets.
The interpretation of these results is as follows. Setting

the parameter s to 0.25 · |m̂i| means that we define a fault
as a 25% relative deviation of the observed produced energy
from its true value. Setting s to this value, yields the above
mentioned FPR. Simulating a 33% drop in energy, which
corresponds naturally to the faults we want to detect, yields
the above FNR.

For the data set DA we have knowledge about the POA-
irradiance. We can thus cross-check with the irradiance to
check if faulty systems were identified correctly; see Fig.
3. This manual inspection suggests that the FPR is much
smaller than 5%, close to 1%. Furthermore, increasing the
drop implies a decreasing FNR, i.e. stronger energy drops
are easier to identify.

Depending on the application, these rates may be consid-
ered appropriate or not. In some applications, we may want
to detect faults which yield a drop in energy of less −25%.
This worsens the FPR and FNR. On the other side, if we
want to improve the FPR and FNR, we may have to specify
a fault as a drop in energy of −50%. In other words, our
parameter setting is one out of many reasonable parameter
settings.

3.2 Theoretical
We argued in Sec. 3.1 that algorithm LEARN yields good
estimates for the systems current value. For an estimate to
be good, the neighboring system j in G of system i needs
to work correctly. Moreover, the regression estimates, the
intercept and slope, need to be accurate enough. In this sec-
tion, we provide a supporting theoretical result which says
that, if enough estimates are good, algorithm IDENTIFY
correctly identifies all faulty systems.

The input to IDENTIFY is a digraph G = (V,E) with
edge labels. Let yi be the current value of system i. Let
yi = ỹi + ∆i. We think of ỹi as the true value. We say that
system i is correct if ∆i = 0 and faulty otherwise.

The input to IDENTIFY has to satisfy two conditions, Eq.
2 and 3, to work correctly. These conditions state that there
are more good than bad estimates. We formulate them be-
low.

Theorem 3. Let 0 < p < 1 and s > 0. Let H := {i ∈
{1, . . . , n} : |∆i| > 2s}. Assume that the input digraph G
satisfies Eq. 2 and 3. Then, algorithm IDENTIFY outputs
H with probability at least 1− p.

Let ŷj be the estimates as computed in IDENTIFY. Fix
a system i and let j ∈ N−i . We say that ŷj is s-good for
system i if |ỹi − ŷj | ≤ s. Let Ai := {j ∈ N−i : |ỹi − ŷj | ≤
s} be the s-good estimates for system i. Condition 2 is as
follows: For every system i with 1 ≤ |N−i | ≤ k− 1 it holds
that

|Ai| >
|N−i |

2
, (2)

i.e. there are more good than bad estimates. For the case that
|N−i | ≥ k we assume

|Ai| >
(

1− 1

cn,p,k

)
· |N−i |, (3)

with cn,p,k := (np · 18k)2/(k−1). Setting k = Ω(log(np ))

makes cn,p,k larger than some constant independent of n
and p. This is the most reasonable setting as it implies that
a constant fraction of estimates can be bad and IDENTIFY
still identifies the faulty systems correctly. We remark that
the asymptotic analysis which yields cn,k,p is not optimal.
In particular, it seems that the factor 18k is not optimal and
may be improved to a factor as small as 2k/2. For practical
applications, the following heuristic seems reasonable: For
n systems and a failure probability p of IDENTIFY, set k to
10 · log(np ).

3.3 Proof of Theorem 3
We apply the following lemma with A = Gi and M = N−i .
It directly gives us the probability that IDENTIFY correctly
identifies the faulty systems since the median works cor-
rectly if |S∩Ai| > |S∩(N−i \Ai)|, where S is the (random)
set chosen in IDENTIFY.

Lemma 1. Let M be a finite set and A ⊆ M . Let k ≥ 2
be an integer. Let S ⊆ M be a k-element subset selected
uniformly at random. Then

Pr
S

(|S ∩A| > |S ∩ (M \A)|) ≥ 1− 18k
( |M \A|
|M |

)bk/2c
.
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Proof. Let M := {1, . . . ,m}, F := M \ A, and r := |F |.
First, we are going to bound the number of k-element sub-
sets S ⊆ M for which |S ∩G| ≤ k′ with k′ = bk/2c. The
exact number of these sets is

k′∑

i=0

(
m− r
i

)(
r

k − i

)
(4)

since there are
(|A|
i

)
ways to choose an i-element subset

from A and
( |F |
k−i
)

ways to choose from F for the remain-
ing k − i elements.

Note that |S ∩ A| > |S ∩ F | iff |S ∩ A| > b|S|/2c =
k′. Moreover, we can assume that r = |F | ≥ 1 since the
claim holds for r = 0. To provide a lower bound for the
probability of this event we show an upper bound on the
complementary event, i.e. |S ∩A| ≤ k′. First, we derive an
upper bound for Eq. 4 using

(
m

k

)k
≤
(
m

k

)
≤
(
me

k

)k
(5)

for e = 2.714 . . . and 1 ≤ k ≤ m. (See e.g. pg. 12 in [11].)
Since this inequality holds just for k ≥ 1 we rewrite Eq. 4
as (

r

k

)
+

k′∑

i=1

(
m− r
i

)(
r

k − i

)
. (6)

It holds that
(
r
k

)
≤ ( rek )k and for the second term in Eq. 6

k′∑

i=1

(
m− r
i

)(
r

k − i

)
≤

k′∑

i=1

(
(m− r)e

i

)i(
re

k − i

)k−i

= (re)k
k′∑

i=1

(
m− r
r

)i(
k − i
i

)i(
1

k − i

)k

Next, we prove the upper bound on the probability p that
|S ∩ A| ≤ k′. We select uniformly at random a k-element
subset of M . Its probability is

(
m
k

)−1
. We multiply Eq. 6

with
(
m
k

)−1
and get two parts p1 + p2 ≥ p. For the first part

p1 ≤ ( rem )k since
(
m
k

)−1 ≤ (k/m)k. For the second part p2,
we use m−r

r ≤ m
r , ((k−i)/i)i ≤ 2k, and (k/(k−i))k ≤ 2k.

The latter since i ≤ k′. We get an upper for the second part:

p2 ≤
(
re

m

)k k′∑

i=1

(
m− r
r

)i(
k − i
i

)i(
k

k − i

)k
≤

(
12r

m

)k k′∑

i=1

(
m

r

)i
.

An upper bound for the geometric sum is k′(m/r)k
′
. In

total

p ≤ p1 + p2 ≤
(
re

m

)k
+ k′

(
12r

m

)k(
m

r

)k
.

Substituting k−1
2 for k′ and further simplification yields

p ≤ (k + 2)(12)k

2

(
r

m

)(k−1)/2

≤ 18k
(
r

m

)(k−1)/2

.

The latter since ((k + 2)/2)1/k ≤ 1.5 for k ≥ 3. We have
thus a lower bound for the probability 1 − p and the claim
follows.

Proof of Theorem 3. We show that the success probability
of IDENTIFY is at least 1 − p. Let p′ := p

n . We show that
for every i ∈ V , G = (V,E), the success probability of a
single iteration in the loop of IDENTIFY is at least 1 − p′.
This implies the above claim since (1 − p′)n ≥ 1 − p′n by
e.g. the Binomial Theorem.

Fix some i ∈ V , i.e. we consider one iteration in the loop
of IDENTIFY. We apply Lemma 1. Let us assume that |S ∩
Ai| > |S ∩ (N−i \ Ai)|, S the random k-element subset as
in IDENTIFY and Ai the good estimates as defined above.
Since |S∩Ai| > |S∩(N−i \Ai)|, it follows that |m̂i−ỹi| ≤ s
for the median m̂i as computed in IDENTIFY and yi =
ỹi + ∆i.

Assume ∆i = 0, i.e. system i works correctly. Then,
|m̂i − yi| = |m̂i − ỹi| ≤ s. Thus, i is not output.

Assume ∆i 6= 0, i.e. system i is faulty. Here, |m̂i− yi| =
|m̂i− ỹi−∆i|. It follows from |m̂i− ỹi| ≤ s and |∆i| > 2s
that |m̂i − yi| > s. Thus, i is output.

Finally, we want that the probability of failure for a
single step is at most p

n . By Lemma 1, 18kαbk/2c ≤
18kα(k−1)/2 ≤ p

n with α :=
|N−i \Ai|
|N−i |

. With c = cn,p,k :=

(np · 18k)2/(k−1), c · |N−i \Ai| ≤ |N−i | and thus (1− 1/c) ·
|N−i | ≤ |Ai|.

4 Conclusions and Open Problems
We presented a method for learning structure to identify
faulty systems. The basic method of correlation networks
has found many applications in biology and finance. In our
application, the presence of many faults required the design
and analysis of robust algorithms. We provided an experi-
mental analysis of our algorithms to verify their estimation
and fault identification quality. We also provided a support-
ing theoretical result which allowed us to considerable im-
prove the running time of algorithm IDENTIFY.

Improving the running time of LEARN remains as an
open problem. It is not directly clear that it is necessary
to compare every two systems. The reason is that if systems
(i, j) and (j, k) correlate strongly, then also (i, k) correlate,
but not necessarily strongly. Thus, it may not be necessary
to solve a simple linear regression problem for every system
pair.

In other applications it may be useful to solve a general
linear regression problem instead of a simple linear regres-
sion, e.g. if our model depends on more than one variable
per system. The corresponding correlation networks are
based on the partial correlation coefficient [12]. Since ro-
bust estimators for general linear regression are based on re-
gression problems which are NP-hard, it remains as an open
problem to find a robust alternative to partial correlation net-
works that can be computed efficiently.

Finally, to put our method and results into a broader con-
text, we approached the problem of FDI via learning graph-
ical models. It seems to be a challenge to learn classical
component-models of technical systems to conduct diagno-
sis. In this work we were able to close the gap between
(structure) learning on the one side and FDI on the other
side for a concrete problem setting.
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Abstract 
In many fields, such as medical, environmental, a lot of 
data are produced every day. In many cases, the task of 
machine learning is to analyze these data composed of 
very heterogeneous types of features. We developed in 
previous work a classification method based on fuzzy 
logic, capable of processing three types of features (data): 
qualitative, quantitative, and more recently intervals. We 
propose to add a new one: the object type which is a mean-
ingful combination of other features yielding the possibil-
ity of developing hierarchical classifications. This is illus-
trated by a real-life case study taken from the agriculture 
area1. 

1 Introduction 
Nowadays, large scale datasets are produced in various 
different fields such as social networks, medical, process 
operation, agricultural/environmental,... Many studies 
relate to data mining with the intention of analyzing and if 
possible extracting knowledge from these data. The data 
classification has to provide a relevant and well-fitted 
representation of reality. In this context, the issue of repre-
senting of data is crucial since the formalisms must be 
generic yet well suited to every new problem. For machine 
learning, the concern is to be able to detect adequate pat-
terns from heterogeneous, large, and sometimes uncertain 
datasets. In diagnosis, the necessity to quickly recognize a 
problem to provide a sure solution to solve it appears to be 
essential. One of the main challenges is the necessity to 
process heterogeneous data (qualitative, quantitative...) and 
sometimes to merge data obtained in different contexts. 
We developed a classification method based on fuzzy logic 
[1] capable of processing heterogeneous data types and 
noisy data. The LAMDA (Learning Algorithm for Multi-
variate Data Analysis) method is a classification method, 
capable to process three types of data: qualitative, quantita-
tive, and intervals [2]. We addressed one of the main diffi-
culties encountered in data analysis tasks: the diversity of 
information types. Such information types are given by 

                                                 
1This work was supported by the FUI/FEDER project MAISEO 
involving the companies VIVADOUR, CACG, GEOSYS, ME-
TEO FRANCE, PIONEER and laboratories CESBIO, LAAS-
CNRS. 

qualitative valued data, which can be nominal or ordinal, 
mixed with quantitative and interval data. Many situations 
leading to well-conditioned algorithms for quantitative 
valued information become very complex whenever there 
are several data given in qualitative form. In a non-
exhaustive list, we can mention, rule based deduction, 
classification, clustering, dimensionality reduction… Dur-
ing the last decades, few research works have been di-
rected to defy the issue of representing multiplicity for data 
analysis purposes [3, 11]. However, no standard principle 
has been proposed in the literature to handle in a unified 
way heterogeneous data. Indeed, a lot of proposed tech-
niques process separately quantitative and qualitative data. 
In data reduction tasks for example, they are either based 
on distance measures for the former type [12] and on in-
formation or consistency measures for the later one. 
Whereas in classification and clustering tasks, eventually 
only a Hamming distance is used to handle qualitative data 
[4,11,14]. Other approaches are originally designed to 
process only quantitative data and therefore arbitrary trans-
formations of qualitative data into a quantitative space are 
proposed without taking into account their nature in the 
original space [12,15,16]. For example, the variable shape 
can take values in a discrete unordered set {round, square, 
triangle}. These values are transformed respectively to 
quantitative values 1, 2, and 3. However, we can also 
choose to transform them to 3, 2 and 1. Another inverse 
practice is to enhance the qualitative aspect and discretize 
the quantitative value domain into several intervals, then 
objects in the same interval are labeled by the same quali-
tative value [17,18]. Obviously, both approaches introduce 
distortion and end up with information loss with respect to 
the original data. Moreover, none of the previously pro-
posed approaches combines in a fully adequate way, the 
processing of symbolic intervals simultaneously with 
quantitative and qualitative data. Although extensive stud-
ies were performed to process this type of data in the Sym-
bolic Data Analysis framework [19], they were focused 
generally on the clustering tasks [8, 10] and no unified 
principle was given to handle simultaneously the three 
types of data for different analysis purposes. In [2], a new 
general principle, was introduced as “Simultaneous Map-
ping for Single Processing (SMSP)”, enabling the reason-
ing in a unified way about heterogeneous data for several 
data analysis purposes. The fact that SMSP together with 
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LAMDA can process simultaneously these three types of 
data without pre-processing is one of its principal ad-
vantages compared to other classical machine learning 
methods such as SVM (Support Vector Machine [20]), K-
NN [21]. Decision trees are very powerful tools for classi-
fication and diagnosis [22] but their sequential approach is 
still not advisable to process multidimensional data since, 
by their very nature, they cannot be processed as efficient-
ly as totally independent information [23].  A complete 
description of the LAMDA method and comparison with 
other classification techniques on various well known data 
sets can be found in [24, 25, 26]. Its other main character-
istic is the fuzzy formalism which enables an element to 
belong to several classes simultaneously. It is also possible 
to perform clustering (i.e. with no a priori knowledge of 
the number and the class prototypes).  

Besides the three existing types, we propose to add an-
other type: the class type which can be processed simulta-
neously with the three former ones: quantitative, qualita-
tive, intervals thanks to the “SMSP”. In this configuration 
the class feature represents a meaningful aggregation of 
other features. This aggregation can be defined by a class 
determined by a previous classification, or the result of an 
abstraction. This new type gives the possibility to develop 
hierarchical classifications or to fuse different classifica-
tions. It allows an easier representation of many various 
and complex types of data, like multi-dimensional data, 
while being realistic and conserving their constraints. In a 
first part, the LAMDA method is briefly explained. The 
second part is devoted to the new type of data introduced: 
the object type. Finally, this new method is exemplified 
through an agronomical project. 

2 The LAMDA method 
The LAMDA method is an example of fuzzy logic based 
classification methods [9]. The classification method takes 
as input a sample x made up of N features. The first step is 
to compute for each feature of x, an adequacy degree to 
each class Ck , k = 1..K where K is the total number of 
classes. This is obtained by the use of a fuzzy adequacy 
function providing K vectors of Marginal Adequacy De-
gree vectors (MAD). This degree estimates the closeness 
of every single sample feature to the prototype correspond-
ing to its class. At this point, all the features are in a com-
mon space. Then the second step is to aggregate all these 
marginal adequacy degrees into one global adequacy de-
gree (GAD) by means of a fuzzy aggregation function. 
Thus the K MAD vectors become K GADs. Fuzzy logic[1] 
is here used to express MADs and GADs, since the mem-
bership degree of a sample to a given class is not binary 
but takes a value in [0,1]. Classes can be known a priori, 
commonly determined by an expert and the learning pro-
cess is therefore supervised, or classes can created during 
the learning itself (unsupervised mode or clustering). 
Three types of features can be processed by the LAMDA 
method: quantitative, qualitative and intervals for the 
MAD calculation [2]. The membership functions µ(x) used 
by LAMDA are based on the generalization of a probabil-
istic rule defined on 0, 1 to the [0,1]-space.  
 

2.1 Calculation of MAD for quantitative features 
The quantitative type allows the representation of numeri-
cal values, assuming that the including space is known as a 
defined interval. For this type of descriptor, membership 
functions can be used, such as the Gaussian membership 
function so that the membership function for the xth sample 
descriptor to the kth class is: 

 ( )
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or the binomial membership function: 
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where:  

∈i
kρ  [0, 1] is the mean of the ith feature based on the 

samples belonging to the class Ck, xi∈  [0, 1] is the normal-
ized xth feature and σi the standard deviation of the ith fea-
ture value based on the samples belonging to the class Ck. 

2.2 Calculation of MAD for qualitative features 
In case of qualitative feature, the possible values of the ith 

feature forms a set of modalities such as Di= i
m

ii QQQ 1,  
with m the total number of modalities. The qualitative type 
permits to express by words the different modalities of a 
criterion. 

The frequency of a modality i
lQ of the ith feature for the 

class Ck is the quantity of samples belonging to Ck whose 

modality for their ith feature is i
lQ  [1].So each modality 

i
i
l DQ ∈  has an associated frequency. Let i

kjθ  be the fre-

quency of a modality i
jQ for the class Ck. The membership 

function concerning the ith feature is: 
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where i
lq =1 if xi = i

lQ and i
lq = 0 otherwise, for l=1, ..m. 

2.3 Calculation of MAD for interval features 
Finally, to take in account the potential uncertainties or 
noises in data, we can use the interval representation [2]. 
The membership function for the interval type descriptors 

is regarded as being the similarity )( ,
i
kixS ρ between the 

symbolic interval value for the ith feature xi and the interval 

[ +− i
k

i
k ρρ , ] which represents the value of the ith feature for 

the class Ck, so that: 
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i
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Let ω be defined as the scalar cardinal of a fuzzy set in a 
discrete universe as [ ] )(∑ ∈= V ixX x xµϖ .   
In case of a crisp interval, it becomes:  

[ ]Xϖ = upperBound(X)- lowerBound(X).  
Given two intervals A=[a-, a+] and B=[b-, b+], the distance 
is defined as:  
 

      [ ] { } { }( )[ ]++−− −= babaBA ,min,max,0max,δ  (5) 
 
and the definition of the similarity measure between two 
crisp intervals: 
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The similarity combines the Jaccard's similarity measure 
which computes the similarity when the intervals overlapp, 
and a second term which allows taking into account the 
case where the intervals are not straddled. 

2.4 Calculation of feature weights 
It is possible to determine the relevance of a feature to 
optimize the separation between classes. The MEMBAS 
method [8, 9] is a feature weighting method based on a 
membership margin. A distinguishable property of this 
method is its capability to process problems characterized 
by mixed-type data (quantitative, qualitative and interval). 
It lies on the maximization of the margins between two 
closest classes for each sample. It can be expressed as: 
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Subject to the following constraints: 1=|| w|| 2
2f , 0wf ≥ .   

                                                                      
The first constraint is the normalized bound for the modu-
lus of wf so that the maximization ends up with non-
infinite values, whereas the second guarantees the 
nonnegative property of the obtained weight vector. Then 
can be simplified as:   
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membership function of class c (c corresponds to the 
“right” class for sample x(j), c~  the closest class evaluated 

at the given value )( j
ix of the ith feature of pattern x(j).  s is 

computed with respect to all samples contained in the  data 
base excluding x(j) (“leave-one-out margin”).  

This optimization problem has an analytical solution de-
termined by the classical Lagrangian method. Details of 
the method can be found in [9]. 

3 The new object type 
In order to allow the combination of various data types 

into one single global object and therefore to support mul-
ti-dimensional features, we develop a novel data type. 
Each feature of an object descriptor can be described by a 
measured value and an extrinsic object-related weight. A 
sample GAD calculus formula is then the weighted mean 
of all MADs: 

              ∑ 




= fi

ji
k

j
k wMADGAD ~. for j=1…J (9) 

where ji
kMAD  = MAD of the jth sample for the ith feature 

to class k and ∈
ifw~  [0,1] = Normalized value of weight 

ifw of the ith feature determined by the MEMBAS meth-
od, and J is the total number of samples which have been  
classified. 
 

 
     Figure 1: LAMDA architecture 
The main advantage of using this new object-oriented data 
type is to capture the distinct features of a same object as a 
whole. An object of layer i-1 is regarded as one single 
feature for the layer i then can be processed as all other 
descriptors. The weights of the descriptors composing the 
objects are determined using MEMBAS once the cluster-
ing is finished for the layer i-1. An object is regarded as 
being a combination of features, each of which is associat-
ed to its weight. In other words, an object regarded as a 
single entity in reality can be processed as a complex unit. 
For instance, the weather can be considered as a global 
concept but also as detailed data (rain, temperature, etc…). 
All of its features are parts of a same object and are strong-
ly connected together. That realistic consideration implies 
several distinct clustering layers. The layer i concerns the 
classification of a sample set called A and the i-1 one in-
volves some of their constituent units. Obviously, a second 
layer of classification is consistent only in case at least one 
of the sample features is a complex entity. Therefore, for 
each sample of the set, an object feature becomes itself a 
whole sample in the layer i-1 and is compared to the others 
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to constitute a new sample set called B. Then a classifica-
tion of the B samples is processed. Once the classification 
of the B samples has been done, its results are used to 
compute the classification of A. If the samples of the A set 
have C complex features, the second classification level 
implies C distinct sample sets B1, B2, … BC thus C distinct 
classifications. 

The MEMBAS algorithm [8, 9] can then calculate the 
weights of every feature for the classes definition. It is 
applied on the B samples so that its involved features be-
come the weighted components of a meaningful object. 
The complex features of an A sample is then a balanced 
combination of attributes.  

 
Figure 2: Principle of hierarchical classification 

 
 As explained in the Figure 2, the sample Sample1 is de-
scribed by X features, including the object-type feature 
Desc1,1 . Desc1,1 is described by Desc1,α , Desc1,β, etc.  

To get their respective importance Wα , Wβ etc in Desc1,1 
description, a previous classification is performed regard-
ing Desc1,1 as a sample (Sample1,p), so that each weight 
can be calculated using the MEMBAS algorithm [8, 9]. 
Once the respective weights of each feature are known, 
objects are automatically instantiated to be involved in the 
main classification. Desc1,1 is then described in line with 
the obtained weights Wα , Wβ and the known values 
V1,α , V1,β. 

 

2.5 Evaluation of a classification quality 
 The comparison of two classifications can be performed 
by measuring their respective compactness and their sepa-
ration. Better the classes are compact and separated easier 
will be the recognition process. 
 
A method to measure the quality of a partition has been 
proposed by [10]. This index measures the quality partition 
in terms of classes compactness and separation. This parti-
tion index is the Clusters Validity Index (CV, Eq.(10)) 
which depends only on the GADs (membership degree of 
an individual to a class) and not explicitly on data values.  
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where N is the total number of individuals in the data base 
and K the total number of classes.  
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The highest value of CV corresponds to a better partition.  

4 Application to an agronomical project 
The agronomical project aims at developing a diagnosis 
system for an optimized water management system and an 
efficient distinctive guidance for corn farmers in order to 
decrease the use of phytosanitary products and the water 
consumption for irrigation. The project involves two as-
pects. The first one aims at complementing the benefits of 
adopting and implementing the cultural profile techniques 
[28, 29]. In this context, we perform a classification of 
plots based on various agronomic and SAFRAN meteoro-
logical data [30], so that each plot should mostly belong to 
one particular class whose features are known. Thanks to 
the provided information stemmed from the classification 
results, advice can be offered to the corn farmers concern-
ing the corn variety they should sow and the schedule they 
should follow for an optimized yield. This study includes 
two steps which are described in figure 3. The first one 
concerns the clustering of a training set of 50 plots, using 
the unsupervised LAMDA classification. 
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Figure 3: Learning System functioning 

 
 The data used for this classification are six distinctive 
agronomical descriptors, describing the plots' features and 
that are highly involved in their capacity for yield and 
water retention, and twenty-one weather features, defining 
the meteorological class in which the plot is situated. The 
second part of the project will be repeated annually to 
update and improve the clustering performed previously by 
adding new information returned by the farmers after har-
vest. In the following, only the first part is presented. 
 Firstly a previous meteorological clustering (A) is re-
quired to realize a realistic plot classification since the 
yield of seedling is highly related to the meteorological 
conditions. The weather is then regarded as a complex 
entity so that it is only one of a plot features. It is based on 
the historical meteorological data of the geographical posi-
tion corresponding to the studied plot. Those descriptors 
refer to the temperature, the quantity of rainfall, and the 
evapotranspiration which occurred during three crucial 
periods of the year. Each feature is described in several 
distinctive ways. For instance, one period temperature is 
evaluated according three types of information. This mete-
orological clustering is an unsupervised classification 
based on weather data covering every single days of the 
determined periods during the fifty last years for all the 
geolocalized points belonging to the area studied in this 
project (South-West of France). In the event that the plot is 
part of the training set (studied area), the weather type of 
its area is known and the plot classification can be done 
directly. Otherwise, the weather type is obtained thanks to 
a supervised classification mode (B') delivering the most 
appropriate context. In any cases, the weather type is an 
object-feature. This hierarchical treatment permits to re-
gard each meteorological type as a whole and let the 
weather contexts follow their natural evolution inde-
pendently of agronomical variations. Moreover, consider-
ing the meteorological features as a single global object 
permits taking into account the environmental constraints 
and getting a realistic model. As we can observe in the 
Figure 4, the meteorological clustering (B) has permitted 

to divide the area in three sub-areas. The results of cluster-
ing (B) and the meteorological supervised classification 
(B’) have been first performed with every sample of the set 
and the distribution of the weights between the meteoro-
logical features has been determined. 
 The result of this classification is consistent and so, we 
can use the obtained classes and weights of the meteoro-
logical features (obtained with MEMBAS) as object-
features in classification (A). To analyze the benefit of 
using hierarchical classification, a clustering (A') has been 
performed by using the twenty-one meteorological features 
separately and the agronomical features (twenty-seven 
features taken indistinctly). We can notice that the proto-
types of the classes are highly dependent on the meteoro-
logical classes for clustering (A) while clustering (A') is 
mainly influenced by the ground type. 
 

 
Figure 4: Meteorological sub-areas obtained with classifica-

tion (B) 
 
 To enlighten this, we chose arbitrarily two very close 
classes containing the similar plots in both clustering. Each 
class prototype is described by the mean value of its mar-
ginal degree memberships (MAD). We represent in Figure 
5 these prototype parameters for meteorological features 
only for both cases (A with diamond and A' with square) 
with in abscises, the marginal membership degree for class 
1 and in ordinate the same marginal membership degree 
for class 2. For a better quantification of the benefits that 
the use of the object representation brings, the CV is sys-
tematically calculated in order to determine the better 
partition quality. The results are very encouraging since 
CV = 0.69 when the meteorological data are regarded as a 
whole object and 0.2 when they are treated separately. The 
object type representation enables to multiply by more 
than 3 this index and therefore the compactness of the 
obtained partition.  
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Figure 5: Meteorological prototypes for two close classes in 
case (A) and (A') 

 
 The second aspect of our implication in the project deals 
with the water utilization of various clusters of farmers 
with the aim of forecasting the needs of each cluster and 
adjusting the repartition. From this perspective, we realize 
an unsupervised classification of a training data-set of 
2900 samples described by seven features: distance to the 
closest waterway, orientation, altitude… Orientation con-
cerns cardinal points and we assume that it is not expressi-
ble with different modalities since continuity cannot be 
represented by qualitative descriptors. It cannot be a num-
ber nor an interval because of the cyclic form to be kept. 
Thus we choose to regard a cluster orientation as an object 
composed of two descriptors that correspond to the coor-
dinates of its cardinal point in a trigonometric circle base. 
The orientation of each cluster can take eight different 
values: N, NE, E, SE, S, SW, W, and NW, which bring us 
to consider eight different combinations. In accordance 
with the trigonometrical circle, these eight combinations 
are respectively:  (0,1),  (√2

2
, √2
2

),  (1,0),  (- √2
2

, √2
2

),  (0,-1),  

(- √2
2

,- √2
2

), (1,0), (√2
2

,- √2
2

). 
 
 Once our results are validated by an expert, the classifi-
cation is experimented twice: firstly treating each de-
scriptor separately and secondly involving the object type. 
Such as meteorological data in the first example, the CV is 
calculated in order to determine the better partition quality. 
 In this case, which implies 2900 samples, CV= 0.08 
when abscissa and ordinate are separated, and CV= 0.13 
when using an orientation object.  As in the first example, 
these results show a qualitative gain for the partition when 
the object type is used to express the semantically connect-
ed data. 

4 Conclusion  
This modular architecture allows more flexibility and a 
more precise treatment of data. As we can notice with the 
previous agronomical classification, the object approach 
makes each module able to be managed independently of 
the others so that they can evolve autonomously, depend-
ing on their own specific features and contexts. The object 
representation permits to preserve multi-dimensionality 
and makes fusion of datasets easier. A better overview is 
offered since we can percept the variations of each module 
distinctively and the evolution of their influences.  

As a perspective, an agent-oriented architecture, based 
on the multi-agents theory [31] will be developed so that 
each sample could be considered independently of the 
others. They would be so able to create classes acting 
simultaneously and comparing themselves to the others, so 
that the classes definition won’t depend on the samples 
order in the file anymore but will directly result from the 
samples set definition. This orientation will assure that the 
classification result of our method is unique and stable for 
a given samples set. We aim at developing some methods 
to allow a semantic data processing also. 
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Abstract 

Fault diagnosis is crucial for guaranteeing safe, 
reliable and efficient operation of modern engi-
neering systems. These systems are typically hy-
brid. They combine continuous plant dynamics 
described by continuous-state variables and dis-
crete switching behavior between several operat-
ing modes. This paper presents an integrated ap-
proach for online tracking and diagnosis of hybrid 
linear systems. The diagnosis framework com-
bines multiple modules that realize the hybrid 
observer, fault detection, isolation and identifica-
tion functionalities. More specifically, a Dynamic 
Bayesian Network (DBN)-based particle filtering 
(PF) method is employed in the hybrid observer to 
track nominal system behavior. The diagnostic 
module combines a qualitative fault isolation me-
thod using hybrid TRANSCEND, and a quantita-
tive estimation method that again employs a 
DBN-based PF approach to isolate and identify 
abrupt and incipient parametric faults, discrete 
faults and sensor faults in a computationally effi-
cient manner. Finally, simulation and experimental 
studies performed on a hybrid two-tank system 
demonstrate the effectiveness of this approach. 

1 Introduction 

The increasing complexity of modern industrial systems 

motivates the need for online health monitoring and diag-

nosis to ensure their safe, reliable, and efficient operation. 

These systems are typical hybrid involving the interplay 

between discrete switching behavior and continuous plant 

dynamics. More specifically, the system configuration 

changes consist of known controlled mode transitions 

generated from external supervisory controller and auto-

nomous mode transitions triggered by internal variables 

crossing boundary values. The continuous dynamic beha-

vior is modeled by continuous-state variables that are a 

function of the particular discrete mode of operation. As a 

result, tasks like online monitoring and diagnosis have to 

seamlessly integrate continuous behaviors interspersed with 

discrete transitions that often require model switching to 

accommodate the discrete transitions [1].  

For complex hybrid systems, faults will typically affect 

the continuous behavior and the discrete dynamics of the 

system. Some faults may be parametric, and they directly 

affect the continuous behavior, others are discrete, thus they 

directly affect the mode of system operation. Both types of 

faults also have indirect effects on the other type of beha-

vior. Moreover, faults can have different time-varying pro-

files, such as abrupt faults, intermittent faults and incipient 

faults [2]. In addition, faults may occur in the plant, the 

actuators and the sensors. The diagnosis of multiple fault 

types in the same framework is challenging, because some 

faults may produce similar effects in the particular mea-

surements. Therefore, the diagnosis approach should pro-

vide more discriminatory power.    

Previous model-based diagnosis approaches of hybrid 

systems were developed separately for parametric faults or 

discrete faults. For example, [1], [3] combined system 

monitoring with an integrated approach: qualitative and 

quantitative fault isolation to generate, refine, and identify 

parametric faults. [4]-[5] are typical discrete fault diagnosis 

approaches, which modeled the discrete faults as fault 

modes, and relied on estimating the system behavior for 

diagnosis. In recent years, some integrated approaches have 

been proposed for diagnosis of parametric and discrete 

faults together. [6] introduced a global ARRs 

(GARRs)-based mode diagnoser to track discrete system 

modes, and combined it with a quantitative approach to 

diagnose discrete and abrupt or incipient parametric faults 

within a common framework. The approach presented in [7] 

monitored system behavior using a timed Petri-Net model 

and mode estimation techniques, and isolated the faults by 

means of a decision tree approach. Unfortunately, this me-

thod was application-specific, and was not generalized. 

Our goal in this paper is to propose an integrated mod-

el-based approach to diagnose single and persistent inci-

pient or abrupt parametric faults, discrete faults and sensor 

faults in hybrid linear systems. This extends our earlier 

work [8] from continuous systems to hybrid systems. A PF 

technique using switched DBN is adopted for tracking 

nominal hybrid system behavior. When a non-zero residual 

value is detected using a statistical hypothesis testing me-

thod, this fault detection scheme triggers the fault isolation 

and identification modules. We combine a fast qualitative 

fault isolation (Qual-FI) scheme using the hybrid TRAN-

SCEND approach [1] with quantitative fault isolation and 

identification (Quant-FII) scheme based on a PF-based 

parameter estimation technique to support the diagnosis of 

multiple faults types in hybrid linear systems. The 

A Bayesian Framework for Fault diagnosis of Hybrid Linear Systems


Gan Zhou
1
  Gautam Biswas

2
  Wenquan Feng

1 
Hongbo Zhao

1 
and Xiumei Guan

1
 

1
 School of Electronic and Information Engineering, Beihang University, Beijing, China  

email: zhouganterry@hotmail.com; buaafwq@buaa.edu.cn;  
bhzhb@buaa.edu.cn; guanxm@buaa.edu.cn 

2
 Institute for Software Integrated Systems, Vanderbilt University, Nashville, USA 

email: gautam.biswas@vanderbilt.edu 

Proceedings of the 26th International Workshop on Principles of Diagnosis

27



Quant-FII scheme derives a switched faulty DBN model for 

each fault hypothesis that remains when the switch from 

Qual-FI to Quant-FII is initiated. In addition, Quant-FII is 

also designed to estimate possible parameter values [8].  

The rest of this paper is organized as follows. Section 2 

briefly presents the different models employed in our di-

agnosis approach and some basic definition of the different 

types of faults. A hybrid two-tank system is used as a run-

ning example to explain the hybrid bond graph modeling 

method and the derivation of temporal causal graph and 

DBN from hybrid bond graph models. Section 3 gives a 

brief overview of our diagnosis architecture, and then 

presents our online tracking and fault detection, qualitative 

fault isolation and quantitative fault isolation and identifi-

cation schemes in some detail. Section 4 discusses the re-

sults of the application of our algorithm to the hybrid 

two-tank system. Finally, the discussion and conclusions of 

this paper are presented in the last section. 

2 Theoretical Background 

In this section, we formalize the basic definitions, concepts 

and notation of the modeling approach that goes in con-

junction with our diagnosis architecture. 

2.1 Hybrid Bond Graphs 

Bond graphs (BGs) are a domain-independent topologi-

cal-modeling language that captures energy-based interac-

tions among the processes that make up a physical system 

[9]. The nodes in bond graphs represent components of 

dynamic systems including energy storage elements (ca-

pacities, C and inertias, I), energy dissipation elements 

(resistors, R), energy sources (effort source, Se and flow 

source, Sf) and energy transformation elements (gyrators, 

GY and transformers, TF). Bonds, drawn as half arrows, 

represent the energy exchange paths between the bond 

graph elements. Two junctions (1 and 0), also modeled as 

nodes, represent the equivalent of series and parallel to-

pologies respectively.  

R12

R1 R2

Tank1 Tank2

Valve1

Valve2 Valve3

C1 C2

F1

 

Figure 1 Schematics of hybrid two-tank system 

Hybrid bond graphs (HBGs) extend BGs by introducing 

switched junctions to enable discrete changes in the system 

configuration [10]. The switched junctions may be dy-

namically switched on and off as system behavior evolves. 

When a switched junction is on, it behaves as a normal 

junction. When off, the 1 and 0 junctions behave as sources 

of zero flow and zero effort, respectively. The dynamic 

behavior of switched junctions is implemented by a finite 

state machine control specification (CSPEC). A CSPEC 

defines finite number of states, and captures controlled and 

autonomous changes.   

The hybrid two-tank system, shown in Figure 1, is the 

running example we employ in this paper. This system 

consists of two tanks connected by a pipe, a source of flow 

into the first tank, and drain pipes at the bottom of each tank. 

Three valves valve1, valve2 and valve3 can be turned on 

and off by commands generated from the supervisory con-

troller. When the liquid level in tanks 1 ( 1h ) and/or 2 ( 2h ) 

reaches the height at which pipe 12R is placed ( h ), a flow is 

initiated through pipe 12R . The autonomous mode changes 

associated with this pipe are triggered when the liquid level 

in tank1 and/or tank 2 goes above or below the height of the 

pipe 12R . We assume five sensors: 1M and 2M  measure the 

outflow from tank 1 and tank 2, respectively. 3M  measures 

the flow through the autonomous pipe 12R , and 4M  and 

5M  measure the liquid pressure in tank 1 and tank 2, re-

spectively. 
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Figure 2 Hybrid bond graph of the plant 

Figure 2 illustrates the HBG model for the plant in Figure 

1 (The HBG model for autonomous pipe 12R  is shown 

separately at the bottom part of Figure 2). The tanks and 

pipes are modeled as fluid capacitances C and resistances R, 

respectively. Measurement points occur at junctions. They 

are denoted by elements with symbols De for effort variable 

measurements and Df for flow variable measurements. 

Moreover, the two-tank system has five switched junctions: 

the CSPEC1, CSPEC2 and CSPEC3 describe the control 

logic for the three valves. CSPEC4 and CSPEC5 together 

capture the autonomous mode transitions of the connecting 
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pipe between the two tanks. Figure 3 (a) shows the CSPEC 

for a valve controlled by the switching signal sw. Figure 3 

(b) shows CSPEC4 that describes the state of the left tank. 

When the liquid height in tank1 is below that of the auto-

nomous pipe 12R , that state is OFF. If the liquid level ex-

ceeds the height of the pipe, this CSPEC transitions to the 

ON state. Similarly, CSPEC5 denotes the state of the right 

tank, and the mode of the autonomous pipe depends on the 

combination of these two CSPECs. Table 1 shows the dis-

crete mode for pipe 12R  and the corresponding state of 

CSPEC4 and CSPEC5 in detail. The corresponding bond 

graph configurations are described in [15]. 

 

1 :S ON
2 :S OFF

sw

sw

（a） （b）

1 :S ON
2 :S OFF

1h h

1h h

 
Figure 3 (a) Controlled transition; (b) Autonomous transi-

tion for CSPEC4 

Table 1 Four different possible configurations for auto-

nomous pipe 12R  

Mode Constraint Function CSPEC4 CSPEC5 

1 
1 2h h h h 

 
ON OFF 

2 
1 2h h h h 

 
OFF ON 

3 
1 2h h h h 

 
OFF OFF 

4 
1 2h h h h 

 
ON ON 

 

The temporal causal graph (TCG) is a signal flow dia-

gram that captures the causal and temporal relations be-

tween system variables, and can also be systematically 

derived from a BG [11]. In our work, we can efficiently 

reason about the qualitative behavior of each continuous 

mode of hybrid system behavior using the TCG when a 

fault is detected. Formally, a TCG is defined as follows [2]: 

Definition 1 (Temporal Causal Graph): A TCG is a di-

rected graph that can be denoted by a tuple <V, L, D>. 

V E F S M     is a set of vertices involving effort 

variables E, flow variables F, discrete fault event S and 

measurement M in hybrid bond graph model. L is a label set 
1 1{1, 1, , , , , , , }p p N Z p dt p dt     . The propagation type 

of first seven labels is instantaneous, and the last two are 

temporal. D V L V    is a set of edges. 

For lack of space, the TCG for hybrid two-tank system is 

not shown in this paper, but the algorithms for deriving 

TCGs directly from bond graph model can be found in [2]. 

It should be noted that for each mode of operation, the TCG 

may need to be re-derived to capture the changes in the BG 

model configuration when mode transitions occur. 

2.2 Dynamic Bayesian Networks 

Assuming that the system is Markovian and time-invariant, 

we can model the system as a two-slice temporal Bayes net 

that illustrates not only the relations between system va-

riables at any time slice t, but also the across-time relations 

between the variables [12]. The system variables consists of 

four different set of variables  , , ,t t t tX Z U Y , which de-

notes the continuous state variables, other hidden variables, 

input variables and measured variables for dynamic system, 

respectively. The relations between these variables can be 

generated as equations in the state space formalism. The 

across-time links between the successive times slice t and 

t+1 are derived as transition equations between the state 

variables in the system. Since the TCG describes the causal 

constraints between system variables, the DBN can be 

easily constructed from TCG. More details of this process 

are presented in Lerner, et al. [13]. 

f9

f14

f6

f9

f14

f6

t t+1

f1 f1

e4 e4

e12e12

 

Figure 4 Nominal DBN 

When all the valves are ON and the liquid level in tank1 

and tank2 are above the height of the autonomous pipe 12R , 

the nominal DBN model for hybrid two-tank system is 

shown in Figure 4. This DBN model derived from the TCG 

as the following random variables: the continuous state 

variables  4 12,X e e  presents the pressures at the bottom 

of each tank, input variables  1U f  denotes the input 

flow into tank 1, and measured variables  6 9 14, ,Y f f f  

indicates the outflow from tank1, the flow through the au-

tonomous pipe 12R  and the outflow from tank 2. 

f9

f14

f9

f14

t t+1

f1 f1

e4 e4

e12 e12

R1 R1

 

Figure 5 Single DBN model for both abrupt and incipient 

parametric fault 

Since the discrete faults only influence the system mode, 

but not parameter variables, the DBN fault model corres-

ponding to discrete fault will be constructed from the TCG 

in the particular discrete mode. For parametric faults, the 

DBN fault model is generated on the basis of nominal DBN 

model by augmenting a new random variable for each fault 

candidate. Figure 5 shows DBN model with parametric 

faults represented explicitly for the hybrid two-tank system. 
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The abrupt fault 1

aR  and incipient fault 
1

iR  are 

represented in the same model. When the fault occurs, fault 

parameter 1R  becomes the additional state variable that 

need to be tracked.  

2.3 Modeling Faults 

In this paper, we focus on the diagnosis of persistent single 

faults. We consider incipient or abrupt parametric faults and 

discrete faults occurring in hybrid linear systems, as well as 

sensor faults. The precise definition for these faults can be 

given as follow. 

Definition 2 (Incipient parametric fault): An incipient 

fault profile is defined by a gradual drift in the corres-

ponding component parameter value p(t) from the fault 

occurrence time ft . The incipient fault parameter ( )ip t  

can be described by: 

( )
( )

( ) ( ) ( ) ( )

fi

i

p f f

p t t t
p t

p t d t p t t t t t


 

    

         (1) 

where ( ) ( )i

p fd t t t   is a linear function with a con-

stant slope i

p  that added to the nominal parameter value 

from the time point of fault occurrence. Our approach to 

isolation and identification of incipient fault parameters is 

to calculate this constant slope i

p [8]. 

Definition 3 (Abrupt parametric fault): An abrupt para-

metric fault is characterized by step changes in nominal 

component parameter value p(t) from the fault occurrence 

time ft . The abrupt fault parameter ( )ap t  is given by: 

( )
( )

( ) ( ) ( ) ( )

fa

a

p f

p t t t
p t

p t b t p t p t t t


 

    

           (2) 

where ( ) ( )a

pb t p t  is a step function that gets added to 

the parameter value from the time point of fault occurrence. 
a

p  is the percentage change in the parameter expressed as a 

fraction, and our goal is to estimate this value [8].  

Definition 4 (Discrete fault): A discrete fault manifests as 

a discrepancy between the actual and expected mode of a 

switching element in the model [2]. 

Discrete faults occur in discrete actuators, like valves and 

switches that operate in discrete modes (e.g., on and off). 

Consider the example of a valve, it may be commanded to 

close, but remain stuck open. Also, it may unexpectedly 

open or close without a command. This type of fault ma-

nifests as an unexpected system mode change, unlike pa-

rametric faults, which cause deviations in continuous be-

havior. 

Definition 5 (Sensor fault): A sensor fault is a discre-

pancy between the measurement and actual value in the 

model.  

In this paper, we only consider sensor bias fault, which 

can be represented as: 

( )
( )

( )

fb

b

m f

m t t t
m t

m t t t


 

 

                        (3) 

where m(t) is the true value, and b

m is the sensor bias 

term. 

3 Diagnosis Approach of Hybrid Linear 

Systems 

Our integrated diagnosis approach for hybrid linear systems 

(See Figure 6) combines the Hybrid TRANSCEND ap-

proach [2] with switched DBN-based PF scheme [14] to-

gether, which diagnoses abrupt or incipient parametric 

faults, discrete faults and sensor faults in a common 

framework. It includes three main parts: system monitoring, 

qualitative fault isolation (QFI) and quantitative fault iso-

lation and identification (QFII). These three steps are 

summarized below. 

Initially, a nominal DBN is constructed from the current 

TCG model. A hybrid observer uses a PF-based nominal 

DBN model to track the system behavior in individual 

modes of operation. At the same time, a finite automata 

method in hybrid bond graph scheme implements the 

CSPECs, executes controlled and autonomous mode 

changes, and determines the system model for hybrid ob-

server. 

The fault detection continually monitors the statistically 

significant deviations between the observation y(t) and 

estimation ˆ ( )y t  generated by hybrid observer. Once a fault 

is determined, QFI is triggered to generate the initial fault 

hypothesis, and refine them as additional deviations are 

observed. When remaining fault hypothesis set satisfies 

particular condition, the QFII scheme is invoked to run in 

parallel with QFI. The goal of this scheme is to refine the 

fault hypothesis further and estimate the value of the fault 

parameter. The following subsections describe these steps 

in more detail. 

3.1 Online Tracking and Fault Detection 

Since the hybrid system is piecewise continuous, discrete 

mode changes of the hybrid system have to be detected 

accurately as the continuous behavior of the system 

evolves. In our work, we have designed hybrid observers 

that are based on the nominal DBN-based PF scheme to 

track the continuous behavior in individual modes of oper-

ation. PF is a general purpose Markov chain Monte Carlo 

method that approximates the belief state using a set of 

samples or particles, and keeps the distribution updated as 

new observations are made over time. Moreover, the PF 

approach for DBNs exploits the sparseness and compact-

ness of the DBN representation to provide computationally 

efficient solutions, because each measured variable in a 

DBN typically depends on some but not all continuous state 

variables. 

For discrete mode changes, the finite state machine 

(FSM) for each switched junction determines mode transi-

tions. Since the continuous behavior and discrete mode 

changes will interact with each other as system evolves, the 

FSM needs to execute controlled or autonomous mode 

changes. Explicit controlled changes are relatively simple, 

but the autonomous mode changes depend on the internal 

continuous variables. If mode changes occur, the hybrid 

observer will regenerate the nominal DBN model from 

TCG in new mode, and use the PF to continuously track 

system dynamic behavior. The online tracking algorithm 

for hybrid systems is shown in Algorithm 1. 
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Figure 6 The diagnosis architecture 

Algorithm 1: Online tracking algorithm 

Input: Number of particles, N; a initial DBN model 

{ , , , }D X Z U Y  

For each particle i, from 1 to N do 

       Sample 0

iX  from the prior probability distribution 

       Assign 0

iY  as the measurement at time step 0 

 End For 

 For each time-step t>0 do 

       If the controlled or autonomous mode change oc-

curs 

           Regenerate a DBN model 
'D  from TCG in new 

system configuration 

       End If 

       Prediction: Sample each particle in DBN model 
'D  

       Weighting: Compute the weight considering the 

observation 

       Resampling: Normalize the weighted samples, and 

resample N new samples 

       Calculate the estimated continuous state variables 

tX and tY  at time step t 

End For 

   

The fault detection module compares the measured va-

riable y(t) from sensors with its estimate, ˆ ( )y t  computed 

by the hybrid observer at each time-step t. Ideally, any 

inconsistency ˆ( ) ( ) ( )r t y t y t   implies a fault, and in-

vokes the qualitative fault isolation module. However, to 

account for noise in the measurements and modeling errors, 

statistical techniques are employed to determine significant 

deviations from zero for the residual. In this paper, a Z-test, 

which uses a sliding window to compute the residual mean 

and variance, is adopted by reliable fault detection with low 

false-alarm rates [3]. 

3.2 Qualitative Fault Isolation 

The QFI scheme is based on qualitative fault signature 

(QFS) method, which was proposed by Mosterman and 

Biswas [11] and then extended by Narasimhan and Biswas 

[1] to hybrid systems. Daigle, et al. [2] extended this me-

thod to model discrete and sensor faults in continuous and 

hybrid systems. All of these methods are based on a formal 

definition of fault signature as follows: 

Definition 6 (Qualitative Fault Signature): Given a fault f 

and measurement m, the qualitative fault signature can be 

denoted by 1 2 3 1 2 3( , ) {( , ), , ( , ,0,*),QFS f m s s s s s s      

( , , ,*)}N Z X ; where   and 0 indicate an increase, de-

crease, and no change for residual magnitude or slope. N, Z 

and X imply zero to nonzero, nonzero to zero, and no dis-

crete change behavior in the measurement from the esti-

mate. * denotes the ambiguity in the signatures. 

Table 2 Selected fault signature for hybrid two-tank system 

for the mode when all the valves are open and liquid level in 

both tanks are above the height of the autonomous pipe 

Fault 
6f  9f  14f  

1

aC 

 
( , )X

 
( , )X

 
(0 , )X

 

1

iC 

 
(0 , )X

 
(0 , )X

 
(0 , )X

 

1

aR

 
( , )X

 
(0 , )X

 
(0 , )X

 

1

iR

 
(0 , )X

 
(0 , )X

 
(0 , )X

 
1.v off

 
(0 , )X

 
(0 , )X

 
(0 , )X

 
2.v off

 
( , )X

 
(0 , )X

 
(0 , )X

 

6f
  ( 0, ) 

 
(00, )X

 
(00, )X

 

6f
  ( 0, ) 

 
(00, )X

 
(00, )X

 
 

When measurement deviations are detected, the symbol 

generator module in QFI scheme is triggered to calculate 

the QFS for the current mode of operation. However, since 

the fault may have occurred but not detected in an earlier 

mode, the fault hypothesis generation module rolls back to 

find the previous modes in which fault may have occurred, 

and generate fault hypothesis set {( , , )}i i iF f q , where 

i  denotes the deviation of fault parameter value, and iq  

indicates the possible modes. The progressive monitoring 

module applies the forward propagation algorithm to con-

tinually refine the fault candidates in the fault hypotheses 

set. For hybrid systems, the progressive monitoring also has 

Proceedings of the 26th International Workshop on Principles of Diagnosis

31



to include forward propagation through mode changes, 

which makes the tracking algorithm much more complex. 

Narasimhan and Biswas [1] discuss the details of the roll 

back and roll forward algorithms used to support the pro-

gressive monitoring task. When a fault signature is no 

longer consistent with the observed measurements, and the 

changes cannot be resolved by autonomous mode transi-

tions, this fault candidate is dropped.  

The selected qualitative fault signature for hybrid 

two-tank system in particular mode is shown in Table 2. For 

incipient parametric faults, the QFS is shown as 3(0 , )s , 

where  is the first nonzero symbol in the QFS for the 

abrupt faults with same system parameter. Sensor faults 

only affect the measurement provided by the sensor, so 

other measurements that are not affected are denoted by 00. 

3.3 Quantitative Fault Isolation and Identifica-

tion 

Quant-FII scheme will be activated when any of the fol-

lowing conditions are fulfilled: 1) All the measurements 

have deviated from nominal, so the remaining fault candi-

dates cannot be refined further only by the Qual-FI scheme; 

2) The number of fault candidates has been reduced to a 

predefined value k; 3) A predefined time l has elapsed. We 

restrict the length of Quant-FII scheme as a pre-specified 

value, and assume that no autonomous change occurs dur-

ing this period. 

The steps describing this scheme are illustrated as fol-

lows: First, a separate DBN faulty model will be con-

structed for each remaining fault candidate in the hypothe-

sis set. Second, we combine each switched DBN faulty 

model with PF method to estimate the system behavior. 

Similar to fault detection scheme, a Z-test method is em-

ployed to detect the inconsistency between estimated values 

from PF and measurements. Ideally, only the correct true 

fault model will converge to the observed values of the 

measurements. Once the deviation is determined, the cor-

responding fault candidate will be dropped. This scheme 

runs in parallel with the qualitative fault isolation scheme, 

and if a controlled mode change occurs, these two schemes 

need to reload the DBN model for new system mode. This is 

the big difference between continuous systems and hybrid 

systems. 

If the fault hypothesis cannot be refined further or only a 

single parametric or sensor fault candidate is left, fault 

identification scheme will be activated to identify the abrupt 

or incipient parametric fault in the same model and estimate 

the fault parameter value. We can use the PF result of the 

fault parameter to calculate the abrupt parameter fault 

magnitude
a

p , incipient parameter fault slope 
i

p  or sensor 

fault bias term b

m . 

4 Experimental Results 

To demonstrate the effectiveness of our approach, we apply 

it to the hybrid two-tank system in Figure 1. In this plant, 

the incipient parametric faults are modeled as gradual de-

crease in tank capacity and gradual increases in pipe resis-

tances and denoted as 1 2 1 2, , ,i i i iC C R R     and 12

iR  respec-

tively. The abrupt parameter faults are modeled as step 

decrease in tank capacity and step increases in pipe resis-

tances and represented as 1 2 1 2, , ,a a a aC C R R     and 12

aR re-

spectively. We consider discrete faults in each controlled 

valves including the valve gets stuck and valve changes 

mode without a command. For sensor faults, bias faults 

causing abrupt changes in the measurement are considered.  
We assume that the tanks are initially empty, and start to 

fill in at a constant rate. The initial configuration of the 

system is all the valves are set to open. We will denote the 

system mode as ijkmq , where i, j and k are the modes of 

valve1, valve2 and valve3 respectively, and m is the mode 

of autonomous pipe 12R . More specifically, the mode of 

valves includes 1 2 3: , : , : _S on S off S Stuck on and 4 :S  

_Stuck off . Therefore, the initial mode of the system is 

1113q . At time step t=6.7s, the liquid level in tank 1 reaches 

the height of autonomous pipe 12R . The system mode tran-

sitions from 1113q  into 1111q . Now the autonomous pipe 12R  

acts as an outflow pipe for the tank 1 but as flow source for 

the tank 2. As system evolves, the liquid level in tank 2 will 

also reach the autonomous pipe at time step t=53s. After 

that, system mode changes into 1114q . The experiments 

have been run for a total of 400s using a sampling period 

0.1s. Gaussian white noise with zero mean and variances 

0.018 is added to measurements. 

4.1 Incipient Parametric Fault in R1 

In this first experiment, we present our diagnosis approach 

for a fault scenario. A 10% rate of increase in pipe 1R  is 

injected as the incipient fault at time step t = 60s. 

 

Figure 7 Observed and estimated result for nominal DBN 

model 

We only consider the measurement 3M  and 2M  for the 

flow 9f  through the autonomous pipe 12R  and the output 

flow 14f  from tank 2. At time step t=82s, the fault detection 

scheme detects an increase in the flow 9f , resulting in the 

initial fault hypothesis 1 1114 1 1114 1{( , ), ( , ), ( ,a i aF C q C q R    

1114 1 1114 1414 9 1114),( , ), ( 2. , ), ( , )}iq R q v off q f q 
. At 88.4s, the 

flow 14f  shows an increase above nominal (+). A possible 

autonomous transition is executed for the current inconsis-

tent candidate 9 1114( , )f q . After that, the first order change 

of flow 9f  is determined to decrease and increase in mode 
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1414q  and 1114q  at time steps t=94.8s and 97.7s, respective-

ly, and finally the possible fault hypotheses are 

1 1114{( , ),iF C q  
1 1114 1 1114( , ), ( , )}a iR q R q  . According to 

the fault signatures in mode 1114q , these three candidates 

cannot be refined further using observed deviations. Figure 

7 represents observed and estimated result generated by the 

nominal DBN model. 

 

Figure 8 Estimated observation using fault model 1

iC   

 

Figure 9 Estimated observation using fault model /

1

a iR  

 

Figure 10 Estimated value of true fault parameter 1

iR  

The QFII scheme is initiated at time step t=72s, and two 

separate DBN fault model using 1

iC   and /

1

a iR  are con-

structed. As more measurements are obtained, the Z-tests 

indicate a deviation in the measurement estimates obtained 

by the fault model 1

iC  , and the estimation generated by 

possible true fault model /

1

a iR  is consistent with mea-

surement. The quantitative fault identification part esti-

mates the value of 1R , and determines that 1R  indeed has an 

incipient fault. While the actual fault slope is 0.1, the esti-

mated slope is 0.1009. The estimation using two faulty 

models are shown in Figure 8 and Figure 9 respectively, and 

the plot for estimated value for 1R  is presented in Figure 10.  

4.2 Discrete Fault in Valve 2 

In this subsection, we investigate an unexpected switch 

fault: valve 2 closes without a command at time step t=80s. 

We only consider the flow 6f  and flow 9f  in this experi-

ment. 
Figure 11 shows the observed and estimated outputs us-

ing nominal DBN model. The fault is detected at time step 

t=80.1s, and the symbol generator reports a decrease in 

flow 6f . QFI scheme generates the fault hypothesis set 

1 1114 1 1114 4114 1414{( , ), ( , ),( 1. , ),( 2. , ),a iF R q R q v off q v off q   

6 1114( , )}f q . At time step t=80.6s, the symbol generator 

determines the flow 6f  to Z in mode 1114q  and 4114q , be-

cause of estimated flow 
6
ˆ 0f   and the observation 6 0f  . 

This symbol eliminates all the parametric faults and discrete 

fault 1.v off from current trajectory. At 83.6s, the flow 10f  

shows a positive deviation (+), so the fault candidate 

1414( 2. , )v off q  is correctly isolated. In this experiment, the 

real fault candidate is isolated by the QFI scheme, so the 

QFII scheme is not invoked. 

 

Figure 11 Observed and estimated result for nominal DBN 

model 

We also perform several additional experiments with 

different fault types, fault magnitude, noise level and fault 

occurrence time, and obtain satisfactory results. For lack of 

space, we do not discuss these results in detail. 

5 Conclusion 

In this paper, we presented an integrated approach for on-

line monitoring and diagnosis of incipient or abrupt para-

metric faults, discrete faults and sensor faults in hybrid 

linear systems. First of all, we adopt the HBGs to model the 

system, and construct the diagnosis models, i.e., the TCGs 

and the DBN models from the HBG model in different 

modes. A PF method based on the switched DBN model is 

employed for online monitoring of the system dynamic 

behavior. Once the discrete finite automaton in the HBGs 

detects the controlled or autonomous mode changes, HBGs 

will regenerate the TCGs and DBN model in new mode. 

These modeling approaches guarantee that the hybrid sys-

tems can be tracked correctly.  
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Then, we demonstrate that we can accommodate discrete 

faults and sensor fault models into the TCG and DBN 

models that represent dynamic system behavior. As a result, 

our model-based approach can diagnose parametric, dis-

crete and sensor faults within the same modeling and 

tracking framework. Finally, QFI scheme using Hybrid 

TRANSCEND approach and QFII scheme by means of 

switched DBN-based PF approach are combined together 

into a common framework, which provides more discri-

minatory power and less computational complexity.  

This work builds on approaches presented in 

[1][2][11][14]. [1] extends our previous work [11] from 

continuous systems to hybrid systems, but previous diag-

nosis framework could only handle abrupt parametric faults. 

Soon after, Daigle [2] further extended the work in [1] to 

capture discrete faults and sensor faults. Roychoudhury 

[8][14] combined a qualitative fault isolation scheme with 

an efficient DBN approach to diagnose both abrupt and 

incipient parametric faults for continuous systems. This 

paper proposes a comprehensive diagnosis methodology, 

which extends DBN-based PF observer [8][14] to track 

behavior of linear hybrid systems within and across mode 

changes, and combines qualitative fault isolation scheme in 

[2] with PF-based quantitative fault isolation and identifi-

cation scheme in  [8][14] to diagnose multiple fault types.       

This method has been successfully applied to a hybrid 

two-tank system, and experimental results demonstrate the 

effectiveness of the approach. However, since the applica-

tion in this paper is only a relatively simple hybrid linear 

system, our future work will scale up this methodology for 

more realistic linear and nonlinear hybrid systems. More-

over, distributed diagnostics techniques can efficiently 

decrease the computational complexity for complex real 

systems, so this is also a research direction in future [16]. 
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Abstract

The purpose of a supervision system is to detect,
identify and repair any fault that may occur in the
system it supervises. Nowadays industrial pro-
cess are mainly distributed, and their supervision
systems are still centralized. Consequently, when
communications are disrupted, it slows down or
stops the supervision process. Increasing produc-
tion rates make this subjection to the state of the
communications no more acceptable. To allow the
anytime supervision of such systems, we propose
a distributed approch based on a multi-agent sys-
tem where each supervision agent autonomously
handles both diagnosis and repair on a given lo-
cation. This degree of delegation, never consid-
ered in the literature nor in the industry outside
of the theoretical framework, requires to over-
come several difficulties : How can one agent au-
tonomously make a diagnosis with dynamically
arriving information ? How can several agents
may coordinate and reach a consensus on a given
diagnosis or repair with asynchronous communi-
cation ? Finally, how to allow a human to trust
the decisions of such a system ? This paper devel-
ops our proposal allong these three axis and evalu-
ates ADS2 using an industrial case-study. Exper-
iments demonstrate the relevance of our approach
with an overall reduction of the supervised system
down-time of 34%.

1 Introduction

Supervision systems were initially monitoring tools whose
role was limited to collect and display information for their
interpretation and use by the human expert. Today, the ad-
vent of complex and physically distributed systems leads to
a semantic shift from supervision tools to supervision sys-
tems. Indeed, as the complexity of systems increases, hu-
mans can no longer process the flow of information arriving
at each instant. The need to minimize the down-time and
to improve system effectiveness requires the delegation of
some of the decision-making power of the human supervi-
sor to the supervision system. This requirement has lead to
the (re)birth of a research community around the notions of
autonomic computing [1] and self-* systems [2]. Our work
lies within this context.

Within the Dem@tFactory1 project, our objective is thus
to improve the supervision of an existing digitizing chain
distributed over several sites (see Fig 1). Different faults
– single or multiple – can occur and alter or prevent the
processing of the documents (e.g. a scanner quits working,
a disruption of the connection between different sites halts
or corrupts a data transfer, an OCR software is poorly set
and generates unexploitable results, etc.).

Figure 1: In red, the communication links between the main
sites of the digitization chain of the Dem@tFactory project.
In yellow, the links with the current (centralised) supervi-
sion system.

Centralized supervision systems are currently the most
common in industry. However, they do not perform well
in asynchronous contexts. Indeed, communication malfunc-
tions between the supervision system and the geographically
distributed regions of the supervised system delay the repair
and do not allow to quickly return to normalcy, even though
a number of malfunctions may have local predefined repair
procedures available. The unbounded communication time
between the supervision and the supervised system is the
main reason for this problem.

To overcome this lack of robustness when facing unreli-
able communications and to reduce the supervised system
down-time, we present in this article ADS2 : a multi-agent
architecture where each supervision agent autonomously
handles both diagnosis and repair on a given location. The
proposed architecture is composed of three mechanisms: A
decision mechanism, a coordination and consistency recov-

1Project of the French R&D initiative Cap Digital federating 4
industrials and 3 laboratories.
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ery mechanism and an intertwining mechanism. The deci-
sion mechanism tackles the dynamicity of the information
available to an agent in order to make a diagnosis. The coor-
dination and consistency mechanism deals with the problem
of reaching a consensus between several agents on a global
diagnosis (or repair) in a context of asynchronous commu-
nications. Finally, the intertwining mechanism address the
problem of the size of the search-space in a multiple-faults
context.

In this article, we first present our fault and repair model
and the various assumptions made in section 2. We then de-
scribe the three mechanisms of our multi-agent architecture
in section 3 to 5. We then demonstrate the viability of our
proposal with experiments in section 6. Finally, we discuss
related work in section 7 before concluding.

2 A Multi-Agent Architecture for the
Supervision of Distributed Systems

Our architecture comes within the scope of fault-based
model2 approaches with spatially distributed knowledge.
The supervision process is distributed among several au-
tonomous agents having each a local view of the system to
be supervised, and endowed with diagnosis and repair capa-
bilities. The supervised system is partitioned into regions,
each one is supervised by one agent. As illustrated in Fig.
2, the supervision agents (Ai) exchange information in order
to establish a diagnosis and a repair consistent with the ob-
servations (Oj) they get from the various units of the super-
vised system (Uk). The links between the square units rep-
resent the standard workflow of the supervised system. The
dashed arrows represent the fact that some elements may be
reprocessed if the quality is not sufficient. The arrows be-
tween the units and the agents represent the communication
links used to transmit alarms logs. The remaining links rep-
resent the communications between the supervision agents.

Figure 2: Example of our supervision systems deployed on
a workflow.

2.1 Assumptions
We consider that communications are asynchronous and that
there is no upper bound on transmission delay. We assume
that the messages exchanged between supervised units may
be lost or corrupted, and that some units are not supervised
(e.g. unit U2 on Fig. 2). This assumption is based on the
fact that a complex industrial process commonly involves
different actors that do not share their supervision informa-
tion3. Moreover, we assume that the observations and the

2No model of the system’s correct behaviour is available. The
system can only use faults model, a priori known or dynamically
learned from the system observation.

3subcontractors in the case of the Dem@tFactory project.

messages between agents can be lost but not corrupted. The
agents are supposed to be reliable (no Byzantine behaviour).
Finally, we consider that the simultaneous occurrence of dif-
ferent faults does not result in phenomena of masking ob-
servables.

2.2 Fault model and repair plan
Let F be the set of known faults of a system S and R be the
set of existing repair plans. The signature of a fault f is a
sequence of observable events generated by the occurrence
of f . The set of signatures of a given fault f is Sig(f).

To be able to represent any temporal dependencies, each
fault is modeled as a t-temporised Petri net (Fig. 3). Each
fault is supposed to be repairable, that is to say that there ex-
ists at least one partially ordered sequence of atomic repairs
rk that repairs it (a repair plan).

Figure 3: Let f be a fault that possesses 2 signatures.
Sig(f) = {o1o5; o1[o2, o3][to1 ,to1+5′′]}. The oi are the
events observed on the supervised system. The toi indicate
the temporal constraints. Thus, [to1 , to1 + 5′′] constrains the
sequence of observations [o2, o3] to appear under the 5 sec-
onds that follow the occurrence of o1 for f to be recognized.

The supervised system is partitioned into regions rgj .
Each supervision agent is associated with one unique region
and knows the models of the faults that may occur in the re-
gion it oversees. However, a fault can cover several regions.
In that case, an agent only knows the part of the model that
concerns its region. Its model is completed with the names
of the agents responsible for the others regions. This hy-
pothesis allow to model workflow involving different actors
that do not share their data.

Sig(f) = {orgb1 orgb2 orgc3 orgc4 } =⇒
{
SigArgb (f) = o1o2A

rgc

SigArgc (f) = Argbo3o4

Beside getting the models of faults, the issue of defining a
global precedence relation between events that occur within
the supervised system remains. Indeed, there is no common
clock to the different regions. It is therefore necessary to
add in each agent a stamping mechanism allowing to recre-
ate this order relation. We will not detail here the concept
of distributed clock.We consider in the following that the
agents are able to recreate this partial-order relation.

2.3 Diagnosis and multiple faults
During the period of time [t − ∆t, t], agent Ai collects
a sequence of observations seqObsAi

(t,∆t) generated by
the occurrence of faults on the system. However agent Ai

does not know which faults have occurred. It thus anal-
yses seqObs in order to determine the set of all faults
fpAi

(t,∆t) whose signatures partially or totally match ele-
ments of seqObs. A diagnosis dg is a set of faults that can
explain seqObs. Dg is the set of all possible diagnoses of
seqObs.

2.4 Fault cost and repair cost
Finally, each fault f (respectively each repair plan rp(f))
is associated with a cost of malfunction which depends of
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the fault duration Ctdysf (f, t) (resp a cost of execution
CtEx(rp(f))). The cost of a diagnosis dg for the supervi-
sion system is the result of the aggregation of the respective
costs of the faults that compose it. In the general case:

Ctdysf (dgi, t) = Aggregfj∈dgi(Ctdysf (fj , t)) (1)

Similarly, the execution cost of a repair plan rp associ-
ated to a given diagnosis depends on the aggregation of the
respective costs of the repairs that compose it. Thus, in the
case the repair plan depends directly on the faults:

CtEx(rp(dgi)) = Aggreg′fj∈dgi(CtEx(rp(fj))) (2)

3 Agent Decision Model
We consider highly dynamic systems. Consequently,
information available to an agent at a given time can be
insufficient to determine with certainty which action to
select. A supervision agent has thus to determine the
optimal decision (Dopt) between the immediate triggering
of the plan made under uncertainty (Dimmopt), and a
delayed action (Ddelayopt) which lets him to wait and
communicate with other supervisor agents during k time
steps. This waiting time can yield information that reduces
uncertainty and thereby improve decision-making. The
counterpart is that the elapsed time may have a significant
negative impact on the system. The expected potential gain
in terms of accuracy must be balanced with the risks taken.

Let Ct(x) the cost of an action x and Ctwait(k) the cost
related to the extra time k before selecting a repair plan. The
decision-making process of each supervision agent works as
follows :

1. Observation gathering
2. Computation of the different sets of faults that can ex-

plain the current observations : Dg (set of diagnosis)
3. Determination of the immediate repair Dimmopt

based on available information and on the constraints
we chose to focus on (Most Probable Explanation, Law
of parsimony, Worst case,...) and computation of its es-
timated cost Ct(Dimmopt)

4. A time t, an agent knows the set of the faults that may
be occurring in the region it supervises fpAi(t,∆t).
Knowing theirs signatures the agent is able to predict,
for each fault of fpAi

(t,∆t), the set of observables
that can be expected to appear during the time interval
[t, t+ k], with k an a priori fixed parameter. The agent
uses these information to compute the waiting cost
Ctwait(k), the expected potential gain of a delayed re-
pairDdelayopt and its associated cost Ct(Ddelayopt).

5. Choice between the immediate repair Dimmopt and
the delayed repair Ddelayopt

This algorithm is executed at each time-step and by each
agent when faults occur. The value k represents an upper
bound delay as an agents’ decision is updated each time an
observation is received. We will detail in the following sub-
sections the steps 3 and 4 relative to the determination of the
immediate and delayed repair and of their respectives costs.

3.1 Immediate repair Dimmopt

The knowledge of the different signatures of faults allows
us to establish a list of potential diagnoses Dg. We sort

these explanations according to available information and to
the constraints we chose to focus on (e.g the most probable
explanation). After this step , the first element of Dg is the
diagnosis considered as the most relevant at the current time.
It is then necessary to estimate its cost.

The cost of the immediate repair Ct(Drepopt) must take
into account the execution cost of the repair plan associated
to the diagnosis retained (CtEx, equation 2), as well as a
cost representative of the potential error relative to this de-
cision, CtErr. Indeed,if the only cost considered is the one
of the execution of the repair plan, the final decision (step
5) will always favour an immediate action compared with a
delayed one due to the additional waiting cost of the delayed
action.

Ct(rp(dgi)) = CtEx(rp(dgi)) + CtErr(dgi|Dg\{dgi})
(3)

The computation of the error cost CtErr relies on the
fact that we assume that the good diagnosis – and so the
good repair – belongs to the sorted list Dg of the po-
tential diagnoses. Thus, in case of misdiagnosis when
selecting the first diagnosis dg1 of Dg, the system will
lose a time equal to the execution time of the first re-
pair plan (CtExecTime(rp(dg1))) which will be supple-
mented by the execution cost of the newly chosen repair
plan (CtEx(rp(dg2))) associated to the 2nd diagnosis of
Dg. As this second choice may also turn out to be an er-
ror, we define CtErr recursively on Dg. Thus:





CtErr(dg1|[]) = 0// Dg is empty, the diagnosis is correct.

CtErr(dg1|Dg\{dg1}) = P (dg1|Dg\{dg1})×[
CtExecTime(rp(dg1)) + CtEx(rp(dg2))

+ CtErr(dg2|Dg\{dg1, dg2})
]

with P (dg1|Dg\{dg1}), the probability that choosing dg1
as the final diagnosis is an error.

3.2 Delayed repair Ddelayopt
A time t, an agent knows the set of the faults that may
be occurring in the region it supervises fpAi(t,∆t). The
different faults models are represented using t-temporised
Petri-nets (Fig. 3 page 2). The agent is thus able to predict,
for each fault of fpAi

(t,∆t), the set of observables that
can be expected to appear during the time interval [t, t+ k],
with k an a priori fixed parameter. Note that the agent uses
the current transmission duration (computed over the inter-
val [t−∆t, t]) to determine the set of potential observations.

From this information, the agent builds the tree represent-
ing the set of all possibles futures working towards the cur-
rent time plus k units of time, ArbpossiblesAi

(k). Each node
of the tree is associated with a set of observations and rep-
resent one possible future (Fig. 4 below). The agent then
computes, for each node of the tree, the set of diagnoses
that explain this future (Dg′).

The agent can then compute, for each possible future,
the immediate decision considered as optimal. At time
t, the determination of the delayed decision with horizon
k (Ddelayopt) involves choosing between the various
possibles situations. This choice is realised by sorting
the first elements of each Dg′ of the tree of the possibles
futures with each other using the same criterion than the

Proceedings of the 26th International Workshop on Principles of Diagnosis

37



fpAi(t,∆t) Dg′2 Dg′4

Dg′1

Dg′3

o1

∅

o2

o2

Figure 4: Illustrative example of a tree of the possibles fu-
tures.

one used to identify the immediate repair in the sub-section
3.1.

Once the delayed decision is identified, its cost
Ct(Ddelayopt) is established using Equation (3). We then
have to add to this cost the waiting costCtwait. This waiting
cost represents the consequences of the faults on the super-
vised system during the time where no action was triggered.
The computation of the waiting cost depends on the respec-
tive costs of the malfunctions associated to the remaining
diagnoses and of the elapsed time.

Ctwait(k) = Aggregdgi∈Dg(Ctdysf (dgi, k))) (4)

4 Distributed Supervision and System
Consistency

In the previous section, we addressed the problem of one
agent making a decision. However, as each agent has a lo-
cal view of the system, a decision about a diagnosis and/or a
repair frequently requires information and knowledge from
other supervision agents. It therefore becomes necessary to
reach a consensus on the decision to make.
However, distributed supervision works in a context of asyn-
chronous and unbounded communication. Within these
constraints the theorem of Fisher-Lynch-Paterson [3] states
the impossibility of guaranteeing the achievement of a con-
sensus between different components.

To circumvent this difficulty, the literature on supervision
frequently introduce hypotheses on the quality of the com-
munications. As our work tends to work under real-life hy-
potheses, we do not make any regarding the (un)reliability
of the communication. We discuss in this section the use
the multi-Paxos algorithm [4] to reach a consensus when the
state of the communication allows it, and propose a consis-
tency mechanism to restore a common view of the system
by the agents after a unilateral decision taken by some of
them.

4.1 Consensus algorithm
In the general case, establishing a consensus must meet the
following properties : (Agreement) All correct processes
decide the same value. (Integrity) Every process decides at
most once. (Validity) Each value determined belongs to the
set of proposed values. (Termination) Every correct process
eventually decides in a finite time. However, in the context
of Fisher-Lynch-Paterson theorem, the supervision system
can only offer a guarantee of “best-effort”. i.e, to assure that
the consensus can be reached, but only if the system is stable
on a sufficiently important period of time [5].

The multi-Paxos algorithm, initially developped for
reaching an agreement in a network of unreliable proces-
sors, falls into this category. The interesting aspect of this
algorithm is that it was designed to resist to halt failures -
with recovery possibility - of a number of processes, includ-
ing the coordinator. Its very low number of assumptions
makes it operational in an environment with unreliable
communications. These properties make it particularly
suited to multiagent systems. Using the multi-Paxos, each
agent is able to initiate, integrate or leave a coalition.

The fact that there is no upper bound on the time needed
to reach a consensus will inexorably lead to some unilat-
eral decision-making by agents or agent groups in case of
communication disruption. This feature of our system guar-
antees the avoidance of deadlock situations when communi-
cations are too unstable to let the agents reach a consensus.
However, this ability requires the introduction of an algo-
rithm to restore a consistent view of the system state by all
agents.

4.2 System consistency
Algorithm 1 works in the manner of producer-consumer
with the decision-making process introduced in section 3.
The two algorithms share, within an agent, a common in-
consistency queue Finc. When a coalition is left by at least
one agent before reaching a consensus (due to a communi-
cation breakdown or to an agent’s decision), the members of
the coalition store their respective decision-making context
(the current sequence of observables, the set of considered
explanations and the list of agents which belong to the coali-
tion) into their own potential inconsistency queue Finc.

The consistency maintenance algorithm is available
within each agent as a behaviour, it continuously observes
the state of the queue Finc. When an entry is added to Finc,
the algorithm is automatically triggered.

Algorithm 1 Check consistency
Require: Pattern observer on Finc

1: if Finc 6= ∅ then
2: Try to contact Finc.getF irst().getCoalition()
3: if contact successful then
4: Send Finc.getF irst()
5: Receive other agents decision context
6: Make pairing between local decision context and others.
7: if pairing is ok then
8: Finc.removeF irst()
9: else

10: start new paxos instance
11: end if
12: end if
13: end if

This algorithm lets each agent find a match between its
actions and those selected by the other members of the coali-
tion. Thus, in case of faults due to past inconsistency deci-
sions taken by the agents, they are able to trigger a sequen-
tial diagnosis and to discriminate initials disturbances from
the consequences of their decisions.

When the potential inconsistency queue of an agent con-
tains one element, the agent tries to resolve it. The agent
tries to contact each of the agents of the coalition concerned
with this potential inconsistency Pinc. If these agents are
able to communicate (the communications are restored),
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they will exchange their respective decision-making con-
texts. By comparing them, they will be able to determine
whether the decisions made locally by the different groups
of agents are consistent with one another. If this is the case
(the faults are repaired, the system is in a stable state and
correct), each agent removes Pinc of the queue. Otherwise,
the subset of agents involved initiates a new coalition in or-
der to resynchronize their respective views of the system and
make a decision consistent at the system’s scale. If commu-
nications are too unstable (or too costly), this consensus will
not be reached, which results in adding a new entry in Finc.

Restoring the consistency of the system state as it is per-
ceived by the supervision agents is again relying on the sta-
bility of the communication links for a sufficient amount of
time.

5 Intertwining Diagnosis and Repair Stages
In the previous sections, we endowed the supervision agents
with decision-making and coordination mechanisms. These
abilities allow the agents to dynamically adapt theirs be-
haviours to the current state of the communications and of
the supervised system. In case of uncertainty regarding the
decision to make, the agents are thus able to explore the so-
lution space, collectively as well as individually. However,
the large size of this set remains a problem. Indeed, it is both
a source of misdiagnosis in case of local decision-making
and the cause of a large number of supervision messages
when a consensus must be reached. In order to reduce the
complexity of the decision process, we adress in this section
the question of obtaining the minimal set of diagnoses and
of associated repair plans. To this aim, we discuss the idea
of intertwining the diagnosis and repair stages.

This idea has been introduced by Cordier et al [6] on the
formalization of self-healing systems [7]. Several failures
may indeed have the same signature without calling into
question the repairability of the system, all that is needed
is that a repair be common to all of the faults involved (no-
tion of macrofault).

However, restricted to the single-fault context, this
formal model defines the diagnosability and repairability of
a system as static properties that can be computed offline.
This is not the case in the multiple-faults context. Indeed,
the appearance of faults can prevent the triggering of a
repair associated to another fault currently occurring in
the system, and the possible situations are endless. Being
able to represent this kind of interference is essential to our
work. This led us to introduce context-dependent notions
of diagnosability and repairability.

Definition 1 (Conditionnal Diagnosability).

Diagnosable(fi, t) ⇐⇒ ∀x ∈ CD(fi), x /∈ ss(t)
⇐⇒ CD

t (fi) = ∅

A fault f is diagnosable at time t if none of the faults that
may prevent its diagnosability (e.g if they share the same
signature) is appearing in the system at this instant. This
set of faults is the conflict set in diagnosis of the fault f
(denoted by CD

t (f)). Following the same reasoning, we can
define CR

t (f) as the conflict set in repair of the fault f .
Finally, the uncertainty regarding the faults that are

currently occurring on the supervised system, may conduct
the supervision agents’ to “believe” the occurrence of

faults which are not real and which prevent the repair of
the system. We call these situations virtual deadlocks.
To disambiguate these situations, we added a relationship
of innocuousness I to these definitions. Thus, for a fault
f , a repair plan r(f), its repair conflict set CR(f) and
considering the current state of the system, I returns the set
of sets of faults belonging to CR

t on which the execution of
repair plan r(f) leaves the system unchanged. The result
of this innocuousness relation is the set of disambiguation
under repair, denoted by DR(f). Taking into account all
this information, we are then able to propose an algorithm
to plan the order of the repairs and to resolve some conflicts.
We illustrate how it operates below :

Example : Let F = {f1, f2, f3} with Sig(f1) =
Sig(f2) = {a} and Sig(f3) = {b}. Rp(f1) = {r1},
Rp(f2) = {r2} and Rp(f3) = {r3}. Moreover, we know
that CR(f1) = {{f3}} and that DR(f2) = {{f2}, {f1}}.
As the signatures of f1 and f2 are identical, it follows that
CD(f1) = {{f2}} and CD(f2) = {{f1}}. We assume that
an agent detects the observables a ∧ b.

f1

{a}
f2

{a}
f3

{b}

MF12

{a}
MF13

{a, b}
MF23

{a, b}

F

{a, b}

∅
{ok}

Figure 5: Diagnosis state for
the agent : dg1 = {f2, f3},
dg2 = {f1, f3}

Init End

P lannification

Disambiguation

*

*

Figure 6: Operation
scheme of the active repair
algorithm

In Fig. 6, the initialization of the algorithm determines for
each potential fault fi all repair conflicts existing at the cur-
rent time CR

t (fi). The planning phase recursively builds the
repairing order from CD

t and CR
t adding the faults whose

conflict sets are empty, and then updates the remaining ones.
At the end of this phase, if some faults remain, they poten-
tially are in a deadlock. In our example, the agent has to
choose between {f2, f3} and {f1, f3}. As highlighted in
Fig.5, the agent can repair f3 but is unable to make a dis-
tinction between f1 and f2 (we assume that this conflict is
virtual and that only one of these faults is occurring).

The disambiguation phase then attempts - from the
proven innocuousness of some repairs in the current con-
text - to solve these conflicts. If one of them is solved, the
planning phase is retried after updating the conflict sets. If
the disambiguation does not work, it means that the agent
does not have, at the current time, enough information to
solve the problem. The decision-making process previously
introduced in section 3 is then triggered. In our example,
repair r2 is selected. If the system returns to normalcy, then
both diagnosis and repair phases end. If not, the previous
action guarantee the occurrence of f1, and the associated
repair plan is executed.
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6 Experimental Evaluation
To evaluate our approach we developed a simulator for dis-
tributed systems. Based on the JADE multi-agent platform
[8], our environment allows us to model both physical units
and communications links, and to simulate the occurrence
of failures in it. For a given simulation, a list of faults is
associated with each site and each communication link (A
communication link can increase its transmission time, a
unit may stop working properly,...). Each fault is associated
with one or more trigger conditions: a date and/or the
occurrence of another failure. This allows us to simulate
cascading faults. Our supervision system is deployed
on this simulator. When running the simulation, some
faults trigger the sending of an alarm message to the agent
responsible for the site where they appear. The agents
will try to determine the appropriate behaviour from these
messages.

Our agent decisional model is generic. It can be instan-
tiated with various criteria (the most probable explanation,
the worst case hypothesis, etc.) depending on available in-
formation and on the constraints we choose to focus on.In
the Dem@tFactory project, it appeared essential to consider
the utility of a decision based on the cost of the occurrence
of a given set of faults rather than on its occurrence probabil-
ity. This reasoning led us to favor a robust decision criterion.
The decisions taken by the agents will therefore rely on the
worst case hypothesis.

The upper bound k which is the horizon considered by
the agents of ADS2 for the computation of the delayed de-
cision is set to 15 units of time. Moreover, we assume in
these experiments that the respective costs of the faults that
compose a diagnosis are additive. Finally, in order to have
benchmarks for the evaluation of the principles underlying
our architecture (ADS2), we also implemented a central-
ized supervision systems (SC) where all observables are
transmitted to a single supervision agent.

6.1 Experimental setup
Our goal is to study the behaviour of the supervision system
facing an industrial case-study.

Figure 7: Workflow of the digitizing chain of the
Dem@tfactory project.

Fig. 7 represents the digitizing chain of the
Dem@tFactory used for the experiments. Each dotted rect-
angle corresponds to a factory situated on a given geograph-
ical location (2 in France, 1 in Madagascar and 1 in Mau-
ritius). The circles correspond to the various process re-
quired to the digitization. The inter-rectangle links corre-
spond to communications between the different factories,
and the intra-rectangle one to local communications. All
theses components are modeled in the simulator and can en-
gender the occurrence of faults.

We fixed a priori the locations and responsibilities (the
regions) of the supervision agents according to the geo-
graphical location of the units that compose the supervised
process. We used a dataset provided by our industrial part-
ners (8 GB of data corresponding to 48 hours of logs) to
extract nineteen different faults models. From these data,
we determined that the probability of occurrence of n faults
per unit of time follows a Poisson distribution with param-
eter λ = 0.043. Finally, using information gathered from
our partners, we were able to estimate the costs of the faults
over time (constant, logarithmic,...) and the associated re-
pair costs.

6.2 Experiments
Our experiments study the behaviour of the supervisions
systems when varying the (heterogeneous) transmission
cost. We used a random generator to affect a transmission
time (between 0 to 30 units of time) to each transmission
link for each time unit of the simulation. We arbitrarily set
at 10% the probability of a link to get a transmission time
greater than 1. In order to obtain a baseline, we first per-
formed different simulations with homogeneous transmis-
sion costs.

The performance evaluation is based on three criteria:
(1) The average response time to a malfunction. (2) The av-
erage number of supervision messages exchanged. (3) The
average total cost of repairs made during the experiment.

Figs. 8(a) and 8(b) present the evolution of the behaviour
of supervision systems ADS2 and SC for the two first cri-
teria in the case of homogeneous (Ho) and heterogeneous
(He) communication links. The vertical bar at t=15ut is the
horizon considered by the agents of ADS2 for the compu-
tation of the delayed decision.

Fig. 8(a) shows that our architecture is very robust, al-
lowing the supervised system to rapidly recover from fail-
ures. The response time of ADS2 (Ho and He) progres-
sively stabilized around 15ut, when the response time of SC
increases over time and becomes higher than ADS2.This is
due to the fact that the agents of ADS2 can decide to act
without waiting for the reception of all the messages that
come from the units of the supervised system.
We can observe an increase of the average response time
of ADS2(Ho) when the transmission delay is close to 15
ut. This is due to the parameter k of our algorithm, a pri-
ori fixed to 15 ut. This parameter defines the agent’s hori-
zon for the computation of the delayed decision. When the
transmission time becomes greater or equal to k, an agent
no longer sees interest in waiting or trying to exchange in-
formation with other agents of ADS2; so it decides to act
despite the risk of making a mistake. The impact of pa-
rameter k is less important on ADS2(He). Indeed, as the
communication links are in this case heterogeneous, a su-
pervision agent is still able to exchange information with
some of the other agents. This leads to a better response
time for ADS2(He) than for ADS2(Ho). This behaviour
is clearly highlighted in figure 8(b). The number of mes-
sages exchanged by the agents of ADS2 drop with the in-
crease of the transmission delay. We see a sudden drop of
this number when the transmission delay becomes greater
than 15 ut for ADS2(Ho), confirming the local decisions-
making of the agents.

Fig. 8(c) shows that the decisions of ADS2(He) agents
generate a limited repair extra-cost in comparison to the cen-
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(a) Response time to a malfunction (b) Communication cost (c) Total cost of repairs

Figure 8: Experimental results. The curves corresponding to homogeneous/heterogeneous communication links are respec-
tively marked with (Ho) and (He). The x-axis is the transmission delay. The y-axis correspond for each figure to one of the
evaluation criteria.

tralised approach (9%). With the Dem@tFactory fault mod-
els, the overall gain regarding the supervised system down-
time reach 34%.

Considering the reactivity of ADS2 and the limited
repair extra-cost it generates, the communication extra-cost
for low transmission delays can be considered as an
acceptable consequences compared with a total-absence of
supervision (SC).

Our next set of experiments evaluates the impact of the
intertwining of the diagnosis and repair phases on the per-
formances of the supervision system. In order to evaluate
the impact of this behaviour for a supervision agent, we ini-
tially activated this capability in only one agent of ADS2.
We realised 100 simulations. The 10 first simulations are
performed with a number a simultaneous faults restricted to
1. Then the number is gradually incremented every 10 simu-
lations to reach 10 simultaneous faults. For each simulation,
the number of potential diagnoses considered by the agent is
saved at 5 specific time steps. In order to obtain a baseline,
we performed the same 100 simulation with the intertwining
behaviour deactivated. Fig. 9(a) shows that the interleaving
of the diagnosis and repair process does lead to a reduction
of the diagnosis search space of an agent between 10 to 20%
for the set of faults of the Dem@tFactory project.

Fig. 9(b) shows that the reduction of the number of po-
tential explanations of each agent is of an extend sufficient
to allow the agent to reduce the number of supervision mes-
sages. The everage response time to a malfunction is not
significantly improved (Fig. 9(c)) but the repair extra-cost
fall from +9% (ADS2) to 7.2% (ADS2+) (with p<0.05).

7 Related Work
The supervision of a system consists of four steps: De-
tection, Isolation, Identification and Repair. The literature
aggregates the 3 first steps under the name FDI (Fault De-
tection and Isolation) [9]. Although several approaches for
the distributed supervision of distributed systems have been
proposed in the literature, whether work is from the diagno-
sis and control communities[10; 11] or from the multi-agent
domain [12; 13], they do not cover the repair phase.

In the work from areas related to distributed systems,
emphasis is placed on the distribution of available knowl-
edge on the status and behaviour of the supervised system.
Frohlich et al [14] and Roos et al [13] have addressed the
question of the ability of a set of agents to determine an
overall diagnosis according to the shape of this distribution.

They have shown that to obtain a minimum overall diagno-
sis is NP-hard in the case of spatially distributed information
and that the complexity of obtaining the diagnosis is inde-
pendent of the communications costs engendered during its
establishment[13].

Given these theoretical results, reducing the space of
potential solutions is generally based on a hierarchical
structure of the diagnosis agents [12] and on the choice of
not returning to previously excluded explanation. Though
the no back-track of past decisions guarantees convergence
and termination of the algorithm, it is a source of diagnosis
errors in an asynchronous environment. The best-effort
approach we chose allows us to reduce these diagnosis
errors, and the termination of the diagnosis algorithm is
guaranteed through the anytime decision-making process of
our agents.

To our knowledge, the work of Nejdl et al [15] is the only
one that addresses the distribution of both the diagnosis
and repair phases. However, placed at a relatively abstract
level of analysis, this work makes the assumptions that
communication links are reliable and that messages can be
exchanged between agents at no cost. In a real situation
these hypotheses are too restrictive. Indeed, to not consider
the communication state may render the supervision system
ineffective or inoperable. Our proposal does not make such
assumptions.

The problem of online decision-making under uncertainty
is the central point of the work by Horvitz [16], Hansen et
Zilberstein [17] on the control of anytime algorithms. In-
deed, they propose a formal framework to dynamically de-
termine the time to stop a calculation taking into account the
quality of the current solution and the cost of the algorithm
computation.

The first distinction between these work and ours is that in
their work the authors determine when to stop the computa-
tion based on the distance between the current solution and
the optimal one. This requires knowing the optimal solution
(or an estimatation) and to be able to dynamically determine
this distance. In our work, talking about the quality of a so-
lution (i.e a diagnosis) is meaningless insofar as a diagnosis
is right or wrong, and its “value” is only known a posteri-
ori. The second point of divergence is that we try to select a
candidate (a diagnosis or a repair) among a set of potential
solutions. The complexity of the task is therefore increased.
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(a) Size of the potential diagnosis set (b) Response time to a malfunction (c) Communication cost

Figure 9: Simulation results when integrating the interleaving of the diagnosis and repair steps. The symbol “+” is associated
to the components which integrate this additional mechanism.

8 Conclusions
We presented the first anytime multi-agent architecture for
the supervision of distributed systems that is able to dynam-
ically adapt its behaviour to the current state of the super-
vised system. In particular, the decision model allows each
supervision agent to find a balance between a quick local
diagnosis and repair under uncertainty, and a delayed, sys-
temic one, based on the respective costs of misdiagnosis and
communication. The distributed consistency algorithm al-
lows each agent to form a coalition to reduce its uncertainty
or to restore a consistent view of the system state in case
some had to act locally with incomplete information at an
earlier stage. Moreover, the intertwining of the diagnosis
and the repair phases allows an efficient reduction of the di-
agnosis search-space. The overall reduction of 34% of the
Dem@tFactory system down-time associated with a repair
extra-cost of 7.2% demonstrate that ADS2 is able to effi-
ciently supervise complex systems under real-life assump-
tions.

A fully autonomous supervision system is presently not
realistic in an industrial context as Humans wants to keep
control on what they perceive as critical decisions. ADS2
represents what we see as an acceptable trade-off as the def-
inition of its autonomy degree can be easily accomplished.
Thus ADS2 organizes the set of known faults and repairs
in several subclasses : the ones whose repair plan can be
triggered automatically, and those whose final repair deci-
sion rests with a human supervisor. The risk aversion of the
users defines the size of these two respective sets. If the
confidence in the efficiency of the autonomous supervision
of complex and distributed systems is not common today,
we believe that the work presented herein provides a step
towards this goal.
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Abstract

The wind energy sector grew continuously in the
last 17 years, which illustrates the potential of
wind energy as an alternative to fossil fuel. In
parallel to physical architecture evolution, the
scheduling of maintenance optimizes the yield
of wind power plants. This paper presents an
innovative approach to condition monitoring of
wind power plants, that provides a system-level
anomaly detection for preventive maintenance. At
first a data-driven modeling algorithm is presented
which utilizes generic machine learning methods.
This approach allows to automatically model a
system in order to monitor the behaviors of a
wind power plant. Additionally, this automati-
cally learned model is used as a basis for the sec-
ond algorithm presented in this work, which de-
tects anomalous system behavior and can alarm
its operator. Both presented algorithms are used in
an overall solution that neither rely on specialized
wind power plant architectures nor requires spe-
cific types of sensors. To evaluate the developed
algorithms, two well-known clustering methods
are used as a reference.

1 Introduction
According to a wind market statistic by the GWEC (Global
Wind Energy Council) [1], the global wind power capac-
ity grew continuously for the last 17 years. In 2014, the
global wind industry had a 44 % rise of annual installations
and the worldwide total installed capacity accumulated to
369553 megawatt at the end of 2014. In Europe, renewable
energy from wind power plants (WPP) covers up to 11% of
the energy demand [2]. With this rapid continuous growth,
the wind power is considered as one of the most competitive
alternative to fossil fuels.

In a case study, Nilsson [3] denotes an unscheduled down-
time with 1000 e per man-hour, with costs of up to 300000
e for replacements. This does not take into account the
reduced yield through production loss. Therefore, the ob-
jective of maintenance is to reduce WPPs downtimes and
provide high availability and reliability.

High availability is currently achieved by two different
strategies. On the one hand, maintenance is planned as regu-
lar time-interval based on the manufacturer’s data of specific
WPP parts. This is performed in order to prevent wearout

failure. On the other hand, there is the strategy of correc-
tive maintenance, which reacts to occurred failures. Both
strategies need time for actual maintenance, which lead to
non productive downtimes. Especially, when considering
offshore WPP, these downtimes produce high costs.

To reduce these downtimes a precise proactive schedul-
ing of maintenance task is needed. This is achieved through
condition monitoring (CM) systems [4]. Those systems try
to reason about the inherent system states such as wear, al-
though these conditions cannot be measured directly, but the
growing amount of sensors in modern WPP enable an ade-
quate description of the machines state. To make use of this,
CM systems need a model of the WPP, which describes the
system behavior based on observed data.

Existing CM solutions for WPP rely on specific sensors
and are specialized to monitor single parts of the system.
The gearbox [5], the bearing [6], the generator [7] or the
blades [8] have been monitored in order to perform proac-
tive maintenance. Here, specific sensors are needed as a
requirement for these specialized methods.

This article presents a system-level solution which han-
dles heterogeneous WPP architecture regardless of installed
sensor types. Also, an algorithm for modeling a WPP on
system level and another algorithm for anomaly detection
are stated. To achieve this, three challenges are tackled and
their solutions are presented:

I. Logging data from available sensors of a WPP, using
existing infrastructure independent of the architecture.
Additionally, the opportunity must be given to add new
sensors and sensor types on demand.

II. Automatic modeling of a WPP, by combining existing
and generic data-driven methods. Such a model must
be able to learn the complex sensor interdependencies
without extra manual effort.

III. Anomaly detection for a WPP regardless of its kind of
architectures, especially with no assumptions on avail-
able types of sensors.

The article is structured as follows. Section 2 deals with
state of the art technology in WPP CM. Hardware and data
acquisition for the presented solution are specified in section
3, here point I is the central issue. Data-driven models real-
izing point II and the analyzed machine learning approaches
are the purpose of section 4. Anomaly detection and its gen-
eral approach, according point III is stated in section 4.2.
The results of an evaluation of the presented methods is con-
tent of section 5. Finally, this paper concludes in section 6
and describes future aims of the presented work.
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2 Related Work
The core task of a CM system is anomaly detection. As
stated in [9], the models used for anomaly detection of
complex systems should be learned automatically and data-
driven approaches to learning such models should be moved
into the research focus.

A wide range of data-driven algorithms that deal with
modeling the system behavior for anomaly detection are
available in the literature.

Because of its simplicity in processing huge amounts of
data, the Principal Component Analysis (PCA) based algo-
rithms are widely applied in the condition monitoring of
WPP [10][11].

As one of the classic density based clustering method,
DBSCAN shows its advantages over the statistical method
on anomaly detection in temperature data [12].

Piero and Enrico proposed a spectral clustering based
method for fault diagnosis where fuzzy logic is used to mea-
sure the similarity and the fuzzy C-Means is used for clus-
tering the data [13].

Due to the high complexity of a WPP and its harsh work-
ing environment, the modeling of WPPs on system level is
very challenging. Most data-driven solutions to WPP con-
dition monitoring concentrate on the errors of one partic-
ular component (in component level) [4]. These methods
are designed to detect specific faults (e.g. fault in gearbox,
generator).

The application of such methods is available in differ-
ent studies. In [6], a shock pulse method is adapted for
bearing monitoring. A multi-agent system is developed in
[5] for condition monitoring of the wind turbine gearbox
and oil temperature. In [8], the ultrasonic and radiographic
techniques are used for non-destructive testing of the WPP
blades. Using these methods can prevent the WPP break-
downs caused by the particular faults. For enhancing the
availability and the reliability of the whole WPP, a method
for monitoring the WPP on system-level is desired.

In this work, a PCA-based algorithm for condition mon-
itoring of WPP is presented. This approach is aimed to
model a WPP on system-level in order to perform auto-
matic anomaly detection. As a comparison, DBSCAN and
spectral clustering are utilized for the same purpose. To the
best of our knowledge, no application of either DBSCAN or
spectral clustering in condition monitoring of WPP exists.

3 Data Acquisition Solution
A WPP includes different types of sensors, actuators and
controllers installed to monitor and control the different de-
vices and components as shown in Figure 1. To monitor the
condition of a WPP, it is necessary to collect process data
from its sensors and components accurately and continu-
ously feed this data to the diagnosis algorithms. To max-
imize accuracy, data should be acquired directly from the
sensors and components or via the existing communication
systems. Despite the fact that IEC 61400-25 [14] addresses
a variety of standards and protocols in WPP, lots of propri-
etary solutions exist today. A general approach to accurate
data acquisition in an uniform way implies protocol adapters
or data loggers (DL) to connect the diagnosis framework.
This is done not only for IEC 61400-25 conformant WPP,
but also for proprietary ones using e.g. the MODBUS pro-
tocol or a direct connection via general-purpose input/output
(GPIO) [15]. Also the data logger should model data based

Figure 1: Diagram showing the inside of a nacelle and main
components [4]

on generic industrial standards (IEC 61400-25) and trans-
fer them to a database for storage and processing. Such a
data logger meets point I (see section 1). In addition, the
timestamp of the data should be synchronized between data
loggers, database and application accurately.

In this work we followed a three layer architecture for
data acquisition as shown in Figure 2 which covers all of
the CM system components. In layer 1, the physical ma-
chine components are connected to the data logger hardware
using different industrial connections and protocols e.g. dig-
ital GPIO, RS485, MODBUS, etc. The data loggers are time
synchronized using global positioning system (GPS) or net-
work time protocol (NTP) time references via an embed-
ded time client running in the data logger. Collected sensor
data is attached to their accurate timestamps by an embed-
ded OPC UA server inside the data logger. The sensor data
is categorized based on an OPC unified architecture (OPC
UA) data model (e.g. conformant to IEC 61400-25) for a
standalone WPP.

The communication between data logger, OPC UA server
and layer 2 is realized with a secure general packet radio ser-
vice network (GPRS) or a virtual private network (VPN),
while it can be accessed for widely distributed WPPs in
different geographical locations. The layer 2 comprises a
middleware to collect and host the sensor data coming from
distributed data loggers. It mainly covers a database with
support of historical data and also an OPC UA server aggre-
gating the data incoming from distributed WPP data loggers
and pushes them to the database using an OPC UA database
wrapper. As shown in Figure 2, the main component of layer
3 is an analysis engine. This engine applies algorithms on
the database. Based on the learned machine models an out-
put about the machines condition is presented to the operator
by a human machine interface (HMI).

4 Modeling Solution
The main idea of the presented solution is to automatically
learn a model of normal system behavior from the observed
data using data-driven methods. Classical manual model-
ing utilizes expert process knowledge to build a simulation
model as a reference for anomaly detection. But a process
such as a WPP contains numerous continuous sensor val-
ues, which make it difficult to model the system manually.
Therefore, as first step of the solution a model is learned
from a set of data. The second step utilizes this model as
reference to perform anomaly detection. This section con-
siders these two steps.
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Figure 2: Architecture overview of the presented system-
level condition monitoring solution for a WPP

4.1 Step 1: Data-Driven Modeling

In order to automatically compute a system model, the pre-
sented solution use generic methods to analyze training data
and aim for process knowledge. These methods from the
field of machine learning reduce effort of time for generat-
ing a system model caused by the complex sensor interde-
pendencies. Additionally, a WPP is influenced by seasonal
components and a normal state of work cannot be declared
as precise as for a machine that works in a homogeneous en-
vironment of a factory. This meets the requirement in point
II (see section 1). In this solution, step 2 detects anomalies
as deviation between an observation and the learned refer-
ence model of the system, this is described in section 4.2.

Common strategies for data-driven modeling are super-
vised and unsupervised learning methods. Supervised meth-
ods such as Multilayer Perceptron, Support Vector Ma-
chines or Naive Bayes Classifier (see [16] for more infor-
mation) can be used to directly classify data according to
learned hyperplanes in the data space. To be reliable, those
methods need a-priori knowledge from labeled data of pos-
sible faults and the normal state. Gathering those precise
data for a continuous production system like a WPP is hard
to realize, as faults are rare and environmental conditions
increase the number of possible faults dramatically.

In comparison, unsupervised learning methods (e.g.
Clustering, Self Organizing Maps) seek to model data with-
out any a-priori knowledge. Therefore, they are able to
extract knowledge from unlabeled data sets and generate
a model out of this knowledge. In this article, two types
of unsupervised learning methods are investigated to model
a WPP using unlabeled data. The PCA based modeling is
compared against cluster based modeling methods, which
are used as reference.

Clustering based modeling
The goal of cluster analysis is to partition data points into
different groups. Similarity of points is defined by a mini-
mal intra-cluster distance, whereas different cluster aim for
a maximum inter-cluster distance. Thus, cluster analysis
can be utilized to find the pattern of a system direct us-
ing the multi-dimensional data without explicit descriptions
about the system features. This is the main advantage in
using cluster analysis for modeling complex systems with
seasonal components, e.g. WPP.

In the presented solution, a system model for anomaly de-
tection should characterize the normal system behavior and
can be used to identify unusual behavior. For most com-
plex system, the normal behavior might consist of multiple
modes that depend on different factors, e.g. work environ-
ments, operations of the systems. When the cluster analysis
is performed on a data set representing the normal behav-
ior of a system, multiple clusters can be recognized. Each
cluster (group) represents a particular status of the system.
Then such multiple clusters can be used as the normal be-
havior model of a system for anomaly detection.

In this paper, two well-known clustering algorithms, DB-
SCAN and spectral clustering, are utilized to model the nor-
mal behavior of a WPP on system level. Each of them has
advantages in clustering the data with complex correlations.

DBSCAN is resistant to noise and can recognize patterns
of arbitrary shapes. In DBSCAN, the density for a particu-
lar point is defined as the number of neighbor points within
a specified radius of that point [17]. Two user-defined pa-
rameters are required: Eps - the radius; MinPts - the min-
imal number of neighbors in the Eps. DBSCAN uses such
center-based density to classify the data points as core point
(Eps-neighbors ≥ MinPts), border point (not core point
but the neighbor of minimal one core point) or noise point
(neither a core nor a border point). Two core points that are
within Eps of each other are defined as density-reachable
core points. DBSCAN partitions the data into clusters by
iteratively labeling the data points and collecting density-
reachable core points into same cluster. As result, DBSCAN
delivers several clusters in which noise points are also col-
lected in a cluster. DBSCAN is not suitable to cluster high
dimensional data because density is more difficult to define
in high dimensional space. Therefore, a method to reduce
dimensionality should be applied to the data before using
the DBSCAN. This leads to a density based description of
the normal behavior.

This method assumes that the training data perfectly de-
scribe the distribution of system normal states. For WPP,
some special states of the plant occur so rarely that the
recorded data can not represent such special states very well.
In addition, environmental influences lead to noise points
within the data set. Therefore, a complete coverage of the
normal states of a WPP in learning data set is unrealistic to
achieve.

Compared to the traditional approaches to clustering (e.g.
k-means, DBSCAN), spectral clustering can generally de-
liver better results and can be solved efficiently by standard
linear algebra methods[18]. Another advantage of spectral
clustering is the ability to handle the high dimensional data
using spectral analysis. Thus, extra dimensionality reduc-
tion method is not required. The idea of spectral cluster-
ing is to represent the data in form of a similarity graph
G(V,E) where each vertex vi ∈ V presents a data point
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Algorithm 1 PCA based modeling
1: Input: X . learning data set
2: Output: ModelX . model of input data

3: procedure PCA_BASED_MODELING (X)
4: l: reduced dimensionality

5: PCA_Matrix = performPCA(X)
6: XPCA = mapToLowDimension(X)
7: ModelX = generate_N-Tree(XPCA)
8: end procedure

9: function GENERATE_N-TREE(XPCA)
10: Tree: List with length 2l

11: for (xpca in XPCA) do
12: i = determine_orthant(xpca)
13: Treei = append(Treei, xpca)
14: end for
15: for ( leaf in Tree ) do
16: if (sizeOf(leaf) > 1) then
17: leaf = generate_N-Tree(leaf)
18: end if
19: end for
20: return ( Tree, PCA_Matrix )
21: end function

in the dataset. Each edge eij ∈ E between two vertices vi
and vj carries a non-negative weight (similarity between the
two points) wij . Then, the clustering problem can be han-
dled as graph partition[19]. G will be divided into smaller
components, such that the vertices within the small compo-
nents have high connection and there are few connections
between the small components. These small components
correspond to the clusters in the results of spectral cluster-
ing and can be used as normal status model for anomaly
detection.

PCA based modeling
Algorithm 1 presents the stated modeling solution for a
system-level approach to a WPP. The algorithm utilizes the
Principal Component Analyses (see, line 5 algorithm 1 ) as a
very first step to achieve a dimensional reduced description
of the training data set. Although a part of the information is
lost due to the reduction, the sensor correlations in the low
dimensional space are reduced drastically, which minimizes
the computational effort.

The PCA is based on the assumption, that most of the
information is located in the direction of most variance.
Therefore, this method aims to project a data set to a sub-
space with a lower dimension by minimizing the sum of
squares of yi and to their projections θi following cost func-
tion:

m∑

i=1

= ||yi − θi||2.

Let x1, . . . ,xm be the data point of m sensor values and
X is a historical dataset of N scaled data points.

X =



x1,1 . . . x1,m

...
. . .

...
xN,1 . . . xN,m


 ∈ RN×m

Then as first step for computing the PCA, the covariance
matrix is formed as

Σ0 ≈
1

N − 1
XTX

By means of EVD (eigen value decomposition) or the
equivalent SVD (singular value decomposition) the covari-
ance matrix is decomposed as follows:

Σ0 = PT ΛP,Λ =

[
Λpc 0
0 Λres

]

With Λ = diag(σ2
1 < σ2

2 < · · · < σ2
i ) where σi,

i = 1, · · · ,m is the i-th eigenvalue and P is a matrix of the
eigenvectors, sorted according to the eigenvalues of Λ. Λpc

are the chosen principal components according to a thresh-
old l and Λres denotes the less informative rest. l is a pa-
rameter which depends on the eigenvalues proportion of to-
tal variance and determines the dimension of the reduced
normal space.

Y = P TX

Transforms the p-dimensional dataset X into a dataset Y of
a lower dimension l, with a minimum of information loss.
The axes of the dimensionally reduced data space are or-
thonormal and aligned to the maximum variance of data.
Prerequisite for modeling a WPP with this kind of trans-
formation is the input data to calculate eigenvalues and the
rotation matrix. Therefore, the presented data set of a WPP
needs to describe a period of fault free operation, which is
denoted by the term ’normal state’. Using this data set as
a learning base, the PCA described above spans a reduced
normal state space, where signal covariances are taken into
account due to the eigenvalues of the covariance matrix as
the basis for transformation. The input variables are trans-
formed within the algorithm 1 in line 6.

In comparison to clustering methods only the covariance
matrix stores explicit shape informations. This leads to the
necessity of taking into account all data points for classi-
fying a new observation. That is why computational effort
for this model increases with the number of data points in
the data set and their dimension. To overcome this issue,
the model is extended with an N-Tree as geometrical data
structure (see function generate_N−Tree in algorithm 1).
The axis of the PCA transformed normal state space divides
the data into 2l subspaces. Centering these subspaces in
each iteration divides the subspaces recursively until each
leaf of the tree contains one data point or is empty. Note,
that the mean of each subspace needs to be stored.

4.2 Step 2: Anomaly Detection
To comply with point III (see section 1), the prerequisite
for a system-level anomaly detection is a data-driven model
as stated above. Given such a model, a distance measure
is needed to calculate the deviation between a new system
observation and the model in order to identify anomalies.
Therefore, an observation vector needs to be transformed
into the dimensionally reduced space of the model. Then
the deviation of an actual observation and the learned model
can be calculated using a distance metric, such as Euclidean
distance, Mahalanobis distance or Manhattan distance.

DBSCAN generated cluster provide a discrimination of
core and border data points. Distance computation in DB-
SCAN use the euclidean distance metric. Only core points
are used to measure the distance between an observations
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Figure 3: Characteristics of Gaussian distribution in com-
parison to Marr Wavelet (dashed). Spots are marked where
the Marr Wavelet reach zero

and the core points. This leads to the decision whether an
observation is part of the models cluster or not.

Spectral clustering computes clusters in a dimensionally
reduced space but gives no further information about core or
border points. Measuring the distance between such clus-
ters can be achieved by a prototype, for example the clus-
ter center. Then, for computing the distance, a metric like
the Mahalanobis distance is used, which is sensible for the
multidimensionality of such cluster. Representing a cluster
based on a prototype is a generalization.

The PCA based modeling approach uses the dimension-
ally reduced input data as description of the multidimen-
sional normal state space. Algorithm 2 shows how the
model, computed with algorithm 1, is used for anomaly de-
tection. At first a new observation is mapped to the low
dimensional space of the model, using the rotation matrix
from the PCA (see line 5). Then the mapped observation
is compared with the normal state space. Therefore, the N-
Tree is searched for its corresponding subset first (see func-
tion get_subset). If an empty leaf is found, all neighbor
leafs are aggregated to a most relevant subset of data points.
As the data is not generalized by border points or cluster
means as prototypical points it is necessary to measure dis-
tance of the observation to each point of this subset. Now
the distance is computed (see line 7).

Absolute distance measuring is missing a threshold to de-
cide when an observation meets the model or not. Even
when utilizing a Gaussian density function to provide an in-
dicator for classification, a threshold needs to be estimated
for classification. In this project, a Marr wavelet function
is used to decide whether a new observation is part of the
learned normal space. Instead of a Gaussian distribution the
characteristic form of a Marr wavelet [20] allows a classi-
fication where the threshold can be set to zero, see figure
3. Taking into account the Marr wavelet and the euclidean
distance function the process of distance measuring is com-
puted as follows.

Let Xpca = [x1, · · · , xl] be a vector of the models’ prin-
cipal normal-space and Opc = [o1, · · · , ol] a transformed
observation, where l denotes the number of principal com-
ponents. Then the distribution function to measure if a new
observation is part of the normal state space is formed as:

ψ(Xpca, Opca) =
2√

3σπ
1
4

· 1− k

σ2
· exp (− k

2σ2
)

Algorithm 2 Anomaly detection
1: Input: Tree . (Learned model, see algorithm 1)
2: Input: O . Input observation
3: Output: Boolean . Anomaly
4: procedure ANOMALY_DETECTION(Tree, O)
5: OPCA = mapToLowDimension(O)
6: subset = get_subset(Tree,O)
7: dist = calculate_distance(O, subset)

8: if ( dist > 0 ) then
9: anomaly: TRUE

10: else
11: anomaly: FALSE
12: end if
13: return ( anomaly )
14: end procedure

15: function GET_SUBSET( Tree , OPCA )
16: i = determine_orthant(xpca)
17: if (size(leafi) > 1) then
18: get_subset(leafi)
19: else
20: subset = neighbors(leafi)
21: end if
22: return ( subset )
23: end function

Where l denotes dimensions of reduced normal-space and

k =

√√√√
l∑

i

(Opcai
−Xpcai

)2

k is the l-space euclidean distance. For ψ > 0 an observa-
tion in principal space Opca is denoted part of the normal
state space (see line 17).

5 Results
The data used in the evaluation is collected over a duration
of 4 years from 11 real WPPs in Germany with 10 minutes
resolution. The dataset consists of 12 variables which de-
scribe the work environment (e.g. wind speed, air temper-
ature) and the status of WPP (e.g. power capacity, rotation
speed of generator, voltage of the transformer).
For evaluation, a training data set of 232749 observations
of the 10 minutes resolution was used to model the nor-
mal behavior of a WPP. The evaluation data set of 11544
observations contains 4531 reported failures and 7013 ob-
servations of normal behavior. Table 1 shows the confusion
matrix [21] as a result of the evaluation. Here, true negative
denotes a correct predicted normal state and true positive a
correct classified failure For this use case, the F1-score is
used to analyze the system’s performance in anomaly de-
tection. Also, the runtime for the evaluation is denoted in
Table 1 to compare speed performance of the different ana-
lyzed methods.
As can be seen, the presented PCA based algorithm outper-
forms the standardized spectral clustering. Especially a sig-
nificant performance boost in computation time is achieved
due to the extended N-Tree data structure.

Both, DBSCAN and Spectral Clustering, rely on com-
plete sensor information for clustering the data set. A defect
sensor leads to a maintenance action. The delay for this
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True Pos. True Neg. False Pos. False Neg. Bal. Acc. F-Measure elapsed
Time

DBSCAN 1812 6827 186 2719 68.66% 55.50% 3s
Spectral
Clustering

3832 6328 685 699 87.40% 84.71% 6637s

PCA based 3970 6517 496 561 90.27% 88.25% 68s

Table 1: Evaluation results of wind power station data.

maintenance is based on the localization of the WPP and
cause missing sensor values for a certain time. To be oper-
able in the use case of WPP such a model needs a fall back
strategy in case of missing sensor values. Here, redundancy
and correlation of different sensors comes in handy. By ex-
tending the PCA to a Probabilistic Principal Component An-
alyzes (PPCA), missing values can be estimated according
to the data learned from the data set. Tipping and Bishop
[22] extend a classic PCA by a probability model. This
model assumes Gaussian distributed latent variables which
can be inferred from the existing variables and the matrix
of eigenvectors from the PCA. With the use of a PPCA, the
solution for a system-level is robust enough to stay reliable
even when sensors are missing. This was tested by training
the model with a defect data set, containing 10% missing
sensor values. While evaluating this model, also 10% of the
data was damaged, simulating missing sensor values. The
result of this evaluation is presented in table 1.

6 Conclusion

In this work a solution for system-level anomaly detection
was presented. Three main requirements are identified and
satisfied: At first a hardware concept for sensor data ac-
quisition in the heterogeneous environment of WPPs was
developed. This hardware logs existing sensor values and
offers an adaptive solution to integrate new sensors on de-
mand. Second, generic data-driven algorithms to automati-
cally compute a system-level model out of minimal labeled,
historical sensor data is presented. At last an anomaly detec-
tion method has been shown, which reaches an F-Measure
of 89.02% and a ballanced accuracy of 91.46%. This solu-
tion is not specialized for specific parts of a WPP and can be
trained in a short period. With an extension of the standard
PCA to a probabilistic PCA, the robustness of the algorith-
mic solution against sensor failures is ensured.

In the future, this solution will be evaluated using data
from more WPPs with different working environment. Be-
yond the task of anomaly detection, diagnosis of the root
cause of an anomaly is also a sensible functionality of a CM
system. The presented solution will be extended by a root
cause analysis. Such an extension can support maintenance
personal to trace the detected anomaly. Another focus will
be the prognosis of anomalies in a WPP. To achieve this, an
appropriate algorithm will be developed to predict the future
system status using the learned model of the system behav-
ior.
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Abstract
We extend in this work the existing approach to
analyse diagnosability in discrete event systems
(DES) using satisfiability algorithms (SAT), in or-
der to analyse the diagnosability in distributed
DES (DDES) and we test this extension. For this,
we handle observable and non observable com-
munication events at the same time. We also pro-
pose an adaptation to use incremental SAT over
the existing and the extended approaches to over-
come some of the limitations, especially concern-
ing the length and the distance of the cycles that
witness the non diagnosability of the fault, and
improve the process of dealing with the reacha-
bility limit when scaling up to large systems.

1 Introduction
Diagnosis task is mainly using the available observations to
explain the difference between the expected behavior of a
system and its real behavior which may contain some faults.
Many works have been done to study the automatic ap-
proaches to system fault diagnosis. They all try to deal with
the main problem, i.e. the compromise between the number
of possible diagnoses to the considered faults and the num-
ber of observations which must be given to make the deci-
sion. Diagnosis problem is NP-hard and one always needs
to cope with an explosion in the number of system model
states. Moreover, the diagnosis decision is not always cer-
tain, and thus running a diagnosis algorithm may not be ac-
curate. For example, two sets of observations provided by
different sets of sensors or at different times may lead to
different diagnoses. This uncertainty raises the problem of
diagnosability which is essential while designing the system
model. After that, the model based diagnosis will be used
in applications to explain any anomaly, with a guarantee of
correctness and precision at least for anticipated faults.
Diagnosability of the considered systems is a property de-
fined to answer the question about the possibility to distin-
guish any possible faulty behavior in the system from any
other behavior without this fault (i.e., correct or with a dif-
ferent fault) within a finite time after the occurrence of the
fault. A fault is diagnosable if it can be surely identified
from the partial observation available in a finite delay af-
ter its occurrence. A system is diagnosable if every possible
fault in it is diagnosable. This property provides information
before getting into finding the explanations of the fault. It
also helps in designing a robust system against faults and in

positioning the sensors to manage the observation require-
ments. The main difficulty in diagnosability algorithms is
related to the states number explosion. Another difficulty
appears when checking diagnosability of a system which
is actually diagnosable, i.e. the inexistence of a counter-
example witnessing non diagnosability. Thus all possibili-
ties need to be tested as for proving the non existence of a
plan in a planning problem, and usually in this case some
approximations are used to avoid exploring all the search
space.
The paper is structured as follows. Section 2 will introduce
the system transition models for centralized DES and recall
the traditional definition of the diagnosability in those mod-
els and the state of the art of encoding this definition as a
satisfiability problem in propositional logic. Section 3 will
present our first contribution, an extension of this state of the
art to DDES with observable and non observable communi-
cation events in the same model, and will give experimental
results of this extension. Section 4 is devoted to our sec-
ond contribution, using incremental SAT calls to overcome
the limitation when the number of steps required to check
diagnosability, i.e., the length of possible paths with cycles
witnessing non diagnosability, is large, and will present ex-
perimental results showing how the method scales up. Sec-
tion 5 will present related works and section 6 will conclude
and give our perspectives for future work.

2 Using SAT in Diagnosability Analysis of
Centralized Systems

We recall first the definitions of DES models we use and of
diagnosability for these models.

2.1 Preliminaries
We will use finite state machines (FSM) to model systems.
We define labeled transition systems following [1].

Definition 1. A Labeled Transition System (LTS) is
a tuple T = 〈X,Σo,Σu,Σf , δ, s0〉 where:

• X is a finite set of states,

• Σo is a finite set of observable correct events,

• Σu is a finite set of unobservable correct events,

• Σf is a finite set of unobservable faulty events,

• δ ⊆ X× (Σo∪Σu∪Σf )×X is the transition relation,

• s0 is the initial state.
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In [2] the authors used an equivalent but more compact
representation than LTS for modeling systems in order to
analyze their diagnosability: succinct transition systems,
that exploit the regularity in the systems structures and
are expressed in terms of propositional variables, which
allowed them to translate more easily to a SAT problem the
twin plant method proposed by [3] for checking diagnos-
ability.
As we aim at studying the diagnosability of DDES using
SAT solvers, we will follow the model of [2] who stud-
ied the same problem in centralized DES. It represents
the system states by the valuations of a finite set A of
Boolean state variables where valuation changes reflect
the transitions between states according to the events. The
set of all literals issued from A is L = A ∪ {¬a|a ∈ A}
and L is the language over A that consists of all formulas
that can be formed from A and the connectives ∨ and
¬. We use the standard definitions of further connec-
tives Φ ∧ Ψ ≡ ¬(¬Φ ∨ ¬Ψ),Φ → Ψ ≡ ¬Φ ∨ Ψ and
Φ ↔ Ψ ≡ (Φ → Ψ) ∧ (Ψ → Φ). The transition relation
is defined to allow two or more events to take place
simultaneously. Thus each event is described by a set of
pairs 〈φ, c〉 which represent its possible ways of occurrence
by indicating that the event can be associated with changes
c ∈ 2L in states that satisfy the condition φ ∈ L.

Definition 2. A Succinct Transition System (SLTS)
is described by a tuple T = 〈A,Σo,Σu,Σf , δ, s0〉 where:
• A is a finite set of state variables,
• Σo is a finite set of observable correct events,
• Σu is a finite set of unobservable correct events,
• Σf is a finite set of unobservable faulty events,

• δ : Σ = Σo ∪Σu ∪Σf → 2L×2L

assigns to each event
a set of pairs 〈φ, c〉,
• s0 is the initial state (a valuation of A).

It is straightforward to show that any LTS can be repre-
sented as an SLTS (one takes dlog(|X|)e Boolean variables
and represents states by different valuations of these vari-
ables; one assigns to each occurence of an event e labeling
a transition (x, e, y) a pair 〈φ, c〉, with φ expressing the
valuation of x and c the valuation changes between x and
y). And reciprocally any SLTS can be mapped to an LTS
(see Definition 2.4 in [2]).
The formal definition of diagnosability of a fault f in a
centralized system modeled by (an LTS or SLTS) T was
proposed by [1] as follows:

Definition 3. Diagnosability. A fault f is diagnos-
able in a system T iff

∃k ∈ N, ∀sf ∈ L(T ),∀t ∈ L(T )/sf , |t| ≥ k ⇒
∀p ∈ L(T ), (P (p) = P (sf .t)⇒ f ∈ p).

In this formula, L(T ) denotes the prefix-closed language of
T whose words are called trajectories, sf any trajectory end-
ing by the fault f , L(T )/s the post-language of L(T ) after
s, i.e., {t ∈ Σ∗|s.t ∈ L(T )} and P the projection of tra-
jectories on observable events. The above definition states
that for each trajectory sf ending with fault f in T , for each
t that is an extension of sf in T with enough events, every
trajectory p in T that is equivalent to sf .t in terms of obser-
vation should contain in it f . As usual, it will be assumed

that L(T ) is live (i.e., for any state, there is at least one tran-
sition issued from this state) and convergent (i.e., there is no
cycle made up only of unobservable events).

A system T is said to be diagnosable iff any fault f ∈ Σf
is diagnosable in T . In order to avoid exponential complex-
ity in the number of faults during diagnosability analysis,
only one fault at a time is checked for diagnosability. It will
thus be assumed in the following that there exists only one
fault event f (Σf = {f}), without restriction on the num-
ber of its occurrences. Diagnosability checking has been
proved in [3] to be polynomial in the number |X| of states
for LTS, so exponential in the number |A| of state variables
for SLTS (actually the problem is NLOGSPACE-complete
for LTS and PSPACE-complete for SLTS [4]).

2.2 SLTS Diagnosability as Satisfiability
An immediate rephrasing of the definition 3 shows that T is
non diagnosable iff it exists a pair of trajectories correspond-
ing to cycles (and thus to infinite paths), a faulty one and
a correct one, sharing the same observable events. Which
is equivalent to the existence of an ambiguous (i.e. made
up of pairs of states respectively reachable by a faulty path
and a correct path) cycle in the product of T by itself, syn-
chronized on observable events, which is at the origin of the
so called twin plant structure introduced in [3]. This non
diagnosability test was formulated in [2] as a satisfiability
problem in propositional logic. We recall below this encod-
ing with the variables and the formulas used, where super-
scripts t refer to time points and (eto) and (êto) refer respec-
tively to the faulty and correct events occurrences sequences
(corresponding states being described by valuations of (at)
and (ât)) of a pair of trajectories witnessing non diagnos-
ability (so sharing the same observable events represented
by (et) and forming a cycle). The increasing of the time
step corresponds to the triggering of at least one transition
and the extension by an event of at least one of the two tra-
jectories. T = 〈A,Σu,Σo,Σf , δ, s0〉 being an SLTS, the
propositional variables are thus:

• at and ât for all a ∈ A and t ∈ {0, . . . , n},
• eto for all e ∈ Σo ∪Σu ∪Σf , o ∈ δ(e) and t ∈ {0, . . . ,
n− 1},

• êto for all e ∈ Σo ∪ Σu, o ∈ δ(e) and t ∈ {0, . . . ,
n− 1},

• et for all e ∈ Σo and t ∈ {0, . . . , n− 1}.
The following formulas express the constraints that must be
applied at each time step t or between t and t+ 1.

1. The event occurrence eto must be possible in the current
state:

eto → φt for o = 〈φ, c〉 ∈ δ(e) (2.1)

and its effects must hold at the next time step:

eto →
∧

l∈c
lt+1 for o = 〈φ, c〉 ∈ δ(e) (2.2)

We have the same formulas with êto.

2. The present value (True or False) of a state variable
changes to a new value (False or True, respectively)
only if there is a reason for this change, i.e., because of
an event that has the new value in its effects (so, change
without reason is prohibited). Here is the change from
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True to False (the change from False to True is de-
fined similarly by interchanging a and ¬a):

(at ∧ ¬at+1)→ (eti1oj1

∨ · · · ∨ etikojk

) (2.3)

where the ojl = 〈φjl , cjl〉 ∈ δ(eil) are all the occur-
rences of events eil with ¬a ∈ cji .
We have the same formulas with ât and êtilojl

.

3. At most one occurrence of a given event can occur at
a time and the occurrences of two different events can-
not be simultaneous if they interfere (i.e., if they have
two contradicting effects or if the precondition of one
contradicts the effect of the other):

¬(eto ∧ eto′) ∀e ∈ Σ,∀{o, o′} ⊆ δ(e), o 6= o′ (2.4)

¬(eto ∧ e′to′) ∀{e, e′} ⊆ Σ, e 6= e′,∀o ∈ δ(e),

∀o′ ∈ δ(e′) such that o and o′ interfere (2.5)

We have the same formulas with êto.
4. The formulas that connect the two events sequences

require that observable events take place in both se-
quences whenever they take place (use of et):

∨

o∈δ(e)
eto ↔ et and

∨

o∈δ(e)
êto ↔ et ∀e ∈ Σo (2.6)

The conjunction of all the above formulas for a given t is
denoted by T (t, t+ 1).
A formula for the initial state s0 is:

I0 =
∧

a∈A,s0(a)=1

(a0∧â0) ∧
∧

a∈A,s0(a)=0

(¬a0∧¬â0) (2.7)

At last, the following formula can be defined to encode
the fact that a pair of executions is found with the same ob-
servable events and no fault in one execution (first line), but
one fault in the other (second line), which are infinite (in
the form of a non trivial cycle, so containing at least one
observable event, 1 at step n; third line), witnessing non di-
agnosability:

ΦTn = I0 ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n) ∧
n−1∨

t=0

∨

e∈Σf

∨

o∈δ(e)
eto ∧

n−1∨

m=0

(
∧

a∈A
((an ↔ am) ∧ (ân ↔ âm)) ∧

n−1∨

t=m

∨

e∈Σo

et)

From this encoding in propositional logic, follows the re-
sult (theorem 3.2 of [2]) that an SLTS T is not diagnosable
if and only if ∃n ≥ 1,ΦTn is satisfiable. It is also equivalent
to ΦT

22|A| being satisfiable, as the twin plant states number is
an obvious upper bound for n, but often impractically high
(see in [2] some ways to deal with this problem).

3 Using SAT in Diagnosability Analysis of
Distributed Systems

We extend from centralized systems to distributed systems
the satisfiability framework of subsection 2.2 for testing di-
agnosability and we provide some experimental results.

1This verification that the cycle found is not trivial was not done
in [2]; it is why the authors had to add for each time point a for-
mula, not needed here, guaranteeing that at least one event took
place, to avoid silent loops with no state change.

3.1 DDES Modeling
In order to model DDES with SLTS, we need to extend
these ones by adding communication events to each com-
ponent. So we use the following definition for a distributed
SLTS with k different components (sites):

Definition 4. A Distributed Succinct Transition
System (DSLTS) with k components is described by a tuple
T = 〈A,Σo,Σu,Σf ,Σc, δ, s0〉 where (subscripts i refer to
component i):

• A is a union of disjoint finite sets (Ai)1≤i≤k of com-
ponent own state variables, A = ∪ki=1Ai,

• Σo is a union of disjoint finite sets of component own
observable correct events, Σo = ∪ki=1Σoi,

• Σu is a union of disjoint finite sets of component own
unobservable correct events, Σu = ∪ki=1Σui,

• Σf is a union of disjoint finite sets of component own
unobservable faulty events, Σf = ∪ki=1Σf i,

• Σc is a union of finite sets of (observable or unobserv-
able) correct communication events, Σc = ∪ki=1Σci,
which are the only events shared by at least two differ-
ent components (i.e., ∀i,∀c ∈ Σci,∃j 6= i, c ∈ Σcj),

• δ = (δi), where δi : Σi = Σoi ∪ Σui ∪ Σf i ∪ Σci →
2Li×2Li , assigns to each event a set of pairs 〈φ, c〉 in
the propositional language of the component where it
occurs (so, for communication events, in each compo-
nent separately where they occur),

• s0 = (s0i) is the initial state (a valuation of each Ai).

In this distributed framework, synchronous communication
is assumed, i.e., communication events are synchronized
such that they all occur simultaneously in all components
where they appear. More precisely, a transition by a com-
munication event c may occur in a component iff a simul-
taneous transition by c occurs in all the other components
where c appears (has at least one occurrence). In particular,
all events before c in trajectories in all these components
necessarily occur before all events after c in these trajecto-
ries. The global model of the system is thus nothing else that
the product of the models of the components, synchronized
on communication events. Notice that we allow in whole
generality communication events to be, partially or totally,
unobservable, so one has in general to wait further obser-
vations to know that some communication event occurred
between two or more components. On the other side, as-
suming these communications to be faultless is not actually
a limitation. If a communication process or protocol may be
faulty, it has just to be modeled as a proper component with
its own correct and faulty behaviors (the same that, e.g., for
a wire in an electrical circuit). In this sense, communica-
tions between components are just a modeling concept, not
subject to diagnosis. It will be also assumed that the observ-
able information is global, i.e. centralized (when observable
information is only local to each component, distributed di-
agnosability checking becomes undecidable [5]), allowing
to keep definition 3 for diagnosability.

3.2 DSLTS Diagnosability as Satisfiability
Let T be a DSLTS made up of k components denoted by
indexes i, 1 ≤ i ≤ k. In order to express the diagnosability
analysis of T as a satisfiability problem, we have to extend
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the formulas of subsection 2.2 to deal with communication
events between components. Let Σc = Σco ∪ Σcu be the
communication events, with Σco = ∪ki=1Σcoi the observ-
able ones and Σcu = ∪ki=1Σcui the unobservable ones.

The idea is to treat each communication event as any
other event in each of its owners and, as it has been done
with events et for e ∈ Σo for synchronizing observable
events occurrences in the two executions, to introduce in the
same way a global reference variable for each communica-
tion event at each time step, in charge of synchronizing any
communication event occurrence in any of its owner with
occurrences of it in all its other owners. We use one such
reference variable for each trajectory, et and êt, for unob-
servable events e ∈ Σcu, and only one for both trajectories,
et, for observable events e ∈ Σco as it will also in addition
play the role of synchronizing observable events between
trajectories exactly as the et for e ∈ Σo. So, we add to the
previous propositional variables the new following ones:

• eto, êto for all e ∈ Σc, o ∈ δ(e) = ∪iδi(e) and
t ∈ {0, . . . , n− 1},

• et for all e ∈ Σc, êt for all e ∈ Σcu and
t ∈ {0, . . . , n− 1}.

Formulas in T (t, t+ 1) are extended as follows.

1. Formulas (2.1), (2.2), (2.3) and (2.5) extend unchanged
to eto and êto ∀e ∈ Σc, expressing that a communication
event must be possible and has effects in each of its
owner components and that two such different events
cannot be simultaneous if they interfere.

2. Formulas (2.4) extend to prevent two simultaneous oc-
currences of a given communication event in the same
owner component, i.e. apply ∀e ∈ Σc,∀i,∀{oi, oi′} ⊆
δi(e), oi 6= oi′ and the same with ê (obviously they do
not apply to different owner components, by the very
definition of communication events).

3. Finally, the new following formulas express the com-
munication process itself, i.e. the synchronization of
the occurrences of any communication event e in all its
owners components (S(e) being the set of indexes of
the owners components of e) and extend also formulas
(2.6) to observable communication events:

∨

oi∈δi(e)
etoi ↔ et and

∨

oi∈δi(e)
êtoi ↔ êt ∀e ∈ Σcu ∀i ∈ S(e)

∨

oi∈δi(e)
etoi ↔ et and

∨

oi∈δi(e)
êtoi ↔ et ∀e ∈ Σco ∀i ∈ S(e)

The formula ΦTn is unchanged except that, in the verification
that the found cycle (third line) is not trivial, any observable
event can be used, so the final disjunct of events et is ex-
tended to all e ∈ Σo ∪ Σco. We have thus the result that a
DSLTS T is not diagnosable if and only if ∃n ≥ 1,ΦTn is
satisfiable.

3.3 Implementation and Experimental Testing
We have implemented the above extension in Java. We used
the well designed API of the SAT solver Sat4j [6]. If more
efficient solvers could have been chosen, it fitted well our
clause generator written in Java and only a limited speed
up can be awaited from C++ solvers (a speed up of 4, i.e.
reduction of 75% of the runtime is often observed).

We have tested our tool on small examples with sev-
eral communication events with multiple occurrences (three
communicating components) with global communication
(all components share the same event) or partial commu-
nication (only some components share the same event), as
in Figure 1, which was the running example in [7].

Figure 1: A DDES made up of 3 components C1, C2 and
C3 from left to right. ci,1≤i≤2 are unobservable communi-
cation events, oi,1≤i≤5 are observable events and fi,1≤i≤2
are faulty events.

The total number of propositional variables V arsNum
in the generated formula ΦTn after n steps is:
V arsNum = n × (2|A| + 3

∑Obs
i=1 ObOcci +∑Faults

i=1 FaultOcci + 2
∑Unobs
i=1 UnobOcci), where:

|A| is the total number of state variables,
Obs the total number of observable events,
ObOcci the total number of occurrences of the observable
event ei,
Faults the total number of faults,
FaultOcci the total number of occurrences of the faulty
event ei,
Unobs the total number of unobservable correct events,
UnobOcci the total number of occurrences of the unob-
servable correct event ei.
The results are in Table 1, where the columns show the
system and the fault considered (3 cases), the steps number
n, the numbers of variables and clauses and the runtime.

System Fault |Steps| SAT? |Variables| |Clauses| runtime(ms)
C2 f2 4 No 106 628 27
C2 f2 5 Yes 131 783 15
C2, C3 f2 5 No 225 1157 28
C2, C3 f2 32 No 1386 7340 641
C2, C3 f2 64 No 2762 14668 1422
C2, C3 f2 128 No 5514 29324 5061
C2, C3 f2 256 No 11018 58636 18970
C2, C3 f2 512 No 22026 117260 130164
C2, C3 f2 1024 No 44042 234508 548644
C1, C2, C3 f1 8 No 576 3546 91
C1, C2, C3 f1 9 Yes 646 3987 110

Table 1: Results on the example of Figure 1.

Which means that f2 is not diagnosable in C2 alone
while it becomes diagnosable when synchronizing C2 and
C3. For this last result, we have increased the steps number
until reaching 22|A|, which is the theoretical upper bound of
the twin plant states represented in the logical formula. As
in general it is not always possible to reach this bound in
practice, we propose in section 4 using incremental SAT to
improve the management of increasing steps number. While
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f1 is not diagnosable even after synchronizing all three
components together. Numbers of variables and clauses are
small in comparison to what SAT solvers can handle (up to
hundred thousands propositional variables and millions of
clauses). These tests are mentioned as a proof of concept.
However, to test the tool on larger systems and because of
the absence of benchmark in the literature, we have created
in subsection 4.2. an example that can be scaled up.

4 Adaptation to Incremental SAT
Diagnosability Checking

We adapt satisfiability algorithms for checking diagnosabil-
ity of both centralized (subsection 2.2) and distributed (sub-
section 3.2) DES in order to incrementally process the max-
imum length of paths with cycles searched for witnessing
non diagnosability and we provide experimental results.

4.1 Diagnosability as Incremental Satisfiability
Two cases have to be distinguished while testing diagnos-
ability using SAT solvers to verify the satisfiability of the
logical formula ΦTn for a given n [2]. The first case is when
we find a model for ΦTn , which definitely indicates the non
diagnosability of the studied fault. The second case is when
we do not find such a model: this result indicates just that the
studied fault has not been found non diagnosable according
to the value of n. In other words, after testing all the possible
first n steps, we did not find a pair of executions of length
at most n containing cycles such that one of them contains
the fault and not the other and such that the two executions
are equivalent in terms of observation. However, as the the-
oretical upper bound n = 22|A| which would guarantee that
the fault is actually diagnosable is often in practice unreach-
able, such a pair may exist for a greater value of n. Testing
it means increasing n and rebuilding the logical formula ΦTn
then recalling the SAT solver.

Instead, we propose to adapt the formula ΦTn in order to
be tested in an incremental SAT mode by multiple calls to
a Conflict Driven Clause Learning (CDCL) solver. Using
CDCL solvers in a specialized, incremental, mode is rela-
tively new but already widely used [8] in many applications.
In this operation mode, the solver can be called many times
with different formulas. However, solvers are designed to
work with similar formulas, where clauses are removed and
added from calls to calls. Learnt clauses can be kept as soon
as the solver can ensure that clauses used to derive them are
not removed. This is generally done by adding specialized
variables, called assumptions, to each clause that can be re-
moved. By assuming the variable to be False, the clause
is activated and by assuming the variable to be True, the
clause is trivially satisfied and no longer used by the solver.
What is interesting for our purpose is that the CDCL solver
can save clauses learnt during the previous calls and test
multiple assumptions in each new call. This means that af-
ter n steps we hope that the solver will have learnt some
constraints about the behavior of the system. Although we
are interested in testing the diagnosability property on a de-
fined system, this property is independent from the system
behavior which can be learnt by the solver from the previous
calls.

In order to extend the clauses representation given in sub-
sections 2.2 and 3.2 to this mode of operation, we propose
to divide the formula ΦTn in two parts. The first part Tn de-
scribes the first n steps, synchronized on the observations,

of the behavior of both trajectories (represented by the con-
junction of formulas T (t, t+1), 0 ≤ t ≤ n−1, representing
the (t + 1)th step). The second part Dn describes the diag-
nosability property at step n, i.e., the occurrence of a fault
in the n previous steps of the faulty trajectory (given by the
formula Fn) and the detection of a cycle at step n (given by
the formula Cn). So we obtain, for n ≥ 1:

ΦTn = Tn ∧ Dn

Tn = I0 ∧
n−1∧

t=0

T (t, t+ 1) Dn = Fn ∧ Cn

Fn =
n−1∨

t=0

∨

e∈Σf

∨

o∈δ(e)
eto

Cn =
n−1∨

m=0

(
∧

a∈A
((an ↔ am) ∧ (ân ↔ âm)) ∧

n−1∨

t=m

∨

e∈Σo

et)

Add now at each step j a control variable hj allowing to
disable (when its truth value is False) or activate (when its
truth value is True) the formulas Fj and Cj and keep at step
n all these controlled formulas for 1 ≤ j ≤ n. We obtain
the following ΨT

n formula, for n ≥ 1:

ΨT
n = Tn ∧

n∧

j=1

Dj ′ Dj ′ = Fj ′ ∧ Cj ′ 1 ≤ j ≤ n

Fj ′ = ¬hj ∨ Fj Cj ′ = ¬hj ∨ Cj 1 ≤ j ≤ n
We have thus the equivalence, for all n ≥ 1:

ΦTn ≡ ΨT
n ∧ hn ∧

n−1∧

j=1

¬hj

This allows one, for all n ≥ 1, to replace the SAT call on
ΦTn by a SAT call on ΨT

n under the control variables set-
ting given by Hn = {¬h1, . . . ,¬hn−1, hn} (indicated in a
second argument of the call):

SAT (ΦTn ) = SAT (ΨT
n , Hn)

The idea is now to consider the control variables hj as as-
sumptions and use incremental SAT calls IncSATj under
varying assumptions, for 1 ≤ j ≤ n. For this, we use
the following recurrence relationships for both formulas ΨT

j
and assumptions Hj :

ΨT
0 = I0 ΨT

j+1 = ΨT
j ∧ T (j, j + 1) ∧ Dj+1

′ j ≥ 0

H1 = {h1} Hj+1 = Hj [{¬hj , hj+1}] j ≥ 1

where the notation Hj [{assi}] means updating in Hj

assumptions hi by their new settings assi, i.e., in the
formula above, replacing the truth value of hj , which was
True, by False, and adding the new assumption hj+1

with truth value True. From these relationships, the unique
call to SAT under given assumptions SAT (ΨT

n , Hn) can
be replaced, starting with the set of clauses I0, by multiple
calls, 0 ≤ j ≤ n − 1, to an incremental SAT under varying
assumptions:

IncSATj+1(NewClausesj+1, NewAssumptionsj+1)

= IncSATj+1(T (j, j + 1) ∧ Dj+1
′, {¬hj , hj+1}) (4.1)

If IncSATj answers SAT, the search is stopped as non diag-
nosability is proved, if it answers UNSAT, then IncSATj+1

is called.
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Notice that we used a unique assumption hj for control-
ling both Fj and Cj as non diagnosability checking requires
the presence of both a fault occurrence in the faulty trajec-
tory and of a cycle. But the same framework allows the
independent control of formulas by separate assumptions.
For sake of simplicity, we also assumed we called IncSAT
at each step, but this is not mandatory and indexes j for the
successive calls can be decoupled from indexes t for steps.
We should also say that, even if IncSAT allows us to re-
activate an already disabled clause, we are sure in our case
to never use this function (when hk has been set to False,
it always remains so) and we can thus force the solver to
do a hard simplification process that removes the forgotten
clauses permanently. As a result of our adaptation we will
be able to scale up the size of the tested system and the dis-
tance and length of a cycle witnessing non diagnosability.

4.2 Experimental Results
We show in this subsection a comparison between our
adapted version of subsection 4.1, that uses incremental
SAT, and the previous versions, for centralized model (sub-
section 2.2 following [2]) and for distributed model (subsec-
tion 3.2). We have created the example in Figure 2 which
contains 2k + 1 components: one faulty component and
two sets of k neighboring components. The faulty compo-
nent has two separated paths, each one containing k differ-
ent successive unobservable events ci and ending with the
same observable cycle of length 1, but only one of them
contains the fault. The centralized model will be limited to
this faulty component alone and thus in this case the events
ci, 1 ≤ i ≤ 2k, are just unobservable events as is u. In
the distributed model, these events ci are communication
events and the faulty component is considered with the other
two sets of components, where each component in both sets
shares one event ci with the faulty component to ensure a
number 2k of communications before arriving to the cycles
that will witness the non diagnosability of the fault. Each
set of components will be synchronized with only one path,
either the faulty path or the correct one. This allows us to
study the effect of the cycle distance in both models.

Figure 2: One faulty component that communicates with
two sets of k components. Each set communicates with one
path (resp. faulty and correct) in the faulty component.

The results are in Table 2 for the centralized model (for k
= 18, 28, 38, 48, 58 and 98) and in Table 3 for the distributed

model (for k = 3, 13, 23, 33, 43 and 63). The length of a pair
of executions with cycles witnessing the non diagnosability
of f in each example is k + 2 and we consider the satisfia-
bility of the formula ΦTk+2, so the number of steps required
for SAT to provide the answer Yes is: |Steps] = k + 2. In
order to obtain a fair comparison between IncSAT , which
manages internally by handling assumptions the successive
satisfiability checks of increasing formulas for j = 1, . . . ,
k+2, and SAT, for which k+2 successive calls are made to
the solver with respective formulas ΦTn for n = 1, . . . , k+2,
the sum of the k + 2 runtimes of the SAT solver calls are
considered in this case (last column in the tables).

|Steps| |Clauses| Inc. SAT(s) SAT(s)
20 42,614 1.5 1.3
30 131,714 10.3 13.1
40 303,736 49.3 77.8
50 576,466 106 223
60 970,156 320 699
100 4,334,018 9410 13040

Table 2: Results on the faulty component of Figure 2.

|Steps| |Comps| |Clauses| Inc. SAT(s) SAT(s)
5 7 1,962 0.04 0.06
15 27 30,313 0.8 0.5
25 47 113,906 6.5 4.8
35 67 277,873 33.8 33.7
45 87 542,033 111 132
65 127 1,490,590 967 1090

Table 3: Results on the whole system of Figure 2.

Although these examples remain relatively simple and do
not reflect any potential constraint that could be resumed by
some learnt clauses (e.g. no interfering events), we can al-
ready notice the difference in runtime in favor of our incre-
mental version in the centralized case and for the two largest
values of k in the distributed case. This difference could be
explained by the fact that generating all variables from the
beginning for all time steps and for all events imply many
meaningless clauses that would add a load on the solver in
the version in [2], this load being avoided in our incremen-
tal version because of the clauses learnt by the CDCL SAT
solver. From another side, we should say that generating in
both versions all variables from the beginning has two main
advantages: firstly, it allows the system description without
unfolding it (even if this description is verbose); secondly,
it allows the ordering of these variables by their time step
in order to generate the constraints for only one time step
and then get next steps constraints by just shifting the num-
bers (as we are representing the clauses in DIMACS for-
mat). One last point could help to a more efficient descrip-
tion of the system: in the succinct systems we represent all
the occurrences of an event together, but in its SAT encod-
ing we “unfold” this succinctness by generating for each
occurrence n variables (for n time steps), even though log-
ically only one of them will be assigned to True. We could
thus mark this relation among these n copies by introducing
a global cardinality constraint to express that these copies
belong to only one occurrence of an event.
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5 Selection of Related Works
The first introduction to the notion of diagnosability was by
[1]. The authors studied diagnosability of FSM, as defined
in definition 1. Their formal definition of diagnosability is
the one we mentioned in definition 3. They introduced an
approach to test this property by constructing a deterministic
diagnoser. However, in the general case, this approach is
exponential in the number of states of the system, which
makes it impractical.

In order to overcome this limitation [3] introduced the
twin plant approach, which is a special structure built by
synchronizing on their observable events two identical in-
stances of a nondeterministic fault diagnoser, and then
searched for a path in this structure with an observed cy-
cle made up of ambiguous states, i.e. states that are pairs
of original states, one reached by going through a fault and
the other not. Thus faults diagnosability is equivalent to the
absence of such a path, called a critical path. This approach
turns the diagnosability problem in a search for a path with
a cycle in a finite automaton, and this reduces its complexity
to be polynomial of degree 4 in the number of states (and ex-
ponential in the number of faults, but processing each fault
separately makes its linear in the number of faults).

Let us mention here that the two previous works were in-
terested in centralized systems with simple faults modeled
as distinguished events. The first studies about fault pat-
terns were introduced in [9] and [10] which generalize the
simple fault event in a centralized DES to handle a sequence
of events considered together as a fault, or handle multiple
occurrences of the same fault or of different faults. More
generally, a fault pattern is given as a suffix-closed rational
events language (so by a complete deterministic automaton
with a stable subset of final states).

The first work that addressed diagnosability analysis in
DDES was [7]. A DDES is modeled as a set of communicat-
ing FSM. Each FSM has its own events set, communication
events being the only ones shared by at least two different
FSM. In [7] was introduced an incremental diagnosability
test which avoids to build the twin plant for the whole dis-
tributed system if not needed. Thus one starts by building
a local twin plant for the faulty component to test the exis-
tence of a local critical path. If such a path exists one builds
the local twin checkers of the neighboring components. Lo-
cal twin checker is a structure similar to local twin plant,
i.e., where each path in it represents a pair of behaviors with
the same observations, except that there is no fault infor-
mation in it since it is constructed from non-faulty compo-
nent. After constructing local twin checkers, one tries to
solve the ambiguity resulting from the existence of a critical
path in the local twin plant. This is done by synchronizing
on their communication events this local twin plant with the
local twin checker of one neighboring component. In other
words, one tries to distinguish the faulty path from the cor-
rect one by exploiting the observable events in the neigh-
boring components, because theses events occurrences that
are consistent with the occurrences of the communication
events could solve the ambiguity. The process is repeated
until the diagnosability is answered, so only in the worst
case has the whole system to be visited. Another impor-
tant contribution in this work was to delete the unambigu-
ous parts after each synchronization on the communication
events, reducing thus the amount of information transferred
to next check (if needed). The approach assumed simple

faults.
The work by [11] has optimized the construction of lo-

cal twin plants, by exploiting the fact that one distinguishes
two behaviors (faulty and correct) and one synchronizes at
two levels (observations first and communications later). It
improved the construction of the twin plants proposed by
[7] by exploiting the different identifiers given to the com-
munication events at the observation synchronization level
(depending on which instance, left or right, they belong to)
to assign them directly to the two behaviors studied (left
copy assigned to the faulty behavior, right copy to the cor-
rect one). This helped in deleting the redundant informa-
tion, then in abstracting the amount of information to be
transferred later to next steps if the diagnosability was not
answered. The generalization to fault patterns in DDES was
introduced by [12].

After the reduction of diagnosability problem to a path
finding problem by [3], it became transferable to a satis-
fiability problem like it is the case for planning problems
[13]. This was done by [2] which formulated the diagnos-
ability problem (in its twin plant version) into a SAT prob-
lem, assuming a centralized DES with simple fault events.
The authors represented the studied transition system by a
succinct representation (cf. definition 2). This allows both
a compact representation of the system states and a max-
imum amount of non interfering events to be fired simul-
taneously. Thus, they represented the system states by the
valuation of a set of Boolean state variables (dlog(q)e state
variables for q states) and the interference relation between
two events according to the consistency among their effects
and preconditions, one versus the other. They distinguished
between an occurrence of an event in the faulty sequence or
in the correct sequence by introducing two versions of it and
constructed the logical formula expressing states transitions
for each possible step in the system. Each step may con-
tain simultaneous events that belong to faulty and correct
sequences but must synchronize the occurrence of observ-
able events whenever they take place. For a given bound n
of paths length, they made the conjunct of these formulas
for n steps and added the logical formula that represents the
occurrence of the fault in the faulty sequence and the oc-
currence of a cycle in both sequences. The satisfiability of
the obtained formula is equivalent to finding a critical path,
i.e. to the non diagnosability of the fault (see subsection 2.2
for a summary of this approach). Although this approach
allows one to test diagnosability in large systems, it has a
limitation which is that we cannot dynamically increase n
to ensure reaching more states while scaling up the size of
the system where the cycles that witness non diagnosabil-
ity can be very long. However the authors notice that we
are not always forced to test all reachable states in many
cases where an approximation for the reachable states can
be applied, but without explaining explicitly how such an
approximation can be found.

6 Conclusion and Future Works
By extending the state of the art works for centralized DES,
we have expressed diagnosability analysis of DDES as a
satisfiability problem by building a propositional formula
whose satisfiability, witnessing non diagnosability, can be
checked by SAT solvers. We allow both observable and
non observable communication events in our model. Our
expression of these communication events, which avoids
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merging all their owner components, helps in reducing the
number of clauses used to represent them and this reduction
is proportional to the number of their occurrences. We have
also proposed an adaptation of the logical formula in order
to use incremental SAT calls helping managing the scaling
up of the distance and the length of the intended cycles
witnessing non diagnosability and thus the size of the tested
system. Thus we exploited the clauses learnt about the
system behavior in the previous calls. This approach is
more practical and more efficient for complex systems than
existing ones, as it avoids starting from scratch at each call.

We are now considering the extension of this work to
fault patterns diagnosability [12]. We will use the same ap-
proach to express predictability analysis [14] as a satisfia-
bility problem, for DES and DDES [15] and both for simple
fault events and fault patterns [16] . Although our represen-
tation can be easily extended to deal with local observations
(i.e., observable events in one component are observed only
by this component), we know that in general diagnosability
checking becomes then undecidable, e.g. when communica-
tion events are unobservable (obviously it remains decidable
when these events are observable in all their owners) [5]. A
future work will be to study decidable cases of diagnosabil-
ity checking in DDES with local observations, e.g. assum-
ing some well chosen communication events being observ-
able. Another natural question is to study if the methods
used in [7] and refined in [11] to check diagnosability in
DDES in an incremental way in terms of the system com-
ponents could be transposed as guiding strategies for some
component incremental SAT based approach for testing di-
agnosability in DDES. Transposing in SAT these methods,
based on building a local twin plant and local twin check-
ers for gaining efficiency with regards to a global checking,
seems difficult. Basically, at any step k, corresponding to
considering a subsystem made up of k components, these
methods build all critical paths witnessing non diagnosabil-
ity at the level of this subsystem and the incremental step,
when adding a (k + 1)th neighboring component, consists
in checking the consistency of these pairs with the observa-
tions in the new component: only those pairs which can be
consistently extended are kept, if any. In addition, in [11],
only useful and abstracted information is kept from one step
to the next one. With SAT, only one critical pair witness-
ing non diagnosability of the subsystem (i.e., a model for
the formula) will be built. If it is not consistent, and thus
disappears, when adding the (k+ 1)th component, diagnos-
ability is not proven for all that: other critical pairs in the
subsystem, not completely computed at step k, may exist
and be extendible to step (k + 1). So, they have to be com-
puted now, which limits the incremental characteristic of the
approach. In the same way, abstracting some information
is difficult to achieve with SAT. So, there is no evidence
a priori that efficiency gain could be obtained by trying to
develop a component incremental SAT based approach for
testing DDES diagnosability.
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Abstract
Model-based fault isolation and identification in
hybrid systems is computationally expensive or
even unfeasible for complex systems due to the
presence of uncertainty concerning the actual
state, and also due to the presence of both dis-
crete and parametric faults coupled with changing
modes in the system. In this work we improve
fault isolation and identification performance for
hybrid systems diagnosis using Hybrid Possible
Conflicts. The Hybrid Bond Graph modeling ap-
proach makes feasible to track system behavior
without enumerating the complete set of system
modes. Hybrid Possible Conflicts focus the anal-
ysis on potential mode changes on those sub-
systems whose behavior deviates from expected.
Moreover, using information derived from the
Hybrid Bond Graph model, we can cope with both
discrete and parametric faults in a unique frame-
work.
Fault detection with Hybrid Possible Conflicts re-
lied upon an statistical test to decide when a sig-
nificant deviation in the residual occurs. Fault de-
tection time was later used to start the fault isola-
tion and identification stages. In this work we pro-
pose to analyze the evolution of the residual sig-
nal using CUSUM to find a more accurate estima-
tion of the time of fault occurrence, which allows
to improve both the potential new modes track-
ing and the parametric fault identification. More-
over, we extend our previous proposal for fault
identification in continuous systems to cope with
fault identification along a set of mode changes
while performing parameter identification. We
have tested these ideas in a four-tank hybrid sys-
tem with satisfactory results.

1 Introduction
Complex hybrid systems are present in a broad range of en-
gineering applications, such as mechanical systems, electri-
cal circuits, or embedded computation systems. The behav-
ior of these systems is made up of continuous and discrete
event dynamics.The main sources of hybrid behavior are
discrete actuators, like discrete valves or switches in fluid or

electrical systems, respectively. These changes in the con-
tinuous behavior increase the difficulties for accurate and
timely online fault diagnosis. Our focus in this paper is on
developing efficient model-based methodologies for online
fault isolation and identification in complex hybrid systems.

Both the DX and the FDI communities have approached
hybrid systems modeling and diagnosis during the last 20
years. They have used different modeling proposals [1; 2;
3], and have approached diagnosis either as hybrid state es-
timation [2] or as online state tracking [4; 5; 6], or a combi-
nation of both methods [7]. The main difficulties in any ap-
proach is to estimate the current state or set of states, and to
diagnose that set of feasible states. Both tasks are computa-
tionally expensive or even unfeasible for complex systems.
Several approaches have been proposed in the DX field to
tackle these problems [4; 6].

In this work we have selected the hybrid system model-
ing based on Hybrid Bond Graphs (HBGs) [1; 6], together
with consistency-based diagnosis using Possible Conflicts
(PCs) [8]. HBGs are an extension of Bond Graphs (BG)
[9], which models the discrete changes as ideal switching
junctions that can be set to ON or OFF according to an au-
tomaton. In [10] we presented Hybrid Possible Conflicts
(HPCs) as an extension of Possible Conflicts using HBGs
to track hybrid systems behavior. Later, the HPCs approach
was extended to integrate fault diagnosis of both parametric
and discrete faults using HPCs [11] in a unique framework.

In order to achieve efficient fault identification, it is very
important to determine the time of fault occurrence as ac-
curately and quickly as possible. But there is a required
trade-off between fast and reliable fault detection. In our
approach we relied upon an statistical test to decide when a
residual deviates from the current mode, and used this time
to start the fault isolation and identification stages, however,
the fault detection instant can be delayed from the fault oc-
currence time and this has some problems (e.g., that the fault
identification process is delayed, or that we have to assume
that we know the value of the state variables at the beginning
of the identification process). In this work we propose to an-
alyze the evolution of the residual signal using the CUSUM
algorithm [12; 13] to find a more accurate estimation of the
time of fault occurrence, both for potential new modes track-
ing and for parametric fault identification. Moreover, we
extend our previous proposals for fault identification [14;
15] to cope with fault identification along a set of mode
changes while performing the parameter identification.
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The rest of the paper is organized as follows. Section
2 presents the case study used along the paper and intro-
duces the Hybrid Bond Graph (HBG) modeling technique.
Section 3 summarizes the Hybrid Possible Conflicts (HPCs)
background, while section 4 explains the unified framework
for both discrete and parametric faults. Section 5 introduces
some concepts related to the CUSUM algorithm required
in our approach. Section 6 explains our approach for fault
identification. Section 7 introduces some results obtained
applying our proposal on our case study. Finally, Section 8
draws some conclusions.

2 Case Study
The hybrid four-tank system in Figure 1 will be used to show
some concepts and to present some results in this work. The
system has an input flow which can be sent to tank 1, to tank
3 or to both tanks. Next to tank 1 there is tank 2, once the
liquid in tank 1 reaches a level of h it starts to fill also tank
2. The lower part of the system has the same configuration,
tank 4 is next to tank 3 connected by a pipe at a distance h
above the base of the tanks.

Figure 1: Schematics of the four-tank system

The methodology chosen to model the system in this
work is Hybrid Bond Graph (HBG), which is an exten-
sion of Bond Graphs (BGs). BGs are defined as a domain-
independent energy-based topological modeling language
for physical systems [9]. Several types of primitive elements
are used to build BGs: storage elements (capacitances, C,
and inductances, I), dissipative elements (resistors, R) and
elements to transform energy (transformers, TF, and gyra-
tors, GY). There are also effort and flow sources (Se and
Sf), which are used to define interactions between the sys-
tem and the environment. Elements in a BG are connected
by 0 or 1 junctions (representing ideal parallel or series con-
nections between components). Each bond has associated
two variables (effort and flow). The power is defined as ef-
fort × flow for each bond. The SCAP algorithm [16] is used
to assign causality automatically to the BG.

To model hybrid systems using BGs we need to use some
kind of connections which allow changes in their state. Hy-
brid Bond Graphs (HBGs) [1] extend BGs by including
those connections. They are idealized switching junctions
that allow mode changes in the system. If a switching junc-
tion is set to ON, it behaves as a regular junction. When it
changes to OFF, all bonds incident on the junction are de-
activated forcing 0 flow (or effort) for 1 (or 0) junctions.

A finite state machine control specification (CSPEC) im-
plements those junctions. Transitions between the CSPEC
states can be triggered by endogenous or exogenous vari-
ables, called guards. CSPECs capture controlled and au-
tonomous changes as described in [17]. Figure 2 shows the
HBG model of the four-tank system in Figure 1.

Figure 2: Bond graph model of the plant.

The system has four switching junctions: SW1, SW2,
SW3 and SW4. SW1 and SW3 are controlled ON/OFF
transitions, while SW2 and SW4 are autonomous transi-
tions. Both kinds of transitions are represented using a finite
state machine. Figure 3 shows: a) the automaton associated
with switching junction SW1 and b) the automaton repre-
senting the autonomous transition in SW2. Since the system
is symmetric, automata for SW3 and SW4 are equivalent to
the ones shown in Figure 3.

Figure 3: a) Automaton associated with the ON/OFF
switching junction SW1; b) Automaton representing the au-
tonomous transition in SW2.

3 Hybrid Possible Conflicts background
Consistency-based diagnosis of continuous systems using
Possible Conflicts (PCs) [8] is based upon a dependency-
compilation technique from the DX community. PCs are
computed offline, finding minimal structurally overdeter-
mined subsets of equations with sufficient analytical redun-
dancy to generate fault hypotheses from observed measure-
ment deviations. Only structural and causal information
about the system description is required. This information
can be obtained from a set of algebraic and/or differential
equations, or can be automatically derived from bond graph
models [18; 19]. Once the set of PCs is found, they can
be implemented as simulation, state-observers or gray-box
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models for tracking online actual system behavior [20], or
for online fault identification [14].

The PCs approach has been recently extended to cope
with hybrid system dynamics, and the set of PCs for hybrid
systems were called Hybrid Possible Conflicts (HPCs) [10].
HPCs rely upon the Hybrid Bond-Graph modeling formal-
ism [1], whose main advantage is that the set of possible
modes in the system do not need to be enumerated. More-
over, HBGs are capable to track online hybrid system be-
havior, performing online causality reassignment in the sys-
tem model by means of the HSCAP algorithm [17]. Using
HPCs we make even more efficient the HSCAP algorithm,
because causality needs only to be revised within the sub-
system defined for each HPC, and these changes are local to
the switching junction affected by the mode change.

For the four-tank system we have found four HPCs. Each
one of them estimates one of the measured variables (p1,
p2, p3, or p4). Figure 4 shows the BG fragments of these
four HPCs. In this example, the four HPCs were computed
assuming that all switching junctions are set to ON.

As mentioned before, when any of these junctions is
switched to OFF, causality in the system needs to be re-
assigned, but the HPCs generation process does not need to
be restarted again [10]. The decomposition of a hybrid sys-
tem model obtained from HPCs is unique, and after a mode
change some portions of some HPCs can disappear (or even
the entire HPC), but no additional HPC appears. It is proved
in [10] that once PCs of the system have been generated con-
sidering all switching junctions set to ON mode, turning a
switch from ON to OFF or viceversa, no genuine new HPCs
will ever appear.

Regarding fault profiles, our current proposal works with
single fault, and abrupt fault assumptions. Abrupt faults are
modeled as an instantaneous change in a parameter, whose
magnitude does not change afterwards (can be modeled as a
step function).

Regarding parametric faults, fault isolation is performed
by means of the Reduced Qualitative Fault Signature Matrix
(RQFSM). Table 1 shows the RQFSM for the mode where
each switch is set to ON. For a given mode, the RQFSM can
be computed online from the TCG associated to an HPC [1].
In this table there is a row for each fault considered. And
there is a column for each HPC. The entry in the table rep-
resent the Qualitative Fault Signature of the fault in the HPC
residual, as computed in TRANSCEND [1]. The “reduced”
tag means that the Qualitative Fault Signature is computed
within the subsystem delimited by a HPC, and not for the
whole set of measurements [18]. Once fault detection is
performed, we can use this information to reject those faults
whose residual evolution does not match the qualitative sig-
natures in this table.

We also consider discrete faults, i.e. faults in discrete ac-
tuators, as commanded mode switches which do not per-
form the correct action. In our case study, there are four
faulty situations to be considered, where SWi denotes the
switching junction i of the system.

1. SWi = 11: SWi stuck ON (1).

2. SWi = 00: SWi stuck OFF (0).

3. SWi = 01: Autonomous switch ON (SWi is OFF (0)
and it switches to ON itself (1)).

4. SWi = 10: Autonomous switch OFF (SWi is ON (1)
and it switches to OFF itself (0)).

Table 1: Reduced Qualitative Fault Signature Matrix.
HPC1 HPC2 HPC3 HPC4

C+
1 −+

C+
2 −+

C+
3 −+

C+
4 −+

R+
01 0− 0+

R+
03 0+ 0−

R+
1 0+

R+
2 0+

R+
3 0+

R+
4 0+

R+
12 0− 0−

R+
34 0+ 0−

The relation between the HPCs and their related switch-
ing junctions can be seen in Table 2, which is called Hybrid
Fault Signature Matrix (HFSM). This information can be
used in the unified framework for discrete and parametric
fault isolation and identification [11].

Table 2: Hybrid Fault Signature Matrix (HFSM) showing
the relations between switching junctions and each HPC.

HPC1 HPC2 HPC3 HPC4
1SW1

1 1
1SW2

1 1
1SW3

1 1
1SW4 1 1

Discrete faults usually introduce high non-linearities in
the system outputs, that should be easily detected if mag-
nitudes related to the failing switch were measured, gener-
ating almost instantaneous detection for discrete faults. In
this case, exoneration could be applied. But even if those
measurements are not available we can still use the qual-
itative signature of the effects of the discrete faults in the
HPC residuals. With this information we can build the so-
called Hybrid Qualitative Fault Signature Matrix (HQFSM)
that can also be used for exoneration purposes in the fault
isolation stage. In our system we can build the following
HQFSM for HPC1 and HPC3, which are linked to com-
manded switches SW1 and SW3, which are the potential
source of discrete faults in our system. We do not show
SW2 and SW4 in the table since they introduce hybrid dy-
namics in the system, but they can not be the source of a
discrete fault.

Table 3: Hybrid Qualitative Fault Signature Matrix.
HPC1 HPC3

1SW1(11) + −
1SW1(00) − +
1SW1

(01) + −
1SW1

(10) − +
1SW3

(11) − +
1SW3

(00) + −
1SW3(01) − +
1SW3(10) + −

Next section presents our diagnosis framework for hybrid
systems using HPCs.

4 Hybrid Systems Diagnosis using HPCs
As we mentioned before, tracking of hybrid systems can
be performed using Hybrid PCs [10]. Initially, the set of
HPCs is built assuming all switching junctions are set to ON.
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Figure 4: Bond graphs of the four PCs found for the four-tank system.

Afterwards, the set of models for the HPCs for the actual
mode are efficiently built, and they start tracking the system.
Whenever a mode change, commanded or autonomous, is
detected, a new set of models for the HPCs is computed on-
line.

In case a fault occurs, one or more HPC residuals will
trigger. Significant deviations in the residuals are found us-
ing the statistical Z-test. Based on the activated residuals
for the set of HPCs in the current mode, the structural in-
formation in the HQFSM (Table 3), and the RQFSM (Table
1), we build the current set of fault candidates. This set can
contain both discrete and parametric faults. Since discrete
faults generally have a bigger and potentially more danger-
ous influence in the system behavior, in our framework we
consider discrete faults as preferred candidates before con-
sidering the parametric ones. If there is no discrete fault as
candidate, then we directly go to the fault identification as
described in Section 6.

At this point we run the CUSUM algorithm (described
in Section 5) to approximately determine the time of fault
occurrence. Once this is done, we create a new simulation
model using the HPCs, and starting at the fault time deter-
mined by the CUSUM, we begin tracking the system be-
havior in each one of the hypothesized mode changes (the
HQFSM and the qualitative value of the HPC residuals are
used to reject those modes that are inconsistent with ex-
pected deviations in the HQFSM). If the hypothesized mode
is the correct one, the residual for that mode will go to zero
after a relatively small period of time (this is possible, as we
will show later, thanks to the accurate estimation of the fault
time provided by the CUSUM). If the hypothesized mode is
not correct, the residual will keep deviating from zero, and
after an empirically determined time window without con-
verging, the discrete fault candidate will be discarded. If

only one mode has the residual close to zero, this is the new
system mode.

If the residual for each hypothesized new mode does not
converge to zero, discrete faults (as mode changes) are dis-
carded and we focus on parametric faults, starting the identi-
fication stage. As mentioned before, qualitative fault signa-
tures in the RQFSM can be used to reject those parametric
faults non consistent with current observations thus focusing
even further the fault identification stage.

Finally, once the set of parametric fault candidates is
refined through the RQFSM, we perform fault identifica-
tion for the set of remaining parametric fault candidates.
Fault identification is done with hybrid parameter estima-
tors, which are presented in Section 6.

5 Time of Fault Estimation using CUSUM
In the previous section we have presented our fault isolation
approach of discrete faults by hypothesizing the faults com-
patible with the Hybrid Qualitative Fault Signature Matrix
and filtering out those faults whose models do not converge.
Divergence of non-current models is usually easy to check
when we are dealing with discrete faults. However, the con-
vergence of the current model may be slow if initial values
of the state variables of the model are not known or our ini-
tial guess is far from the actual value. We are assuming that
we are able to track the system dynamic before the occur-
rence of a fault. In other words, we are assuming that we
know -or we are able to estimate- the state variables before
the time of fault occurrence. Hence, in order to speed up the
convergence of the current model, it is important to have a
good estimation of that time.

The cumulative sum algorithm, CUSUM, introduced by
[12] and discussed in detail in [13] and elsewhere, is an op-
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timal fault detection algorithm that can also provide a esti-
mation of the time of fault occurrence t0, as we will detail
later. Nevertheless, it makes the strong assumption that the
signal we are tracking changes its mean value from a con-
stant initial mean µ0 to a final constant mean µ1.

On the other hand, the Z-test [21] is a sub-optimal fault
detection algorithm compared to CUSUM, but it makes no
assumptions concerning the properties of the new mean
value. Particularly, it does not require this to be constant.

In order to have a robust fault detection mechanism and
a good approximation of the fault time, we have opted for
combining both tests. We use Z-test to perform fault de-
tection and, afterwards, we estimate the fault time using
CUSUM.

CUSUM was designed to detect abrupt changes in the
mean of stochastic signals. In the simple case of a Gaus-
sian residual, res(i), of constant variance σ2, constant
and known initial mean µ0 and constant and known fi-

nal mean µ1, the decision signal, Sk, is Sk =
k∑
i=1

si =

k∑
i=1

µ1−µ0

σ2 (res(i)−µ0+µ1

2 ). Hence, for a window ofN sam-

ples with a change in mean at 1 ≤ t0 ≤ N , Sk decreases at
the constant rate µ = µ1−µ0

2 for k < t0 and increases by µ
for t0 ≤ k. It can be shown [13] that the change time t0 can
be estimated as t̂0 = argmink Sk.

When µ1 is unknown, it can be set to the residual corre-
sponding to the smallest fault to be detected, typically some
units of the residual noise deviation, σ. This can be done
without increasing the fault positive alarm rate because we
use Z-test to perform fault detection, and we only use this
CUSUM variant to estimate the time of fault occurrence, t0.
We have also tried estimating µ as the empirical mean of
the residual, with similar results. In all the cases we have
tested, the estimated time of fault occurrence, t̂0, computed
by CUSUM, is smaller than the detection time provided by
Z-test.

6 Fault Identification with HPCs
Once all the discrete fault candidates have been discarded,
we have to do fault identification for the set of isolated para-
metric faults. In previous work [14] we proposed to use
minimal parameter estimators computed from PCs to gen-
erate parameterized estimators. However, that approach is
not applicable for hybrid systems fault identification since
we can have mode changes during the identification pro-
cess. As a solution, we propose a extension of our minimal
parameterized estimators which are computed directly from
HPCs, thus being able to handle mode changes during the
identification process.

The fault identification process is done by the following
steps: (i) model decomposition by offline computation of
the set of HPCs from the hybrid bond graph model; (ii)
offline computation and selection of the better hybrid esti-
mator for each fault candidate; (iii) after the fault isolation
process, online quantitative parameter estimation procedure
over the hybrid estimators related with the set of isolated
fault candidates; and (iv) decision procedure to select the
faulty candidate.

Using HPCs we can derive the structure of a hybrid pa-
rameterized estimator, ehpck , for a hybrid system. The pa-
rameterized estimator ehpck can be used as a hybrid estima-
tor as stated in the following proposition:

Proposition 1. A HPC, HPCk, along with its set of in-
put variables, uhpck , the commanded signals of the switch-
ing junctions, swhpck , and initial value of the parameter
to identify, θf , can be used as a parameter estimator using
ŷhpck = ehpck(uhpck , θf , swhpck(t)), where the measured
variable estimated by the HPC, ŷhpci , is solved in terms of
the remaining measured variables.

Each estimator is uniquely related to one HPC, hence it
contains minimal redundancy required for parameter esti-
mation. In this case, each HPC has an executable model
that can be used for simulation purposes. For the four-tank
system we have obtained four hybrid parameter estimators
shown in table 4, one for each HPC.

Related
Estimator PC Parameters Inputs Output

e1 HPC1 R01, R03, R12, R1, C1 Sf , p2, p3 p1
e2 HPC2 R12, R2, C2 p1 p2
e3 HPC3 R01, R03, R34, R3, C3 Sf , p1, p4 p3
e4 HPC4 R34, R4, C4 p3 p4

Table 4: Hybrid parameter estimators found for the four-
tank system, and their related HPCs.

The basic idea is to use the estimator ehpck to compute
estimations for ŷhpck with different values of the parameter
θf , so that we can find a value of the parameter that min-
imizes the least squares (LS) error between the estimation
ŷhpck and the measured value yhpck .

Fig. 5 shows the parameter estimation process using the
hybrid estimators. A parametrized estimator, ehpck , uses the
inputs of the system, uhpck , and a parameter value, θf , to
generate an estimation of the output, ŷhpck . This estimated
output is compared against the observed output, yhpck , by
the quadratic error calculator block. This block computes
the quadratic error between ŷhpck and yhpck for the fault
candidate f , E2

f . Then, the iteration engine block, that con-
tains a nonlinear optimization algorithm, finds the minimum
of the error surface E2

f (θf ), by iteratively invoking the es-
timator with different parameter values. The value of the
parameter and its minimum LS error will be the output of
the parameter estimation block (and the input for the deci-
sion procedure block).

eHPC k estimator 
(obtained from HPCk) 

quadratic 
error 

calculator 

Fault candidate f (θf initial value) 

Inputs: uHPC k  

Output: yHPC k 

ŷHPCk

Iteration 
Engine 

E2
f 

θ*f 

<E2
f, θ*f> 

Figure 5: Parameter estimation using the hybrid estimators
from HPCs.

7 Results
To test the validity of the approach, we implemented the
four hybrid HPCs for the four-tank system, with its cor-
responding estimators, and run different simulation exper-
iments.
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Figure 6: Measured pressures in the four tanks when a fault
in SW1 is introduced at t = 190 s.
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Figure 7: CUSUM output for a fault in SW1.

In the first experiment, we assume that the water tanks are
initially empty, and start to fill in at constant rate. Hence, the
initial configuration of the system is SW1 and SW3 set to
ON, and SW2 and SW4 set to OFF. Tanks 1 and 3 start to
fill in, and approximately at time 20 s level in both tanks
reach the height of the connecting pipes and tanks 2 and 4
start to fill in. At time 190 s, a fault occurs in the controlled
junction SW1, which switches off (see Fig. 6 for the mea-
sured pressures in the four tanks for this experiment).

Four seconds after the fault is introduced, at t = 194
s, both HPC1 and HPC3 trigger, and consequently both
SW1 or SW3 are initially considered as discrete fault can-
didates. At this point, the CUSUM algorithm is run, de-
termining that the fault has occurred at t = 191 s. In this
case study we use a CUSUM window of size 100. Figure 7
shows the output of the CUSUM algorithm where the abso-
lute maximum represents the approximate time (due to noise
in the system) of fault occurrence.

Once the point of fault occurrence has been determined at
t = 191 s, the diagnosis framework takes the values of the
simulation at such time instant and launches two parallel
diagnosis experiments, one for each hypothesized fault can-
didate, i.e., SW1(10) and SW3(10). Figs. 8 and 9 show the
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Figure 8: Estimation and residual for HPC1 (using
CUSUM) when a fault in SW1 occurs and the hypothesized
fault is SW1.
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Figure 9: Estimation and residual for HPC1 (using
CUSUM) when a fault in SW1 occurs and the hypothesized
fault is SW3.

estimation and the residual for HPC1 when the hypothe-
sized faults are SW1(10) and SW3(10), respectively (we do
not show the result forHPC3 since are similar to the results
obtained for HPC1). Looking at the results, it is obvious
that the residual converges to zero when a fault in SW1(10)
is hypothesized, while the residual when SW3(10) is hy-
pothesized does not converge. Hence, SW1(10) is con-
firmed as the fault. This confirmation is done by continu-
ously analyzing residual signals with the Z-test. Please note
that, since the CUSUM algorithm gives a good approxima-
tion of the point of failure, the residual is able to converge
very quickly when the true fault is hypothesized. For com-
parison purposes, Fig. 10 shows the estimation and resid-
ual for HPC1 when CUSUM is not used to re-initialize the
simulation (for the hypothesized fault SW1). By comparing
this figure with Fig. 8 it is clear that using CUSUM allows
the HPC to converge faster.

As a second diagnosis experiment, we start off from the
same situation of the previous experiment, but in this case,
we introduce a small parametric fault and after a short while,
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Figure 10: Estimation and residual for HPC1 (without us-
ing CUSUM to re-initialize the simulation) when a fault in
SW1 occurs and the hypothesized fault is SW1.
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Figure 11: Measured pressures in the four tanks when a fault
in R01 is introduced at t = 190 s and the switching junction
SW1 is turned off at t = 210 s.

a discrete change. Specifically, a 20% blockage in the input
pipe of tank 1, R01, is introduced at t = 190 s, and then
SW1 is commanded to switch OFF at t = 210 s (Fig. 11
shows the measured pressures in the four tanks for this ex-
periment).

For this experiment, both HPC1 and HPC3 trigger at
t = 198 s (as an example, see Fig. 12 with the estimation
and residual for HPC1), and consequently both SW1(10)
and SW3(10) are initially considered as discrete fault candi-
dates. However, in this scenario, after running the CUSUM
(see Fig. 13 for the CUSUM output), which estimated the
fault time at t = 191s, and the diagnosis experiments for
both fault candidates, none of the residuals was able to con-
verge within a reasonable, empirically determined, amount
of time, thus concluding that a parametric fault has occurred.
At this point, the fault identification process is triggered for
R01, which is the only parametric fault candidates (R03

is discarded due to the qualitative sign in the residuals).
The estimated value for parameter R01 was 0.1937, i.e., a
19.37% blockage in the pipe. Please note that the estimator
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Figure 12: Estimation and residual for HPC1 when a fault
in R01 occurs and then SW1 is set to OFF mode.
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Figure 13: CUSUM output for a fault in R01.

used a total of 60 seconds of data starting from t = 191 s,
hence, the estimator was capable of correctly estimating the
value of the faulty parameter even if the system transitions
from one mode to another during the estimation process.

We run several experiments with different mode config-
urations and different faults, varying the size, time of fault
occurrence (in some of them by introducing faults immedi-
ately after the mode change). Results for all these situations
were equivalent to the examples shown in this section.

8 Conclusions
In this work we have presented an approach for hybrid sys-
tems fault identification using Hybrid Possible Conflicts.
Using HBGs we can generate minimal estimators that can
be used for fault identification just considering the possi-
ble mode changes within the estimators. Additionally, we
have proposed the integration of the CUSUM algorithm to
accurately determine the time of fault occurrence. A more
accurate estimation of the fault instant allows to quickly iso-
late discrete faults, and to obtain a better approximation of
the values of the state variables, which are needed as initial
values for the fault identification.
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Diagnosis results using a four-tank system showed that
the proposed approach can be successfully used for fault
identification of hybrid systems.

In future work, we will test the approach in more com-
plex systems with real data, and will propose a distributed
approach for hybrid systems fault diagnosis.
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Abstract

In this paper, we propose a box particle filter-
ing algorithm for state estimation in nonlinear
systems whose model assumes two types of un-
certainties: stochastic noise in the measurements
and bounded errors affecting the system dynam-
ics.These assumptions respond to situations fre-
quently encountered in practice. The proposed
method includes a new way to weight the box
particles as well as a new resampling procedure
based on repartitioning the box enclosing the up-
dated state. The proposed box particle filtering
algorithm is applied in a fault detection schema
illustrated by a sensor network target tracking ex-
ample.

1 Introduction
For various engineering applications, system state estima-
tion plays a crucial role. Kalman filtering (KF) has been
widely used in the case of stochastic linear systems. The
Extended Kalman Filter (EKF) and Unscented Kalman Fil-
ter (UKF) are KF’s extensions for nonlinear systems. These
methods assume unimodal, Gaussian distributions. On the
other hand, Particle Filtering (PF) is a sequential Monte
Carlo Bayesian estimator which can be used in the case
of non-Gaussian noise distributions. Particles are punctual
states associated with weights whose likelihoods are defined
by a statistical model of the observation error. The efficiency
and accuracy of PF depend on the number of particles used
in the estimation and propagation at each iteration. If the
number of required particles is too large, a real implementa-
tion is unsuitable and this is the main drawback of PF. Sev-
eral methods have been proposed to overcome these short-
comings, mainly based on variants of the resampling stage
or different ways to weight the particles ([1]).

Recently, a new approach based onbox particles was pro-
posed by[2; 3]. The Box Particle Filter handles box states
and bounded errors. It uses interval analysis in the state up-
date stage and constraint satisfaction techniques to perform
measurement update. The set of box particles is interpreted
as a mixture of uniform pdf’s[4]. Using box particles has
been shown to control quite efficiently the number of re-
quired particles, hence reducing the computational cost and
providing good results in several experiments.

In this paper, we take into account the box particle fil-
tering ideas but consider that measurements are tainted by

stochastic noise instead of bounded noise. The errors af-
fecting the system dynamics are kept bounded because this
type uncertainty really corresponds to many practical situa-
tions, for example tolerances on parameter values. Combin-
ing these two types of uncertainties following the seminal
ideas of[5] and [6] within a particle filter schema is the
main issue driving the paper. This issue is different from the
one addressed in[7] in which the focus is put on Bernouilli
filters able to deal with data association uncertainty. The
proposed method includes a new way to weight the box par-
ticles as well as a new resampling procedure based on repar-
titioning the box enclosing the updated state.

The paper is organized as follows. Section 2 describes
the problem formulation. A summary of the Bayesian fil-
tering is presented and the box-particle approach is intro-
duced. The main steps of this approach are developed in
section 3. Section 4 and 5 are devoted to the repartitioning
of the boxes and the computation of the weight of the box
particles in order to control the number of boxes. In section
6 the box particle filter is used for state estimation and fault
detection; the results obtained with the proposed method for
a target tracking in a sensor network are presented in sec-
tion 7. Conclusion and future work are overviewed in the
last section.

2 Problem formulation
We consider nonlinear dynamic systems represented by dis-
crete time state-space models relating the statex(k) to the
measured variablesy(k)

x(k + 1) = f(x(k),u(k),v(k)) (1)

y(k) = h(x(k)) + e(k), k = 0, 1, . . . (2)

wheref : Rnx × Rnu × Rnv → Rnx andh : Rnx → Rny

are nonlinear functions,u(k) ∈ Rnu is the system input,
y(k) ∈ Rny is the system output,x(k) ∈ Rnx is the state-
space vector,e(k) ∈ Rny is a stochastic additive error that
includes the measurement noise and discretization error and
is specified by its known pdfpe. v(k) ∈ Rnx is the process
noise.

In this work the process noise is assumed bounded
|vi(k)| ≤ σi with i = 1, . . . , nx, i.e pv ∼ U([V ]), where
[V ] = [−σ1, σ1]× · · · × [−σnx , σnx ].

2.1 Bayesian filtering
Given a vector of available measurements at instantk:
Y(k) = {y(i), i = 1, ..., k}, Y(0) = y(0), the Bayesian
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solution to compute the posterior distributionp(x(k)|Y(k))
of the state vector at instantk + 1, given past observations
Y(k) is given by (Gustafsson 2002):

p(x(k + 1)|Y(k)) =∫

Rnx

p(x(k + 1)|x(k))p(x(k)|Y(k))dx(k)
(3)

where the posterior distributionp(x(k)|Y(k)) can be
computed by

p(x(k)|Y(k)) =
1

α(k)
p(y(k)|x(k))p(x(k)|Y(k − 1))

(4)
whereα(k) is a normalization constant,p(y(k)|x(k)) is

the likelihood function that can be computed from (2) as:

p(y(k)|x(k)) = pe(y(k) − h(x(k)) (5)

andp(x(k)|Y(k − 1)) is the prior distribution.
Equations (5), (4) and (3) can be computed recursively

given the initial value ofp(x(k)|Y(k − 1)) for k = 0 de-
noted asp(x(0)) that represents the prior knowledge about
the initial state.

2.2 Objective
Considering the assumptions of our problem, we adopt a
particle filtering schema which is well-known for solving
numerically complex dynamic estimation problems involv-
ing nonlinearities. However, we propose to use box particles
and to base our method on the interval framework. Box par-
ticle filters have been demonstrated efficient, in particular to
reduce the number of particles that must be considered to
reach a reasonable level of approximation[2].

Let’s consider the current state estimateX (k) as a set, de-
noted by{X (k)}, that is approximated byNk disjoint boxes

[x(k)]i i = 1, · · · , Nk (6)

where [x(k)]i = [x(k)i,x(k)i], with x(k)i,x(k)i ∈
Rnx . The width of every box is smaller or equal to a given
accuracy for every component, i.e

xj(k)i − xj(k)
i ≤ δj i = 1, · · · , Nk, j = 1, . . . , nx

(7)
whereδj is the predetermined minimum accuracy for every
componentj.

Moreover, every box[x(k)]i is given a prior probability
denoted as

P ([x(k)]i|Y(k − 1)) i = 1, · · · , Nk (8)

with
Nk∑

i=1

P ([x(k)]i|Y(k − 1)) ≥ γ (9)

whereγ ∈ [0, 1] is a confidence threshold.
Then, given a new output measurementy(k), the problem

that we consider in this paper is:

• to compute the state estimateX (k + 1),

• to decide about the numberNk+1 of disjoint boxes of
the approximation ofX (k + 1), each with accuracy
smaller or equal toδj ,

• to provide the prior probabilities associated to the par-
ticles of the new state estimation set

P ([x(k + 1)]i|Y(k)) i = 1, · · · , Nk+1 (10)

3 Interval Bayesian formulation
This section deals with the evaluation of the Bayesian so-
lution of the state estimation problem considering bounded
state boxes (6).

3.1 Measurement update
Whereas each particle is defined as a box by (6), the mea-
surement is tainted with stochastic uncertainty defined by
the pdfpe. The weightw(k)i associated to a box particle is
updated by the posterior probabilityP ([x(k)]i|Y(k)):

w(k)i =
1

Λ(k)
P ([x(k)]i|Y(k − 1))pe(y(k) − h([x(k)]i)

=
1

Λ(k)
P ([x(k)]i|Y(k − 1))

∫

x(k)∈[x(k)]i
pe(y(k)− h(x(k))) dx(k)

(11)
i = 1, . . . , Nk

where the normalization constantΛ(k) is given by

Λ(k) =

Nk∑

i=1

P ([x(k)]i|Y(k − 1))

∫

x(k)∈[x(k)]i
pe(y(k)− h(x(k))) dx(k)

(12)

then

Nk∑

i=1

w(k)i = 1 (13)

The deduction of the measurement update equation (11)
from the particle filtering update equation (4) is detailed in
the Appendix fornx = 1, without the loss of generality. The
principle of the proof is that the point particles are grouped
into particle groups inside boxes, then the posterior proba-
bility of a box can be approximated by the sum of posterior
probabilities of the point particles when the number of these
particles tends to infinity.

3.2 State update
This step is similar to the state update state as in[2] and[3].
Hence, we have:

p(x(k+1)|Y(k)) ≈
Nk∑

i=1

w(k)iU[f ]([x(k)]i,u(k),[v(k)]) (14)

The interval boxes[x(k + 1)|x(k)]i are computed from
(1) using interval analysis as follows,

[x(k + 1)|x(k)]i ≈ [f ]([x(k)]i,u(k), [v(k)]) (15)

The update interval boxes inherit the weightsw(k)i of
their mother boxes[x(k)]i i = 1, . . . , Nk.

4 Resampling
Once the updated boxes[x(k + 1)|x(k)]i and their associ-
ated weightsw(k)i have been computed, the objective is to
compute a new set of disjoint boxes. This corresponds to
the resampling step of the conventional particle filter.
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4.1 Repartitioning
We assume that the new boxes are of the same size, that they
cover the whole space defined by the union of the updated
boxes[x(k+1)|x(k)]i i = 1, . . . , Nk, and that their weight
is proportional to the weight of the former boxes.

For this purpose, a support box setZ is computed as the
minimum box such that

Z ⊇
Nk⋃

i=1

[x(k + 1)|x(k)]i. (16)

Z is partitioned intoM disjoint boxes of the same size

[z]i i = 1, · · · ,M (17)

where[z]i = [zi, zi], zi, zi ∈ Rnx , and

zij − zij = εj i = 1, · · · ,M j = 1, . . . , nx. (18)

The box component widths are computed as

εj =
Zj −Zj

mj
j = 1, . . . , nx (19)

wheremj is the number of intervals along dimensionj
computed as

mj = ⌈
Zj −Zj

δj
⌉ j = 1, . . . , nx (20)

where⌈.⌉ indicates the ceiling function andδj the mini-
mum accuracy for every state componentj defined in Sec-
tion 2.2. In this way, we guarantee that

εj ≤ δj j = 1, . . . , nx (21)

Finally, the numberM of boxes of the uniform grid par-
tition is given by

M =

nx∏

j=1

mj (22)

Once the new boxes[z]i have been computed, the weight
of the new boxeswi

z can be computed as

wi
z =

Nk∑

j=1

(∏nx

l=1 |[xl(k + 1)|x(k)]j ⋂[zl]
i|∏nx

l=1 |[xl(k + 1)|x(k)]j | w(k)j
)

(23)

i = 1, . . . ,M

where[vl]i refers to thel-th component of the vector[v]i

and the interval widthxl − xl is denoted by|[xl]| for more
compactness. The new weights fulfill

M∑

i=1

wi
z =

Nk∑

i=1

w(k)i = 1 (24)

The new weightswi
z in (4.1) can be computed efficiently

using Algorithm 1. This algorithm searches the number
Ninter of boxes ofZ that intersect every[x(k + 1)|x(k)]j .
Then, the weightw(k)j is distributed proportionally to
the volume of the intersection between the updated boxes
[x(k + 1)|x(k)]j and each of theNinter boxes ofZ that
have a non-empty intersection.

Algorithm 1 Weights of the new boxes.

Algorithm Weights-new-boxes (Z, [x(k + 1)|x(k)]1,
. . . , [x(k + 1)|x(k)]Nk , w(k)1, . . . w(k)Nk )
wi

z ← 0 i = 1, . . . ,M
for j = 1, . . . , Nk do
[Ninter,Vinter ] = intersec([x(k + 1)|x(k)]j ,Z)
for h = 1, . . . , Ninter do
i = Vinter(h)

wi
z = wi

z +
∏nx

l=1 |[xl(k+1)|x(k)]j ⋂
[zl]

i|∏nx
l=1 |[xl(k+1)|x(k)]j | w(k)j

end for
end for
Return (w1

z , . . . , w
M
z )

endAlgorithm

4.2 Controlling the number of boxes

Once the new disjoint boxes and their associated weights
have been computed, the associated weights can be used
to select the set of boxes that are worth pushing forward
through the next iteration. This is performed by selecting
the boxes with highest weights and discarding the others. In
order to fulfill the confidence threshold criterium (9) pro-
posed in Section 2.2, Algorithm 2 is proposed. The setWz

of weightswi
z associated to the boxes[z]i is defined as

Wz = {w1
z , . . . , w

M
z }. (25)

Given a desired confidence thresholdγ, theM disjoint
boxes[z]i that compose the uniform grid partition ofZ and
vectorWz with the associated weights, Algorithm 2 deter-
mines the minimum numberNk+1 of boxes[z]i with highest
weightswi

z that fulfill

Nk+1∑

i=1

wi
z ≥ γ (26)

The new state estimateX (k + 1) is approximated by this
set ofNk+1 boxes and their prior probability by

P ([x(k + 1)]i|Y(k)) ≈W i
k+1 i = 1, . . . , Nk+1. (27)

whereW i
k+1 are theNk+1 highest weights ofWz associated

with the disjoint boxes[x(k + 1)]i, i = 1, · · · , Nk+1, that
approximateX (k+1). W i

k+1 can be referred as thea priori
weights.

Algorithm 2 State update at stepk + 1 with confidence
thresholdγ.

Algorithm State-update([z]1, . . . , [z]M ,Wz ,γ)
γc ← 0, {X (k+1)} ← {∅},Wk+1 ← {∅}, Nk+1 ← 0
while γc < γ do

[value, pos] = max(Wz)
addbox(X (k + 1), [z]pos)
addelement(Wk+1, value)
γc = γc + value
Wz(pos)← 0
Nk+1 ← Nk+1 + 1

endwhile
Return (X (k + 1),Wk+1, Nk+1)

endAlgorithm
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This algorithm generates a set of state boxes{X (k + 1)}
a list of weightsW i

k+1, a cumulative weight variableγc,
and a cardinality variableNk+1. At the beginning of the
algorithm, the state boxes and weight list are initialized as
empty sets and cumulative weight and cardinality variable
are initialized to zero. The loop "while" operates as a sort-
ing, eliminating the boxes with smallest weights so that the
cumulative sum of the boxes with largest weights is greater
or equal to the thresholdγ. If the state space is not bounded,
the threshold0 < γ < 1 does not guarantee a bounded num-
ber of boxes in a worst-case scenario in which the measure-
ments do not emphasize some particles against others. In
this case, a maximum number of particlesNmax should be
imposed.

5 State estimation and fault detection
5.1 State estimation
Once the set ofNk+1 disjoint boxes[x(k + 1)]i, i =
1, · · · , Nk+1, that approximateX (k + 1) and their asso-
ciateda priori weightsW i

k+1 have been computed, their
measurement updated weightsw(k + 1)i are obtained us-
ing (11). Then, according to[2], the state at instantk + 1 is
approximated by

x̂(k + 1) =

Nk+1∑

i=1

w(k + 1)ixi
0(k + 1) (28)

wherexi
0(k+1) is the center of the particle box[x(k+1)]i.

Algorithm 3 summarizes the whole state estimation pro-
cedure.

Algorithm 3 State estimation
Algorithm State estimation

Initialize X (0), N0 and P ([x(k)]i|Y(k −
1))k=0,i=1...N0

for k = 1, . . . , end do
Obtain Input/Output data{u(k),y(k)}
Measurement update

computeΛ(k) using Eq. (12)
computew(k)i using Eq.(11)i = 1 . . .N0

State estimation
computêx(k) using (28)

State update
compute[x(k+1)|x(k)]i i = 1 . . .N0 using (15)
computeZ that fulfils (16)
compute disjoint boxes[z]i i = 1, · · · ,M of (17)
compute weightswi

z using Algorithm 1
compute new state estimation using Algorithm 2
Nk+1 disjoint boxes that approximateX (k+1)
Prior probabilities given by weightsWk+1

end for
endAlgorithm

5.2 Fault detection
In our framework, fault detection can be formulated as de-
tecting inconsistencies based on the state estimation. To do
so, we propose the two following indicators:

• Abrupt changes in the state estimation provided by (28)
from instantk−1 to instantk, i.e. abnormal high values
of

√
(x̂(k)− x̂(k − 1))(x̂(k)− x̂(k − 1))T

• Abnormal low sum of the unnormalized posterior prob-
ability of all the particles at instantk, which means
that all the particles have been penalized by the cur-
rent measurements. This abnormality can be checked
by thresholdingΛ(k) defined in (12).

If enough representative fault free data are available, the
indicators defined above can be determined by means of
thresholds computed with these data. For example, the
threshold that defines the abnormal abrupt change in state
estimation can be computed as

∆x̂max = β1 max
i=2,··· ,L

√
(x̂(i)− x̂(i− 1)) (x̂(i)− x̂(i− 1))T

(29)
whereL is the length of the fault free scenario andβ1 > 1
a tuning parameter. Then the fault detection test consists in
checking at each instantk if

√
(x̂(k)− x̂(k − 1)) (x̂(k)− x̂(k − 1))

T
> ∆x̂max

(30)
In a similar way, thresholdΛmin that defines the min-

imum expected unnormalized posterior probability can be
computed as

Λmin = β2 min
i=2,··· ,L

(Λ(i)) (31)

whereΛ(i) is determined using (12) and0 < β2 < 1 is a
tuning parameter. Then the fault detection test consists in
checking at each instantk if

Λ(k) < Λmin (32)

6 Application example
In this section a target tracking in a sensor network exam-
ple presented in[8] is used to illustrated the state estima-
tion method presented above. The problem consists of three
sensors and one target moving in the horizontal plane. Each
sensor can measure distance to the target, and by combining
these a position fix can be computed. Fig. 1 depicts a sce-
nario with a trajectory and a certain combination of sensor
locations (S1, S2 andS3).
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Figure 1: Target true trajectory and sensor positions in the
bounded horizontal plane

The behaviour of the system can be described by the fol-
lowing discrete time state-space model:

Proceedings of the 26th International Workshop on Principles of Diagnosis

70



(
x1(k + 1)
x2(k + 1)

)
=

(
x1(k)
x2(k)

)
+ Ts

(
v1(k)
v2(k)

)
(33)




y1(k)
y2(k)
y3(k)


 =




√
(x1(k)− S1,1)

2 + (x2(k)− S1,2)
2

√
(x1(k)− S2,1)

2 + (x2(k)− S2,2)
2

√
(x1(k)− S3,1)

2 + (x2(k)− S3,2)
2




+




e1(k)
e2(k)
e3(k)




(34)

wherex1(k) andx2(k) are the object coordinates bounded
by −1 ≤ x1(k) ≤ 3 and−1 ≤ x2(k) ≤ 4 ∀k ≥ 0.
Ts = 0.5s is the sampling time,v1(k) andv2(k) are the
speed components of the target that are unknown but con-
sidered bounded by the maximum speedσv = 0.4m/s
(|v1(k)| ≤ σv and|v2(k)| ≤ σv). y1(k), y2(k) andy3(k)
are the distances measured by the sensors.Si,j denotes
the componentj of the location of sensori. e1(k), e2(k)
ande3(k) are the the stochastic measurement additive er-
rorspei ∼ N(0, σi) with σ1 = σ2 = σ3 =

√
0.05m.

Fig. 2 shows the evolution of the real sensor distances
and measurements in the target trajectory scenario depicted
in Fig. 1.
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Figure 2: Real and measured distances from the target to the
sensors

In order to apply the state estimation methodology pre-
sented above, a minimum accuracyδ1 = δ2 = δ = 0.2m
has been selected for both components. No a priori infor-
mation has been used in the initial state. Then, a uniform
grid of disjoint boxes with the same weights and component
widths ε1 = ε2 = δ that covers all the bounded coordi-
nates−1 ≤ x1 ≤ 3 and−1 ≤ x2 ≤ 4 has been chosen as
initial stateX (0). Posterior probabilities of the boxes have
been approximated by weightsw(k)i computed using the
new sensor distances measurements in (4.1). State update
has been computed considering speed bounds in (33). The
new boxes have been rearranged considering the minimum
accuracyδ and their associated weights have been computed
using (4.1). Finally, Algorithm 2 with thresholdγ = 1 has
been applied to reduce the number of boxes.

Figs. 3 and 4 depict the box weights and their contours
using measurementy1(1) (up) and all the measurements at

−1 0 1 2 3

−2
0

2
4
0

0.005

0.01

Box particle filtering weight of boxes using measurement y
1
(1)

−1 0 1 2 3

−2
0

2
4
0

0.1

0.2

Box particle filtering weight of boxes using measurements y
1
(1),y

2
(1) and y

3
(1)

Figure 3: Box weights using measurementy1(k) (up) and
measurements(y1(k), y2(k), y3(k))T (down)
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Figure 4: Box weight contours using measurementy1(k)
(up) and measurements(y1(k), y2(k), y3(k))T (down)

instantk = 1 (y1(1), y2(1) andy3(1)) (down). Fig. 5 de-
picts the box weights and their contours using the measure-
ments at hand at instantk = 2.

The real trajectory and the one estimated using (28) are
shown in Fig. 6.

Finally, different additive sensor faults have been simu-
lated and satisfactory results of the fault detection tests(30)
and (32) have been obtained for faults bigger than0.5m us-
ing thresholds∆x̂max andΛmin computed with (29) and
(31)withL = 3200, β1 = 1.1 andβ2 = 0.9.

Fig. 7 shows the real trajectory and the one estimated us-
ing (28) when an additive fault of+0.5m affects sensorS1

at timek = 22. The behaviour of fault detection tests (30)
and (32) is depicted in Fig. 8. As seen in this figure, both
thresholds are violated at time instantk = 22 and therefore
the fault is detected at this time instant.
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Figure 5: Box weights (up) and Box weights contours
(down) at instantk = 2
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Figure 6: Trajectories

7 Conclusion and perspectives

A Box particle algorithm has been proposed for estimation
and fault detection in the case of nonlinear systems with
stochatic and bounded uncertainties. Using this method in
the case of a target tracking sensor networks illustrates its
feasibility. It has been shown how the measurement up-
date state for the box particle is derived from the particle
case. However convergence and stability of this filter have to
be proved. Resampling unfortunatly drops information and
waives guaranteed results that characterize interval analysis
based solutions. However without resampling the particle
filter suffers from sample depletion. This is the reason why
resampling is a critical issue in particle filtering (Gustafsson
2002). This approach has to be compared to other PF vari-
ants which reduce the number of particles[2] and further
investigations concerning resampling are required, in par-
ticular if we want to take better benefit of the interval based
approach.
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Figure 7: Trajectories in fault scenario
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A Demonstration of Measurement update:
"From particles to boxes"

A.1 Particle filtering

Consider the particles{x(k)j}Nj=1 uniformly distributed in

x(k)j ∈ [x(k), x(k)] ∀j = 1, . . . , N wherex(k), x(k) ∈
R. Then according to[1] the relative posterior probability
for each particle is approximated by

P (x(k)j|Y(k)) ≈ 1

c(k)
P (x(k)j|Y(k − 1))pe(y(k)− h(x(k)j))

(35)
with

c(k) =

N∑

j=1

P (x(k)j |Y(k)) (36)
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A.2 Grouping particles
If we group theN particles inNg groups of∆N elements

{x(k)j}Nj=1 =

Ng⋃

i=1

{x(k)l}i∆N
l=1+(i−1)∆N (37)

with Ng = N
∆N

If we select the groups of points in such a way that

{x(k)l}i∆N
l=1+(i−1)∆N ∈ [x(k)]i ∀i = 1, . . . , Ng (38)

where

[x(k)]i = [x(k) + (i− 1)∆L, x(k) + i∆L] (39)

with

∆L =
x(k)− x(k)

Ng
(40)

If the number of particlesN →∞ and therefore∆N →
∞

P ([x(k)]i|Y(k)) ≈
i∆N∑

j=1+(i−1)∆N

P (x(k)j |Y(k)) (41)

according to (35)

P ([x(k)]i|Y(k)) ≈
∑i∆N

j=1+(i−1)∆N P (x(k)j |Y(k − 1))pe(y(k)− h(x(k)j))
∑Ng

l=1

∑l∆N
j=1+(l−1)∆N P (x(k)j|Y(k − 1))pe(y(k)− h(x(k)j))

(42)

If we consider the particles in the same groupi have the
same prior probabilities, then:

p(x(k)j |Y(k − 1)) =

P ([x(k)]i|Y(k − 1))

∆N
∀j = 1 + (i− 1)∆N, . . . , i∆N

(43)

and (42) leads to

P ([x(k)]i|Y(k)) ≈
P ([x(k)]i|Y(k − 1))

∑i∆N
j=1+(i−1)∆N pe(y(k)− h(x(k)j))

∑Ng

l=1(P ([x(k)]l|Y(k − 1))
∑l∆N

j=1+(l−1)∆N pe(y(k)− h(x(k)j)))

(44)

If theN particles are uniformly distributed in the interval
[x(k), x(k)], i.e

x(k)j − x(k)j−1 = ∆x(k) ∀j = 2, . . . , N (45)

where

∆x(k) =
x(k)− x(k)

N
=

∆L

∆N
(46)

Then

i∆N∑

j=1+(i−1)∆N

pe(y(k)− h(x(k)j))∆x(k) ≈

∫ (i∆N)∆x(k)

(1+(i−1)∆N)∆x(k)

pe(y(k)− h(x(k)))dx(k) ≈
∫

x(k)∈[x(k)]i
pe(y(k)− h(x(k)))dx(k)

(47)

Finally, multiplying the numerator and denominator of
equation (44) by∆x, we obtain the particle box measure-
ment update equation

P ([x(k)]i|Y(k)) ≈
P ([x(k)]i|Y(k − 1))

∫
x(k)∈[x(k)]i

pe(y(k)− h(x(k)))dx(k)
∑Ng

l=1(P ([x(k)]l|Y(k − 1))
∫
x(k)∈[x(k)]l

pe(y(k)− h(x(k)))dx(k))

(48)
that corresponds to the equation (11) with

Λ(k) =

Ng∑

l=1

(P ([x(k)]l|Y(k − 1))

∫

x(k)∈[x(k)]l
pe(y(k)− h(x(k)))dx(k))

(49)
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Abstract
This paper discusses a distributed diagnosis ap-
proach, where each subsystem diagnoser operates
independently without a coordinator that com-
bines local results and generates the correct global
diagnosis. In addition, the distributed diagnosis
algorithm is designed to minimize communica-
tion between the subsystems. A Minimal Struc-
turally Overdetermined (MSO) set selection ap-
proach is developed as a Binary Integer Linear
Programming (BILP) optimization problem for
subsystem diagnoser design. For cases, where a
complete global model of the system may not be
available, we develop a heuristic approach, where
individual subsystem diagnosers are designed in-
crementally, starting with the local system MSOs
and progressively extending the local set to in-
clude MSOs from the immediate neighbors of the
subsystem. The inclusion of additional neighbors
continues till the MSO set ensures correct global
diagnosis results. A multi-tank system is used to
demonstrate and validate the proposed methods.

1 Introduction
The Minimal Structurally Overdetermined (MSO) sets ap-
proach has been used extensively for designing model based
fault detection and isolation (FDI) schemes for complex
systems [Krysander et al., 2008a; Krysander et al., 2008b;
Svard et al., 2012]. However, for large complex systems
such as aircraft and other transportation systems, manufac-
turing processes, supply chain and distribution networks,
and power generation and the power grid it is becoming
imperative to develop distributed approaches to monitoring
and diagnosis to overcome the need for complete global
models, while also addressing computational complexity
and reliability problems for the diagnosers [Leger et al.,
1999; Shum et al., 1988; Deb et al., 1998; Lanigan et al.,
2011].

Unlike centralized approaches, distributed approaches are
more reliable because they avoid single points of failure.
In addition, they can reduce the problems of noise, cor-
ruption, and losses that can occur when transmitting sig-
nals from individual subsystems to a centralized fault di-
agnosis unit. Measurement noise and signal corruption can
significantly affect diagnoser robustness and accuracy [Fer-
rari et al., 2012]. Transmission delays not only increase
detection time, but can also affect the order of detection,

which can further affect diagnostic accuracy. Detection time
is important for the safe and reliable operation of safety-
critical systems. Faster fault detection and isolation en-
ables accompanying fault tolerant control units to react in
a timely manner, thus reducing damage and down time of
systems [Roychoudhury et al., 2009; Daigle et al., 2007;
Duarte Jr and Nanya, 1998; Rish et al., 2005; Bregon et al.,
2014]. The computational intractability of building central-
ized diagnosers for the large systems is another important
reason to develop distributed solutions for FDI problems.

In this paper, we formulate the distributed minimal struc-
turally overdetermined set selection as a binary integer lin-
ear programming (BILP) problem [Wolsey, 1998]. The ap-
proach efficiently picks a minimal number of measurements
from a subsystem and its neighboring subsystems to develop
a local diagnoser for each subsystem of the larger, complex
dynamic system. We start with an efficient algorithm de-
signed by [Krysander et al., 2008a] for finding minimally
overdetermined sets of constraints to generate the minimal
structurally overdetermined (MSO) sets for designing the
diagnoser. Other researchers have employed binary inte-
ger programming and binary linear integer programming for
optimal sensor placement for fault detection and isolation
[Sarrate et al., 2007; Rosich et al., 2009]. In this paper, we
utilize BILP for distributed MSO selection to facilitate an
efficient distributed diagnosis approach.

Our method is designed in a way that the subsystem di-
agnosers, once designed can operate independently with no
communication with the other subsystem diagnosers (other
than a minimal number of shared measurements), but still
provide globally correct diagnosis results. Unlike [Lafor-
tune, 2007; Debouk et al., 2000; Indra et al., 2012] this
method does not require the use of a centralized coordina-
tor during on-line operations. Therefore, we avoid the sin-
gle point-of-failure problem of centralized diagnosers. Our
method assumes the availability of a global system model
from which the set of MSOs for the system can be derived.
The independent subsystem diagnosers are designed to min-
imize the sharing of measurements across subsystems, thus
decreasing the cost, and increasing the reliability of the
overall system diagnosis.

However, global models of a complex system are hard to
construct and may not be readily available. Subsystems are
often provided by different manufacturers, who are not will-
ing to pass along all of the intellectual property associated
with the subsystem to the system integrator. Therefore, to
avoid the unrealistic assumption that the complete model of
the complex system is available for subsystem diagnoser de-
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sign, we propose a second algorithm that constructs the in-
dividual subsystem diagnosers without assuming the avail-
ability of a global model. The modified algorithm is com-
putationally more efficient, but we cannot guarantee that the
shared measurements between the subsystems is minimal
globally (i.e., across the entire system).

The rest of this paper is organized as follows. The back-
ground material, definitions and the running example, a
four-tank system, are presented in Section 2. The distributed
diagnosis problem formulation is presented in Section 3. Al-
gorithm 1 for distributed MSO set selection is described in
Section 4. The heuristic modifications to Algorithm 1 given
the global model is not available is presented in Section 5 as
the incremental algorithm. Section 6 discusses the contribu-
tions of the paper in relation to previous work, and presents
the conclusion of the paper.

2 Background

This section introduces the basic concepts associated with
MSO set selection for structural diagnosis of dynamic sys-
tems. The system model S is defined as follows.

Definition 1 (System model). A system model S is a four-
tuple: (V , M , E, F ), where V is the set of variables, M is
the set of measurements, E is the set of equations and F is
the set of system faults.

We use a configured four tank system, shown in Fig-
ure 1, as a running example throughout this paper to de-
scribe the problem, and to illustrate the algorithms for dis-
tributed MSO set selection. We assume each tank, and the
outlet pipe to its right, constitute a subsystem. Therefore,
this system has four subsystems. Two of the subsystems,
1 and 3, also have inflows into their tanks. We assume the
subsystems are disjoint, i.e., they have no overlapping com-
ponents. Associated with each subsystem are a set of mea-
surements that are shown as encircled variables in the figure.
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Figure 1: Running example: Four Tank System.

More generally, we assume the system, S has n pre-
defined subsystems, S1, S2, ....Sn. Each subsystem model
is defined as:

Definition 2 (Subsystem model). A subsystem model of sys-
tem model S, Si (1 ≤ i ≤ k) is also a four-tuple: (Vi, Mi,
Ei, Fi), where Vi ⊆ V , Mi ⊆ M , Ei ⊆ E and Fi ⊆ F .
Also, S1 ∪ S2 ∪ ....Sk = S.

For illustration, the first subsystem in our running exam-
ple is described by the following set of equations:

e1 : ṗ1 =
1

CT1 + f1
(qin1 − q1)

e2 : q1 =
p1 − p2
RP1 + f2

e3 : p1 =

∫
ṗ1 dt

e4 : qin1 = u1

e5 : p1 = y1
e6 : q1 = y2.

(1)
Therefore, E1 = {e1, e2, e3, e4, e5, e6} defines the set of
equations, V1 = {ṗ1, p1, p2, qin1, q1} defines the set of vari-
ables, M1 = {u1, y1, y2} defines the set of subsystem mea-
surements, and F1 = {f1, f2} defines the set of faults asso-
ciated with this subsystem model.

Similarly, the second subsystem model is defined by the
following equations:

e7 : ṗ2 =
1

CT2 + f3
(q1 − q2)

e8 : q2 =
p2 − p3
RP2 + f4

e9 : p2 =

∫
ṗ2 dt

e10 : p2 = y3
e11 : q2 = y4.

(2)
For this subsystem the set of equations is E2 =
{e7, e8, e9, e10, e11}, the set of variable is V2 = {ṗ2, p2,
p3, q1, q2}, the set of measurements is M2 = {y2, y4}, and
F2 = {f3, f4} is the set of faults.

In this paper, we assume there are no overlapping com-
ponents among the subsystems. However, the subsystems
may share variables at their interface. For example, the liq-
uid flowrate at outlet pipe of subsystem qi = qi′, the liquid
flowrate at input to connected tank i+ 1.
Definition 3 (First Order Connected Subsystems). Two sub-
systems, Si and Sj are defined to be first order connected if
and only if they have at least one shared variable.

In the running example, subsystems S1 and S2 are first
order connected and their shared variables are V1 ∩ V2 =
{p2, , q1}. The two other subsystems in the running example
are:

e12 : ṗ3 =
1

CT3
(qin2 + q2 − q3)

e13 : q3 =
p3 − p4
RP3 + f5

e14 : p3 =

∫
ṗ3 dt

e15 : qin2 = u2

e16 : q3 = y5.

(3)

e17 : ṗ4 =
1

CT4 + f6
(q3 − q4)

e18 : q4 =
p4
RP4

e19 : p4 =

∫
ṗ4 dt

e20 : p4 = y6.

(4)
In more general terms, ith order connected subsystem

models are defined as follows.
Definition 4 (ith Order Connected Subsystems). Two sub-
systems, Sk and Sj are defined to be ith order connected
if and only if there exists a subsystem model Sm that is
(i−1)th order connected to Sk, and is first-order connected
to Sj , or Sm is (i− 1)th order connected to Sj , and is first-
order connected to Sk .
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For example in the four tank system, S1 and S3 are sec-
ond order connected because both of them are first order
connected to S2.

In this paper, we use MSO sets [Krysander et al., 2008b]
as the primary conceptual approach for fault detection and
isolation. The formal definitions of Structurally Overdeter-
mined (SO) and MSO sets are:
Definition 5. (Structural Overdetermined Set) Consider a
set of equations and its associated variables, measurements,
and faults: (E, V,M,F ). This set of equations is struc-
turally overdetermined (SO) if the cardinality of the set {E}
is greater than the cardinality of set {V }, i.e. |E| > |V |.
Definition 6. (Minimal Structurally Overdetermined Set)
A set of over determined equations is minimal structurally
overdetermined (MSO) if it has no subset of structurally
overdetermined equations.

Consider subsystem S1 of the four tank system in equa-
tion (1). Using the software developed by [Krysander
et al., 2008a], we can compute the only minimal struc-
turally overdetermined set in this subsystem as MSO11 =
(E11, V11,M11, F11), where E11 = {e1, e3, e4, e5, e6},
V11 = {ṗ1, p1, qin1, q1}, M11 = {u1, y1, y2} and F11 =
{f1}. For the sake of brevity and simplification we simply
say a specific equation, variable, measurement, or fault is a
member of a MSO in the rest of the paper. For example, we
say f1 ∈MSO11.

MSOs represent the redundancies in the system and can
form the basis for fault detection and isolation. Global and
Local fault detectability are defined as:
Definition 7. (Globally detectable fault) A fault f ∈ F is
globally detectable in system S if there is a minimal struc-
turally overdetermined set MSOi in the system, such that f
∈MSOi.
Definition 8. (Locally detectable fault) A fault f ∈ Fi is lo-
cally detectable in subsystem Si if there is a minimal struc-
turally overdetermined set MSOi in the subsystem that f ∈
MSOi.

Consider Definition 8 and equation (1). Fault f1 is lo-
cally detectable because f1 ∈ MSO11 but f2 is not lo-
cally detectable since there is no MSO in this subsystem
that includes f2. To detect f2 locally, the diagnosis subsys-
tem needs to include additional measurements. Global and
Local fault isolability are defined as:
Definition 9. (Globally isolable fault) A fault fi ∈ F is
globally isolable from fault fj ∈ F if there exists a mini-
mal structurally overdetermined set MSOi in the system S,
such that fi ∈MSOi and fj 6∈MSOi .
Definition 10. (Locally isolable fault) A fault fi ∈ Fi is
locally isolable from fault fj ∈ F if there exists a mini-
mal structurally overdetermined set MSOi in subsystem Si,
such that fi ∈MSOi and fj 6∈MSOi .

Note that if a fault fi is locally detectable in a subsys-
tem Si, it is globally detectable too, and if a fault fi is lo-
cally isolable from a fault fj , it is globally isolable from fj
as well. The problem of MSO selection is presented as a
binary integer linear programming (BILP) problem in this
paper. BILP is a special case of the integer linear program-
ming problem (ILP), where the unknowns to be solved for
are binary variables.1

1See definition in Wikipedia: https://en.wikipedia.
org/wiki/Integer_programming.

Definition 11. (Binary integer linear programming problem
(BILP)) A Binary integer linear programming problem is a
special case of an integer linear programming (ILP) opti-
mization problem in which some or all the unknown vari-
ables to be solved for are required to be binary, and the
constraints in the problem and the objective function, like
ILP, are linear.

The mathematical formulation of BILP is as follows.

min cTx

Ax ≤ b

∃xb ⊂ x

∀xk ∈ xb ⇒ xk ∈ {0, 1},

(5)

where vector c is the cost weights and matrix A and vector
b define linear constraints, x represents the variables, and
xb represents the binary variables [Wolsey and Nemhauser,
2014].

3 Problem Formulation
Designing a set of distributed diagnosers that together have
the same diagnosability as a centralized diagnoser is the fo-
cus of our work in this paper. In the ideal case, each sub-
system includes sufficient redundancies, such that its set
of MSOs is sufficient to detect and isolate all of its faults,
Fi uniquely and unambiguously. In that case, we can as-
sociate an independent diagnoser Di with each subsystem
Si; 1 ≤ i ≤ k, and each diagnoser operates with no cen-
tralized control, and no exchange of information with other
diagnosers. If the independence among diagnosers does not
hold, then the subsystems need to communicate some of
their measurements to other subsystems to detect and iso-
late the faults. To address this problem in an efficient way,
we derive an integrated approach to select a set of MSOs for
each subsystem that guarantee full diagnosability and mini-
mum exchange of measurements among subsystems.

Given subsystems, Si; 1 ≤ i ≤ k, with a set of local fault
candidates, Fi, such that

⋃
i=1

k
Fi = F . We may need to

augment each subsystem with additional measurements that
are typically acquired from the (nearest) neighbors of the
subsystem, such that all of the faults associated with the ex-
tended model of this subsystem are detectable and isolable.
In the worst case, all of the measurements from another sub-
system may have to be included to make the current subsys-
tem diagnosable. When such a situation occurs, we say the
two subsystems are merged and represented by a common
diagnoser, therefore, the total number of independent dis-
tributed diagnosers may be less than k.

Each MSO is sensitive to a set of faults and, therefore can
be used to detect them and isolate them from the other faults
in the system. For each subsystem Si, our goal is to find a
minimal set of MSOs that provide maximum detectability
and isolability to that subsystem. A set of MSOs is mini-
mal if there is no subset of MSOs that provides the same
detectability and isolability. To achieve distributed fault di-
agnosis, we also want each subsystem to use the minimum
number of measurements from the other subsystems. In
other words, we want to minimize communication or the
amount of data (measurements) to be transmitted between
the subsystems. More formally, the problem for designing a
diagnoser for a particular subsystem Si can be described as
follows:
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ConsiderMSO = {MSO1,MSO2, . . . ,MSOr} as the
set of possible MSOs for the subsystem Si. We need to de-
velop an algorithm to select a minimal subset ofMSO that
guarantees maximal structural detectability and isolability
for faults Fi associated with the subsystem, and include a
minimum number of measurements from the other subsys-
tems in the system to assure the equivalence of local and
global diagnosability , i.e.,

∀Si; 1 ≤ i ≤ k

Select MSOSi ⊂MSO
s.t. min

Mo⊆M
|Mo|

Di(Mi ∪Mo) = Di(M),

Ii(Mi ∪Mo) = Ii(M),

(6)

where Mo represents the set of measurement we need to
communicate to the subsystem Si along with the set of mea-
surements, Mi associated with the subsystem Si. M repre-
sents the set of all measurements in the system. For a given
set of measurements, X , Di(X) represents the set of de-
tectable faults in Fi, and Ii(X) represents the set of isolable
faults in Fi from the system faults, F .

In the next section we formulate the problem as a BILP
problem. Formulating the problem as a BILP, enables us to
use a number of well-developed tools like branch and bound
algorithms [Land and Doig, 1960] and branch and cut al-
gorithms [Mitchell, 2002] to solve the problem. However,
much like integer linear programming, the general BILP so-
lution is exponential.

4 MSOs Selection for Distributed Fault
Detection Using Global Model

In this section, we present our algorithm to select a mini-
mal set of residuals for each subsystem of a system whose
global model is available as a set of equations. In the next
section, we modify this algorithm to make it applicable to
much larger systems, where a compiled global model is not
available.

For the situation in which the global model is known,
M in equation (6) is the set of all system measurements.
Assume we have l measurements in the system: M =
{m1,m2, ...,ml}. The measurements imply redundancies
in the system model that form the basis for generating
MSOs. Let us assume we can generate r MSOs given
M : MSO = {MSO1,MSO2, . . . ,MSOr}. Our goal
is to design an algorithm that selects MSOi ⊆ MSO in
a way that we add a minimum number of measurements
Mo ⊆M,Mi∩Mo = ∅, i.e., measurements from the system
not belonging to subsystem i, to a subsystem to make all its
faults globally diagnosable. Note that this is equivalent to
the set covering problem and, therefore, any algorithm for
finding the minimal measurements is exponential, in gen-
eral. In the past, we have adopted heuristic search methods
for solving this problem. Our approach for designing sub-
system diagnosers used the Temporal Causal Graph (TCG)
approach [Roychoudhury et al., 2009]. In this paper, we for-
mulate the search for minimal sensors as a BILP problem.
The general formulation of BILP is presented in (5), and
there are several tools available for solving this problem.2

2For example, see http://www.
mathworks.com/help/optim/ug/

To formulate the problem (6) as a BILP problem we de-
fine a binary variable x(k): 1 ≤ k ≤ l, for measurement
mk in the system as follows:

x(k) =

{
1 if mk ∈Mi ∪Mo

0 if mk /∈Mi ∪Mo,
(7)

where Mo is the answer to problem (6). We also define
x(k + l): 1 ≤ k ≤ r, for MSO MSOk in the system as
follows.

x(k + l) =

{
1 if MSOk ∈MSOi

0 if MSOk /∈MSOi.
(8)

To minimize the number of measurements from the other
subsystems, we develop the following cost function c as:

c(k) =

{
0 if mk ∈Mi

1 if mk ∈M\Mi

0 if l < k ≤ l + r,
(9)

where l is the number system measurements and r is the
number of MSOs in the system. Using the algorithm pro-
posed in [Krysander et al., 2008a] 165 MSOs are generated
for the running example, the four tank system. Since there
are 8 measurements in the system c is a vector with 173 el-
ements for this example.

Consider subsystem Si with local faults Fi and the set of
system faults, F . Each local fault fj ∈ Fi has to be lo-
cally detectable. Given definition 8, we can guarantee local
detectability of all the faults fj ∈ Fi with the following
constraints in the optimization problem (5).

A(j, k) =

{
0 if k < l
−1 if fj ∈MSOk−l
0 otherwise.

(10)

Note that l is the number of measurements in the system.
By considering b(j) = −1 for 1 ≤ j ≤ g, where g is the
number of faults in Fi, we make sure that we have selected
at least one MSO to detect each fault.

To address isolability requirement we follow the same
procedure. To isolate fj ∈ Fi from any other fault in sys-
tem, i.e., fh ∈ F we need to have:

A(j + g, k) =

{
0 k < l
−1 fj ∈MSOk−l, fh /∈MSOk−l
0 otherwise.

(11)
Setting b(j) = −1 for g < j ≤ g ∗h, where h is the number
of faults in the system, h = |F |, we make sure that there
is at least one MSO to isolate each of the subsystem faults
from the other faults in the system.

In addition to the constraints that guarantee maximum de-
tectability and isolability for the distributed diagnosis sys-
tem, we need a set of constraints that capture the relation-
ship between the measurements and MSOs in the distributed
diagnosis system. Using a MSO is equivalent to using the
measurements that are included in the MSO, and we need
to include this in the optimization problem. For exam-
ple, consider MSO11, it has three measurements M11 =
{u1, y1, y2}. Using MSO11 in a local diagnosis subsystem
means we need to communicate these measurement streams
to that subsystem to achieve global diagnosability for the

mixed-integer-linear-programming-algorithms.
html in the MatlabTMlinear integer programming toolbox.
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faults that belong to that subsystem. The following equa-
tion represents this constraint.

− x(1)− x(2)− x(3) + |M1|x(7) ≤ 0, (12)

where |M1| = 3 is the cardinality number of M1 and x(1),
x(2), x(3) and x(7) are binary variables that are 1 if we use
u1, y1, y2 and MSO11 in the diagnosis system and are zero
otherwise. This constraint implies that if we use MSO1:
x(7) = 1, its associated measurements are used by the sub-
system too: x(1) = x(2) = x(3) = 1.

Equation (13) represents these set of constraints in A ma-
trix.

A(j + g ∗ h, k) =
{ −1 if mk ∈MSOj

|Mj | if k = j + |M |
0 otherwise,

(13)
where |Mj | is the cardinality number of set of measure-
ments in MSOj and |M | is the cardinality number of set
of all the measurements in the system. Setting b(j) = 0 for
g ∗ h < j ≤ g ∗ h + n, where n is the number of MSOs
in the system. The optimization problem takes into account
the relationship between measurements and MSOs. For the
running example we generated 165 MSOs, there are also 3
measurements in the subsystem 1, and 8 measurements for
the entire system. Similarly, subsystem 1 has two faults of
interest, and the goal is to be able to isolate them from any of
the 6 faults in the complete system. Therefore, to solve the
optimization problem (5) for subsystem 1, matrix A has 177
rows (equal to the number of constraints: 2 constraints to
guarantee the local detectability of f1 and f2, 10 constraints
to guarantee the local isolability of f1 and f2 from the other
faults, and 165 constraints to capture the relationship be-
tween the MSOs and the measurements) and 173 columns
(equal to the number of binary variables: 8 for the measure-
ments and 165 for the MSOs) and b is a vector with 177
elements (equal to the number of constraints).

Table 1 shows the set of measurements that we need to
add for each of the subsystem diagnosers to achieve max-
imum possible detectability and isolability using our pro-
posed algorithm. To find the optimum measurements, we
solved the optimization problem (5) for each subsystem.

Table 1: Set of augmented measurements to each subsystem
model

Subsystem Set of augmented measurements
S1 y3
S2 u2, y2, y6
S3 y4, y6
S4 y5

Considering the expanded measurement set the schematic
of the four tank system with the four distributed diagnosers
is shown in Figure 2. The figure shows the complete set
of measurements required by the four subsystem diagnosers
to achieve global detectability and isolability for the set of
faults they contain. For example subsystem 1 includes three
measurements M1 = {u1, y1, y2}, and to achieve global di-
agnosability for its faults, y3 must be communicated to its
diagnoser from subsystem 2. Subsystem 2 is the only sub-
system that shares a variable with a second order connected

subsystem, all the other subsystems only need to communi-
cate with their first order connected subsystems. Note that
communicated measurements typically will incur additional
cost and may lower reliability of the system diagnoser. But
keeping them to a minimum (see results in Table 1) reduces
that cost and uncertainty, while maintaining global diagnos-
ability.
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Figure 2: Distributed diagnosis subsystems.

A common way to validate a distributed fault detection
and isolation approach is to compare the result with the
maximum global detectability and isolability. Adopting the
exoneration assumption, Table 2 shows the detectability and
isolability performance of the centralized approach. An X
in the table shows that the fault in the row and the fault in
the column are not isolable from each other. An X in the
first column (NF) means the fault in the corresponding row
is not isolable from NF (No Fault) or simply it is not de-
tectable. Table 2 shows that with a centralized approach we
can detect and isolate all the faults.

Table 2: Fault isolability table for running example using
centralized approach

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

However, Table 3 shows that using the original subsys-
tems for distributed diagnosis does not provide the same re-
sults as the centralized global diagnoser.

Table 3: Fault isolability table for running example using
distributed approach for the original subsystems

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X X X X X X
f3 X X X X X X
f4 X X X X X X
f5 X X X X X X
f6 X X X X X X

In fact, only f1 can be detected and isolated from the
other faults. Using the augmented subsystems in Table 1
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Table 4: Fault isolability table for running example using
distributed approach for the augmented subsystems

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

(Figure 2) we achieve the same performance as the global
diagnoser as shown in Table 4.

This demonstrates that the distributed approach can
achieve the same performance with the centralized approach
for fault detection and isolation in the running example. In
general, the worst case scenario for a system with strongly
connected subsystems (i.e., all subsystems are connected to
each other) will typically require a large number of mea-
surements from other subsystems to be communicated to
each subsystem diagnoser. In those situations, subsystem
diagnosers just get rid of the single point of failure, but each
subsystem diagnoser may require a large number of mea-
surements to be communicated to it from all of the other
subsystems.

In our case study, the four tank system model included
165 MSOs, which means for each subsystem there was 2165
different MSO candidate sets. This creates a very large
search space (in general the search space is exponential in
the number of MSOs, and generating all MSOs is in itself
an exponential problem. This justifies the formulation of the
problem as a BILP problem that provides efficient tools, like
the bintprog function in MatlabTM(see earlier footnote), to
solve it. However, given the exponential nature of the solu-
tion, this method will not scale up for larger systems, even
if the subsystem diagnoser design is performed off-line. In
addition to the computational complexity, the availability of
global models for large, complex systems is unlikely be-
cause of the issues discussed in Section 1. To overcome this
problem, we sacrifice minimality of the solution to some ex-
tent, and propose an incremental algorithm for designing the
subsystem diagnosers.

5 MSOs Selection for Distributed Fault
Detection Using Neighboring Subsystems

The proposed approach in the previous section used the
global model of the system to generate the residuals, and
then derived the subsystem diagnosers using the BILP al-
gorithm run on the global MSO set. In this section, we
achieve global diagnosability of a subsystem diagnoser by
incrementally adding a minimum number of measurements
from the neighbors of this subsystem till the global diagnos-
ability property is established. The algorithm starts with the
set of equations for the subsystem whose diagnoser is being
designed, and if global diagnosability is not achieved using
this model, it expands to include equation sets that corre-
spond to the models of its immediate neighbors. If global
diagnosability is achieved, the algorithm terminates, oth-
erwise the algorithm expands to use the next higher order
of neighbors and repeats the search for minimal MSOs to
achieve complete diagnosability. The process of including
successively higher order neighbors is shown in Figure 3.

In the worst case, this process continues, till the complete
set of system equations are required to generate all possi-
ble MSOs, and establish global diagnosability for the sub-
system. Therefore, it is guaranteed that the method has the
same diagnosability performance as the best centralized di-
agnoser for the same set of measurements. Algorithm 1 de-
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Figure 3: Expanding the search environment to the higher
order connected subsystems.

scribes the algorithm for our proposed method.

Algorithm 1 Incremental Algorithm
1: for each Si ∈ S do
2: SS = Si

3: j = 0
4: while Di(SS) 6= Di(S) or Ii(SS) 6= Ii(S) do
5: j = j + 1
6: SS =SS ∪ (jth order connected subsystems of Si)

7: Generate all the MSOs for SS
8: Use equation (9) to compute cost function for SS
9: Use equations (10), (11), and (13) to generate A

matrix for SS
10: Generate vector b for SS
11: Use bintprog(c, A, b) to solve the problem and

compute Di(SS) and Ii(SS)

Consider the running example. To design the diagno-
sis system for the first subsystem, we start with its set of
equations and we can only generate one MSO which is not
enough to detect subsystem faults and isolate them from the
system faults. We then augment the subsystem model with
the model from its nearest neighbor subsystem 2, and gen-
erate the set of MSOs for the augmented model. The total
number of MSOs for the augmented subsystem (Subsystem
1 + subsystem 2) is 11 which leads to 211 MSO set can-
didates which is much smaller than 2165 candidates. Solv-
ing the optimization problem presented in this section gives
the same result with the global method for this subsystem,
but the computation time is reduced significantly. Using
the same approach for every subsystem, the set of measure-
ments that we need to transfer to each subsystem of the run-
ning example are presented in Table 5.

Figure 4 shows that for the four tank case study, all the
subsystems share variables with their first order connected
subsystems. This provides a practical advantage to this al-
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Table 5: Set of augmented measurements to each subsystem
model

Subsystem Set of augmented measurements
S1 y3
S2 u2, y2, y5
S3 y4, y6
S4 y5

gorithm because usually the subsystems with shared vari-
ables are physically closer to each other (corresponding to
our definition of nearest neighbors) and, therefore, we do
not need to transfer data over long distances, which, as dis-
cussed earlier, can be costly and error-prone.
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Figure 4: Distributed diagnosis subsystems using incremen-
tal algorithm.

Table 6 shows that this distributed diagnosis system pro-
vides the same diagnosability performance as the central-
ized diagnosis method.

Table 6: Fault isolability table for running example using
the incremental algorithm

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

The proposed algorithm provides the maximum possible
detectability and isolability that can be achieved. The ad-
vantage of this algorithm is that not only we do not need a
global model for detecting and isolating the faults, but also
we do not use the global model in the design process of the
supervisory system. This makes the approach suitable for
large, complex systems, such as aircraft and power plants
where the global systems models are likely to be unavail-
able or unknown.

6 Discussion and Conclusions
A distributed approach to the problem of fault detection and
isolation is presented in this paper. We proposed two al-
gorithms for MSOs selection for the distributed diagnosis.
The proposed algorithms provide the maximum possible de-
tectability and isolability that can be achieved for a sys-
tem given a set of measurements. The first algorithm also
guarantees that the subsystems share the minimum number

of measurements, implying that we minimize the commu-
nication of measurement streams across subsystems of the
global system. This is important because sending the data
to other subsystems is costly in large scale systems. On the
other hand, the second algorithm does not need to use the
global model in the design process of the supervisory sys-
tem . This makes the algorithm more practical, specially for
the complex systems. However, the second algorithm does
not guarantee that the number of shared variables among the
subsystems are globally minimum.

Unlike previous work, such as [Bregon et al., 2014;
Daigle et al., 2007] this method directly works with MSOs
generated from subsystem and system equations, and there-
fore, does not need to use the temporal response and event
ordering in the diagnosis, all of which are derived proper-
ties, and, therefore, require additional computation. Using a
purely structural approach, reduces the overall diagnosabil-
ity of the system for the given set of measurements. How-
ever, it also reduces the number of assumptions we need to
make about the fault characteristics, order of events in the
diagnoses subsystems (which can be error-prone), and we
dot have to analyze in detail the subsystem dynamics.

Moreover, in the incremental algorithm we do not need
to have the full global model to design the individual sub-
system diagnosers. This is an important practical contribu-
tion of this paper in comparison to our previous work (e.g.,
[Roychoudhury et al., 2009]). Requiring the global model
may render the approach to be impractical for the large-scale
complex systems, such as aircraft and power plants where
the global systems models are likely to be unavailable or
unknown.

Finally, in the proposed methods, we generate the MSOs
first to design our subsystem diagnosers. The total num-
ber of MSOs is exponential in terms of the system measure-
ments. This increases the computational cost of the prob-
lem. To make our diagnoser derivation process more effi-
cient, we used BILP framework. On the other hand, having
all the MSOs beforehand, makes robustness analysis [Kho-
rasgani et al., 2014a; Khorasgani et al., 2014b] possible for
robust distributed MSOs selection. In future work, we will
consider noise and uncertainty in the system and will ex-
tend the proposed method to robust distributed fault detec-
tion and isolation.
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Abstract
Condition-based maintenance is recognized as a
better health management strategy than regularly
planned inspections as used nowadays by most
companies. In practice, it is however difficult to
implement because it means being able to predict
the time to go before a failure occurs. This predic-
tion relies on knowing the current health status of
the system’s components and on predicting how
components age. This paper demonstrates the
applicability of interval-based tools in integrated
health management architectures, hence propos-
ing an alternative to the standard statistical ap-
proach1.
Keywords: Interval analysis, diagnosis, prognosis.

1 Introduction
Nowadays system’s availability is a key ingredient of eco-
nomical competitiveness. A typical example is the civil
aircraft industry for which the unavailability of passenger
carriers generate great costs and considerable economical
losses. Technical inspections are generally planned on reg-
ular bases. If a component fails and needs to be replaced
between two successive inspections, the plane is taken to a
standstill and the company has to re-schedule the aircraft
fleet, implying money loss during this unplanned immo-
bilization. This is why condition-based maintenance is a
preferable strategy that means predicting at inspection time
the time to go before a new failure occurs. In this case the
aircraft company can replace the part whose failure is es-
timated during the current inspection and then prevent an
extra immobilization of the plane. This strategy not only
saves a lot of money but also increases reliability and safety.

Integrated systems health management architectures per-
forming condition-based monitoring naturally couple fault
diagnosis and prognosis mechanisms [1; 2; 3; 4]. Diagnosis
is used to assess the current state of the system and is used
to initialize a prediction mechanism based on ageing mod-
els that aims to estimate the remaining useful life (RUL).
In the prognosis process several sources of uncertainty can
be identified, in particular the ageing models and the future

1This work was supported by the CORALIE Project IA 2012–
01–06 of the Council for Research in French Civil Aeronautics
(CORAC), WP1 "Contrôle Santé", and by the French National Re-
search Agency (ANR) in the framework of the project ANR-11-
INSE-006 (MAGIC-SPS).

stress conditions. These uncertainties are commonly taken
into account through appropriate assumptions about noise
and model error distributions, which are difficult to acquire.
An alternative approach is to frame the problem in a set-
membership framework and make use of recent advances in
the field of interval analysis and interval constraint propaga-
tion.

This paper demonstrates the applicability of interval-
based tools — briefly introduced in Section 2 — in inte-
grated health management architectures, providing an in-
teresting alternative to the standard statistical approach [5;
6]. It proposes a two stages set-membership (SM) condition-
based monitoring method whose principle is presented in
Section 3. The first stage is diagnosis that provides an esti-
mation of the system’s health status. It takes the form of SM
parameter estimation using Focused Recursive Partitioning
(FRP) and is the subject of Section 4. The second stage con-
cerns prognosis in the form of the estimation of the remain-
ing system’s lifespan. It is based on the use of a damaging
table and is detailed in Section 5. The case study of a shock
absorber is used to illustrate the method and is presented in
Section 6 before the concluding Section 7.

2 Interval analysis
Interval analysis was originally introduced to obtain guar-
anteed results from floating point algorithms [7] and it was
then extended to validated numerics [8]. A guaranteed re-
sult first means that the solution set encloses the actual so-
lution. It also means that the algorithm is able to conclude
about the existence or not of a solution in limited time or
number of iterations [9].

2.1 Interval
A real interval x = [x, x] is a closed and connected subset
of R where x and x represent the lower and upper bound of
x, respectively. x and x are real numbers. The width of an
interval x is defined by w(x) = x − x, and its midpoint by
mid(x) = (x + x)/2. If w(x) = 0, then x is degenerated
and reduced to a real number. x is defined as positive (resp.
negative), i.e. x ≥ 0 (resp. x ≤ 0), if x ≥ 0 (resp. x ≤ 0).

The set of all real intervals of R is denoted IR. Two inter-
vals x1 and x2 are equal if and only if x1 = x2 and x1 = x2.
Real arithmetic operations have been extended to intervals
[8]:
◦ ∈ {+,−, ∗, /}, x1 ◦ x2 = {x ◦ y | x ∈ x1, y ∈ x2}.

An interval vector or box [x] is a vector with interval com-
ponents. An interval matrix is a matrix with interval com-
ponents. The set of n−dimensional real interval vectors is
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denoted by IRn and the set of n ×m real interval matrices
is denoted by IRn×m. The width w(.) of an interval vector
(or of an interval matrix) is the maximum of the widths of
its interval components. The midpoint mid(.) of an interval
vector (resp. an interval matrix) is a vector (resp. a matrix)
composed of the midpoints of its interval components.

Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
real vectors (resp. real matrices) [8].

2.2 Inclusion function
Given x a box of IRn and a function f from IRn to IRm, an
inclusion function of f aims at getting a box containing the
image of x by f . The range of f over x is given by:

f(x) = {f(ν) | ν ∈ x},
where ν is a real vector of the same dimension as x. Then,
the interval function [f ] from IRn to IRm is an inclusion
function for f if:

∀x ∈ IRn, f(x) ⊂ [f ](x).

An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding in-
terval and by replacing each standard function by its interval
evaluation. Such a function is called the natural inclusion
function. A function f generally has several inclusion func-
tions, which depend on the syntax of f .

2.3 Notations
Throughout the paper and unless explicitly mentioned, vari-
ables are assumed to take values in IRd, where d is the di-
mension of the variable. Exception is made for overlined
and underlined variables that are assumed to take values in
Rd, where d is the dimension of the variable. Bold sym-
bols are used to denote multi-dimensional variables (vector
or matrices).

3 Principle of the Set-Membership Health
Management Method

3.1 Method Architecture
The architecture of the preventive maintenance method is
shown in Fig. 1. The method relies on two modules:

• A diagnosis module that uses the system measured in-
puts and outputs to compute an estimation of the sys-
tem’s health status; this is performed by estimating the
value of the system parameter vector θ by the means of
a behavioral Model Σ of the system.

• A prognosis module that predicts the parameter evo-
lution over time by using a Damaging Model ∆ and
computes the Remaining Useful Life or RUL of the un-
derlying subsystems.

The global model representing the progressive evolution
of the system over time, e.g. the Ageing Model, is obtained
by putting together the behavioral model Σ and the dam-
aging model ∆. The behavioral model takes the form of a
state space model, i.e. a state equation modeling the dynam-
ics of the system state vector, and an observation equation
that links the state variables to the observed variables:

Σ :

{
ẋ(t) = f(t, x(t), θ(t), u(t))

y(t) = h(t, x(t), θ(t), u(t))
(1)

RUL

System

Behavioural
model Σ

Damaging
model Δ

Ageing model

Diagnosis Prognosis

Figure 1 – Health management architecture.

where
x(t) is the state vector of the system of dimension nx,
u(t) is the input vector of dimension nu,
y(t) is the output vector of dimension ny ,
θ(t) is the parameters vector of dimension nθ.
Σ represents the system’s nominal behavior as it is sup-

posed to act when its parameters have not yet suffered any
ageing.

The damaging model ∆ represents the dynamics of the
behavioral model parameters. It is described by the dy-
namic state equation (2) where the equation states are the
system parameters. The equation models how the parame-
ters evolve over time because of the wearing, leakage, etc.:

∆ : θ̇(t) = g(t,θ(t),w,x(t)) (2)

where w is a wearing parameter vector of dimension nθ.

3.2 Unit Cycles
Predicting the evolution of the system’s behavior requires
to know a priori how the system will be solicited either by
the control system or by external causes (e.g. environmen-
tal conditions, temperature, humidity, etc.) This knowledge
is generally difficult to obtain. In our approach, we make
assumptions about the future solicitations of the system by
determining the most usual way the system is intended to be
used and we define the notion of unit cycles. A unit cycle C
is defined as a solicitation that repeats in time and that leads
to a behavioral sequence that is known to impact system’s
ageing.

For example, in the case of a pneumatic valve from the
Space Shuttle cryogenic refueling system, [2] defines a unit
cycle as the opening of the valve, the filling of the tank and
the valve closing when the tank is full. In the case of an
aircraft, an unit cycle may be chosen to be a flight: it starts
with the plane take-off, a cruising stage and landing.

One may simultaneously use unit cycles at different time
scales, depending on the dynamics of the system and its sub-
systems. As an example, one may define a “global” unit cy-
cle for a bus as being the journey from the starting station to
the terminus, and another unit cycle for the subsystem “bus
doors” as being the opening and the closing of the doors at
each station.

4 SM Diagnosis
Diagnosis is achieved through SM parameter estimation.
This problem assumes that measured outputs ym(ti) gener-
ated by the real system on a time horizon ti = t0, . . . , tH of
length H × δ, where δ is the sampling period, are corrupted
by bounded-error terms that may originate from the system
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parameters varying within specified bounds, bounded noise,
or sensor precision. The ym(ti)’s are hence interval vectors
of IRny . The SM parameter estimation problem for the sys-
tem Σ is formulated as finding the set Θ ⊆ Rnθ of real pa-
rameter vectors such that the arising outputs y(ti,θ) ∈ Rny
hit all the output data sets, i.e.:

θ ∈ Θ⇔ y(ti,θ) ∈ ym(ti),∀ti ∈ {t0, . . . , tH}.
Θ is called the feasible parameter set (FPS). SM parame-

ter estimation problems are generally solved with a branch-
and-bound algorithm like SIVIA [10] that enumerates can-
didate box solutions thanks to a rooted tree and assumes the
full parameter space as the root. At every node, the set of
ŷ(ti), ti = t0, . . . , tH , arising from the considered box pa-
rameter vector [θ]∗, i.e. solution of Σ for any real θ ∈ [θ]∗,
is checked for consistency against the measurements and la-
belled feasible, unfeasible or undetermined. Unfeasible can-
didates are rejected while undetermined candidates are split
and checked in turn until the set precision of the candidate
solutions is below a given threshold ε provided by the user.

Such algorithms return an overestimation of the FPS
given by the convex union of the candidates that have been
labelled feasible and undetermined [11]. Interestingly, the
convex union may consist of one set or more, which means
that the systems does not need to be identifiable in the clas-
sical sense [12].

When considering a SIVIA-based algorithm for dynam-
ical systems like Σ, a critical step is the determination of
the inclusion function for the state vector x̂(ti) at instants
ti = t0, . . . , tH , arising from a given candidate parameter
vector [θ]∗, from which the [ŷ(ti)], ti = t0, . . . , tH can
be computed using the observation equation of Σ. This
step relies on set-membership integration for which we have
chosen the interval Taylor series integration scheme imple-
mented in the VNODE-LP solver [13]. Although quite well
optimized [14], it is well-known that this method is compu-
tationally stable only for [θ]∗ of very small size. SIVIA-like
parameter estimation algorithms are hence particularly in-
efficient as they enumerate candidate parameter subspaces
starting with the full parameter space. This is why we pro-
pose the FRP schema presented in the next section.

4.1 Principle of FRP-based SM Parameter
Estimation

The principle of the FRP method is based on partitioning
the parameter search space S(θ). Each part of the partition
represents a candidate parameter vector [θ]j for which SM
integration of the state equation of Σ provides a conservative
numerical enclosure x̂(ti)j , ti = t0, . . . , tH . The output
vector can now be estimated as:

ŷ(ti)j = h (t, x̂j , [θ]j ,um) ,∀ti ∈ {t0, . . . , tH} (3)

We then keep track of the parameters vectors for which
the ŷ(ti)j’s are consistent with the measurements, for all
ti = t0, . . . , tH , i.e. the unfeasible ones are discarded. Com-
puting the convex hull then provides us with a minimal and
maximal value for the admissible parameter vectors.

The consistency test is defined as testing the intersection
of the estimated output vector with the measurements:

If ∃ ti ∈ {t0, . . . , tH} s.t. ŷ(ti)j ∩ ym(ti) = ∅, (4)

then there is no consistency between the estimation and the
measured input um(t) and output ym(t) with the tested pa-
rameter vector [θ]j . The parameters box [θ]j is unfeasible

and hence rejected.

If ŷ(ti)j ⊆ ym(ti), ∀ti ∈ {t0, . . . , tH}, (5)

then [θ]j is a parameter vector for which the estimation is
consistent with the measurements. The box is added to the
list of the solution parameter boxes:

P = P ∪ [θ]j . (6)

If none of the two previous conditions is true, i.e.:

[ŷ(ti)]j ∩ [ym(ti)] 6= ∅, ∀ti ∈ {t0, . . . , tH}, (7)

it means that the parameter box [θ]j is undetermined and
that it partially contains solutions. The box is also added to
P. Two different labels allow us to keep track of the boxes
that are feasible or undetermined. The convex union of these
boxes provides the estimation θ̂ that encloses the feasible
parameter set Θ, i.e. θ̂ ⊇ Θ.

The quality of the enclosure depends on the size of the
boxes of the partition, in other words on the partition preci-
sion. A way to improve the enclosure is to proceed with a
partition of the obtained solution θ̂ and run another round of
consistency tests over the new boxes, and so on recursively.
The process of iterating the partition ends when the gain in
precision is low with respect to the SM integration and con-
sistency tests computational cost. The method is detailed
for a one dimension parameter vector in the next section.

The estimation precision ω(P ) obtained for a given par-
tition P can be evaluated by the following percentage:

ω(P ) =
∣∣∣mid(θ̂)

∣∣∣ ./
(∣∣∣mid(θ̂)

∣∣∣+ w(θ̂)/2
)

(8)

where ./ denotes the division of two vectors term by term.
Given two partitions Pi and Pj , one can evaluate the pre-

cision gain as:

G(Pj/Pi) = ω(Pj)./ω(Pi). (9)

4.2 Parameter search space
The domain value of the parameter vector θ is given by
Ω(θ) = [.inf(θbol,θeol), .sup(θbol,θeol)], where .inf and
.sup denote the operators inf and sup applied term by term
and θbol and θeol are the real vectors whose components
are given by θk,bol and θk,eol for each parameter θk, k =
1, . . . , nθ:

• θk,bol (bol: “beginning-of-life”) is the factory setting
defined by the design specification,

• θk,eol (eol: “end-of-life”) is the maximal/minimal ad-
missible value, i.e. the value above/below which the
component is considered to have failed and the func-
tion is no longer guaranteed.

During the system’s life, the impact of ageing results in the
parameter vector value evolving in Ω(θ). Depending on the
impact of ageing, its value may decrease or increase with
time:

θ(ti) = αθ(tj), ti ≥ tj (10)

where α is an nθ dimensional real vector whose compo-
nents αk are greater or lower than 1 depending on the impact
of ageing on the change direction of the parameter.

We assume a health management strategy, which means
that diagnosis (and prognosis) is performed according to a
given inspection planning at some chronologically ordered
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times of the system’s life T0, . . . , TF . The parameter vec-
tor search space depends on the time and is hence denoted
by S(θ)Ti = [S(θ)Ti ,S(θ)Ti ], where Ti ∈ {T0, . . . , TF }.
Initially, for the first inspection time T0, we set S(θ)T0

=
Ω(θ). Diagnosis then returns the estimated parameter value
θ̂(T0). For the next inspection time, S(θ) is updated by tak-
ing the parameter value estimation into account as follows:

• if αk > 1, θk,bol is replaced by inf(θ̂k(T0), θ̂k(T0)),

• if αk < 1, θk,bol is replaced by sup(θ̂k(T0), θ̂k(T0)),

and one of the bounds of the components of S(θ)T1 remains
equal to θk,eol.

In the general case, when considering the inspection time
Ti, S(θ)Ti is hence obtained with θ̂(Ti−1) as follows:

• if αk > 1, inf(θ̂k(Ti−1), θ̂k(Ti−1)) is replaced by

inf(θ̂(Ti), θ̂(Ti)),

• if αk < 1, sup(θ̂k(Ti−1), θ̂k(Ti−1)) is replaced by

sup(θ̂k(Ti), θ̂k(Ti)).

4.3 FRP Parameter Estimation for a Single
Parameter

In this section, we consider one single parameter θ whose
evolution is monotonically increasing. As an example, let’s
state that θ is a bearing friction coefficient that grows with
the bearing wearing and the clogging of the environment. In
the general case, this kind of knowledge must be brought by
an expert of the system and/or the manufacturer.

Let us consider the first inspection time and the initial
search space S(θ)T0

given by the domain value of the pa-
rameter Ω(θ) = [θbol, θeol]. The search space is partitioned
into boxes, in our case intervals (cf. Fig. 2).

The dynamic equation of Σ is integrated on the time win-
dow ti = t0, . . . , tH , where tH = T0, as many times as
the number of intervals in the partition P1. The number
of intervals is defined by the partition factor ε(P1), which
equals 1/15 in our example (cf. Fig. 2). We start with
[θ]1 = [θbol, θbol + pw], where pw = ε(P1)w(S(θ)T0

) is
the width of the partition intervals, then proceed with the
subsequent intervals [θ]j . For each interval, we get an esti-
mation of the state vector at times ti = t0, . . . , tH , denoted
as x̂(t0 . . . tN )j , and obtain ŷ(t0 . . . tN )j thanks to the ob-
servation equation (1). This latter is tested for consistency
against the measurements ym(t0 . . . tN ).

Depending on the output of the tests (4), (5), and (7), the
parameter interval [θ] is rejected or added to the solution as
feasible or undetermined (red-colored, green-colored, and
yellow-colored parts, respectively, in Fig. 2).

P1

Figure 2 – Partition P1 and test results for this partition.

The convex union of feasible and undetermined intervals
provides a guaranteed estimation θ̂ =

[
θ̂, θ̂

]
of the admis-

sible values for θ. We iterate the process by creating a new
partition P2 of

[
θ̂, θ̂

]
with a precision ε(P2) = 1/10 (cf.

Fig. 3).

We proceed as above for each interval of P2 in order to re-
fine the bounds of

[
θ̂, θ̂

]
and find a more precise enclosure

of feasible parameter solution (see Fig. 3).

P1

P2

Figure 3 – Partition P2 and test results for this partition.

We iterate the process until the precision gain
G(Pi+1/Pi) is greater then a given threshold, as it is
shown in Fig. 4.

P1

P2

P3

Figure 4 – Test results for partition P3.

Remarks
The method can be easily generalized to a system whose
parameter vector has dimension nθ > 1. The computing
cost is proportional to the number of boxes that are tested,
i.e.
∑nP
i=1 1/ε(Pi), where nP is the number of partitions.

Let’s notice that the partition may be non-regular. For ex-
ample, for a slowly ageing parameter, one may choose small
boxes for the values of θ that are close to θbol and larger
ones for the values close to θeol. The result is guaranteed
even if the partition has not been properly chosen or if the
parameter has evolved in a non expected way, although the
computation cost may be higher.

The convex union provides a poor result if the set of ad-
missible values is made of several mutually disjoint con-
nected sets, as shown in Fig. 5. The algorithm may test
some boxes that have already been rejected by the tests of
the previous partition. This drawback could be addressed
by defining the solution as a list of boxes whose labels (un-
feasible, feasible, or undetermined) are inherited by the next
partition boxes.

P

Solution

Figure 5 – The returned solution is the convex hull of mutu-
ally disjoint connected intervals.

5 SM prognosis
The prognosis phase consists is calculating the number of
cycles remaining before anomaly, which is also called the
Remaining Useful Life or RUL. To optimally adapt this cal-
culation to the system’s life requires the knowledge of the
health status of the system at the current time, which was
the topic of Section 4.
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5.1 Component degradation
The global model (Σ + ∆) assumes that the parameters of
the behavior model Σ given by (1) evolve in time, and that
their evolution is represented by the degradation model ∆
given by the dynamic equation (2) that is recalled below:

∆ : θ̇(t) = g(t,θ(t),w,x(t)).

∆ provides the dynamics of the parameter vector as a func-
tion of the state of the system x(t) and of a degradation
parameter vector w that allows one to tune the degradation
for each of the considered parameters.

The global model (Σ + ∆), in the form of a dynamic
model with varying parameters, cannot be directly inte-
grated by VNODE-LP. An original method, coupling the
two models Σ and ∆ iteratively is proposed in the following.
The method is illustrated by Fig. 6 and used to determine
the degradation suffered by each parameter during one unit
cycle as defined in Section 3.2.

Let us denote uC (t), t ∈ [τ, τ + dC ], the system input
stress during one unit cycle C . As shown in Fig. 6, the
following steps are iteratively executed, every iteration cor-
responding to a computation step given by the sampling pe-
riod δ:

1. The normal behavior model Σ is used first with input
u(t) = uC (τ) to compute the state x(τ) and the output
y(τ);

2. The parameters are updated with the degradation
model ∆ using the value of the state determined pre-
viously, i.e. θ(τ) is computed;

3. The parameters of the behavior model Σ are updated
with θ(τ);

4. The next stress input value uC (τ + δ) is considered,
and so on until the end of the cycle, i.e. until the last
value of the cycle uC (τ + dC ) is reached.

Σ

Δ

Figure 6 – Computation of the degradation parameters dur-
ing one unit cycle.

The above algorithm defines the function:

D : IRnθ → IRnθ (11)

where nθ is the number of parameters of the system. Let’s
assume the cycle i, then D maps θi into D(θi) = θi+1,
which is the value of θ after one unit cycle.
D is nonlinear. Thus the value of the parameter vector

after one cycle θi+1 depends on the initial value θi. Indeed,
we know that a system generally degrades in a nonlinear
fashion. We must hence compute θi+1 for all possible val-
ues of the parameter vector θi.

For this purpose, the domain value Ω(θk) of each param-
eter θk is partitioned into Nk intervals. Nk is chosen suffi-
ciently large to reduce non conservatism of the interval func-
tionD. The domain value of the parameter vector θ is hence

partitioned into NΠ = Πnθ
k=1Nk possible boxes that must be

fed as input to D. Let us for instance consider a two param-
eters vector and its beginning-of-life and end-of-life values
as follows:

θ =

[
θ1

θ2

]
, θbol =

[
1
1

]
, θeol =

[
4
9

]
and N =

[
3
2

]
, (12)

then, if we select the partition landmarks as {5} for θ1 and
{2, 3} for θ2

2,Dmust be run for the following 6 box values:

[θ]1 =

[
[1, 2]
[1, 5]

]
, [θ]2 =

[
[2, 3]
[1, 5]

]
, [θ]3 =

[
[3, 4]
[1, 5]

]
,

[θ]4 =

[
[1, 2]
[5, 9]

]
, [θ]5 =

[
[2, 3]
[5, 9]

]
, [θ]6 =

[
[3, 4]
[5, 9]

]
. (13)

For each of these box values taken as input for cycle i, i.e.
θi = [θ]l, l = 1, . . . , 6, D returns the (box) value θi+1 after
one unit cycle. This computation is then projected on each
dimension to obtain a set of nθ tables, Dθk , k = 1, . . . , nθ,
that provide the degradation of each individual parameter θk
after one unit cycle.

5.2 RUL determination
The RUL, understood as a RUL for the whole system, can
now be determined by computing the number of cycles that
are necessary for the parameters to reach the threshold defin-
ing the end-of-life (cf. Fig. 7).

Diagnosis at
inspection

time Tk

Yes

RUL = i

No

Figure 7 – RUL computation

For the cycle i = 0, θ0 is initialized with θ̂, which is
the result of the parameter estimation computed by the di-
agnosis engine. θ̂ is given as input to D, which returns
D(θ̂) = θ1. i is incremented by 1 and θ1 is given as input
to D and so on until the set-membership test θi � θeol is
achieved, which provides the stopping condition. This test
may take several forms as explained in Section 5.3. If the
test is true, then the index i is the number of cycles required
to reach the degradation threshold, so RUL = i.

For a given cycle i, the box value θi that must be given
as input to D is not necessarily among the values [θ]l, l =

1, . . . , NΠ, of the partition. We propose to compute θi+1

by assuming that the mapping between θi and θi+1 is linear
in every domain l of the partition. Considering p ∈ Rnθ ,
D(p) is approximated as follows:

∀θ ∈ [θ]l,D(θ) ≈ a� θ + b, l=1, . . . ,NΠ (14)

where a= w(D([θ]l))./w([θ]l), b= D([θ]l)− a[θ]l, and �
is the product of two vectors term by term.

Equation (14) is applied to θ
i

and θi to obtain an approx-
imation of D(θi).

2Notice that the intervals issued from the partitioning are not
required to be of equal length.
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5.3 Set-membership test for the RUL
The set-membership test implemented with the order rela-
tion � may take several forms. For instance, if the test
θi � θeol is interpreted as:

∃k ∈ {1, . . . , nθ} |
θ
i

k ≥ θk,eol if αk > 1 or θik ≤ θk,eol if αk < 1, (15)
then it means that the bound of the interval value of at least
one parameter θk is above or below its end-of-life threshold
value θk,eol. The RUL is then qualified as the “worst case
RUL”, which means that the RUL indicates the earliest cycle
at which the system may fail.

One can also test whether the value higher bound of one
of the parameters is higher than its end-of-life threshold, that
is to say:

∃k ∈ {1, . . . , nθ} |
θik ≥ θk,eol if αk > 1 or θ

i

k ≤ θk,eol if αk < 1. (16)
The RUL then represents the cycle at which it is certain that
the system will fail.

It is obviously possible to combine these different tests
applied to the different individual parameters depending on
their criticality.

6 Case study
6.1 Presentation
The case study is a shock absorber that consists of a moving
mass connected to a fixed point via a spring and a damper as
illustrated by Fig. 8. The movement of the mass takes place
in the horizontal plane in order to eliminate the forces due
to gravity. Aerodynamic friction forces are neglected.

k

c

m

x

Figure 8 – Spring and damper system

The Newton’s second law is written as:
m~a = Σ~F = ~Fr + ~Fc + ~u (17)

where m is the mass, ~a is the acceleration, ~Fk is the spring
biasing force, ~Fc is the friction force exerted by the damper
and ~u is the force applied on the mass. Expressing the forces
and the acceleration as a function of the position of the mass
x(t), we get:

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) = u(t) (18)

where k is the spring stiffness constant (N/m), m is the mo-
bile mass (kg), and c is the damping coefficient (Ns/m). (18)
is a second order ODE. Let us rewrite

c

m
= 2ζω0 and

k

m
= ω2

0

and we get

ω0 =

√
k

m
and ζ =

c

2
√
km

.

The impulse response of such system depends on the value
of ζ:

• if ζ = 0, then the answer is a sinusoid;
• if 0 < ζ < 1, then the answer is a damped sinusoid;
• if ζ ≥ 1, then the answer is a decreasing exponential.
The state model is given by the equation:





Ẋ(t) =

[
0 1
−k
m

−c
m

]
X(t) +

[
0
1

]
U(t)

Y (t) =

[
1 0
0 1

]
X(t)

(19)

with X(t) = [x(t), ẋ(t)]T , and the transfer function is:

X(p)

U(p)
=

1

p2 + c
mp+ k

m

. (20)

An example of bounded error step response obtained with
VNODE-LP with a sampling parameter δ = 0.1 s, c = 1,
m = 2 and k = [3, 9 ; 4, 1] is shown in Fig. 9a. There,
ζ ' 0.177 and the step response is a damped sinusoid. Be-
cause k is assumed to have an uncertain value bounded by
an interval, the outputs are in the form of envelops.

6.2 Unit cycle
In the case study, a unit cycle is defined by the application
of a power unit for a determined time. The force is applied
at time t0+5s, where t0 is the cycle starting time. The force
lasts 20s and cancels at t0+ 25s as shown by the red curve
of Fig. 9b. The cycle ends at t0 + 50s.

Fig. 9b presents the system’s response for a spring con-
stant k = [3.9, 4.1] N/m, a mass m = 2 kg, a damping co-
efficient c = 10 Ns/m, and initial speed and position equal
to zero. The response is a decreasing exponential.

6.3 Degradation model
The degradation model chosen is the ageing of the damper
cylinder. It is represented by a reduction of the damping
coefficient proportional to the velocity of the mass [15]:

ċ = βẋ, β < 0. (21)

The more the spring is used, the weaker it becomes, charac-
terized by the change in the damping coefficient.

6.4 Diagnosis
The FRP parameter estimation method presented in Section
4 has been used with the measures shown in Fig. 9c. These
measures were obtained for

θ =

[
c
k
m

]
=

[
5
4
2

]
(22)

The goal is to estimate the damping coefficient c and the
stiffness constant k. The search space is defined by the inter-
val [4 9] for c and [3.5, 9] for k. The value of m is assumed
to be known m = 2. Using the notation introduced above,
we have:

θbol =

[
4

3.5
2

]
,θeol =

[
9
9
2

]
(23)

The partition P1 is achieved with a precision ε(P1) = 1/10
for the two parameters to be estimated c and k. Fig. 10
presents two examples of prediction results with two param-
eter boxes of P1: [θ]i =

[
[4, 1, 4, 2], [4, 7, 4, 8], 2

]T
on the
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(a) Step response for ζ = 0.177. (b) Unit cycle for the case study. (c) Measured input and output.

Figure 9 – Cases study simulation and data plots.

left and [θ]j =
[
[5, 5, 1], [4, 4, 1], 2

]T
on the right. On the

left figure, one can see that there is no intersection between
the estimate and the measurement for the position, hence the
box used for the simulation is rejected. On the right, there
is an intersection between the measurement and the estima-
tion for all time points, but the estimate is not included in
the measure envelop, hence the parameter box is considered
undetermined.

Figure 10 – Estimation results with a rejected parameter box
(left) and an indetermined box (right)

The results for partition P1 are presented in Fig. 11a and
we obtain a first estimation for θ:

θ̂ =

[
[4, 1, 5.8]
[3, 7, 4, 2]

2

]
.

The estimation precision for partition P1 is given by:

ω(P1)=
∣∣∣mid(θ̂)

∣∣∣ ./(
∣∣∣mid(θ̂)

∣∣∣+w(θ̂)/2) =

[
0.85
0.94

1

]
(24)

The first estimation for θ is used as the search space for
partition P2, whose precision is increased by a factor of 10,
i.e. ε(P2) = 0, 1. The obtained estimation results are shown
in Fig. 11b.

The estimation is refined as:

θ̂ =

[
[4, 51, 5, 57]
[3, 85, 4, 14]

2

]
.

The precision is now ω(P2) = [0.9, 0.96, 1]T , and the
precision gain is G(P2/P1) = [0.056, 0.025, 0]T . The val-
ues for the gain indicate that partitioning a third time might
be quite inefficient. To confirm this fact, let us perform a
third partition P3, whose precision is increased by a factor
of 5, i.e. ε = 0.02 (cf. Fig. 11c). The new estimation for θ is
θ̂ =

[
[4.548, 5.526], [3.872, 4.132], 2

]T
, and the precision

gain isG(P3/P2) = [0.0073, 0.0036, 0]T . As expected, the
gain is quite negligible with respect to the computation time
increase.

6.5 RUL computation
In this section we apply the set-membership method de-
scribed in Section 5.2 to compute the RUL for the damping
coefficient c.

The damper is assumed to fail when c ≤ ceol = 2. The
degradation model (21) with β = −0, 13 allows us to deter-
mine the degradation table Dc for the parameter c for a unit
cycle:

Dc =

ci D(ci) = ci+1

[9, 10] [8.917, 9.977]
[8, 9] [7.911, 8.978]
[7, 8] [6.898, 7.979]
[6, 7] [5.814, 6.982]
[5, 6] [4.859, 5.979]

ci D(ci) = ci+1

[4, 5] [3.874, 4.977]
[3, 4] [2.863, 3.973]
[2, 3] [1.721, 2.97]
[1, 2] [0, 1.98]
[0, 1] [0, 0.9755]

(25)
After proceeding to the linear interpolation given by (14),
the graphical representation of ci+1 as a function of ci is
given by Fig. 12.

Figure 12 – Approximated degradation of the damping co-
efficient c

The number of elements of the partition has been chosen
relatively small to better illustrate the method. In a real sit-
uation, this number should be high in order to obtain less
conservative predictions.

The value of c has been previously estimated and is

ĉ = [4.548, 5.526].

The graph of Fig. 12 allows us to approximate the predicted
value after one unit cycle:

D(ĉ) = c1 = [4.4787, 5.4481].

The next iteration of the algorithm allows us to compute c2,
etc. After 30 iterations, we obtain c30 = [1.7665, 3.4235].

3The coefficient β has been chosen arbitrarily to illustrate the
approach; it does not represent the real ageing of a damper.
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(a) Partition P1 (b) Partition P2 (c) Partition P3

Figure 11 – Partitions and estimation results (red, yellow and green boxes are resp. rejected, undetermined, accepted param-
eters values).

Since c30 < ceol, we get RUL = 30 cycles. After the 44th
iteration, we get c44 = [0.037591, 1.985928]. We then have
c44 < ceol and hence RUL = 44 cycles. The RUL of the
damper is hence given by:

RUL = [30, 44] cycles.

7 Conclusion
This paper addresses the condition-based monitoring and
prognostic problems with a new focus that trades the tra-
ditional statistical approach by an error-bounded approach.
It proposes a two stages method whose principle is to first
determine the health status of the system and then use this
result to compute the RUL of the system. This study uses
advanced interval analysis tools to obtain guaranteed results
in the form of interval bounds for the RUL.

The results for the case study demonstrate the feasibility
of the approach. The next step is to adapt the FRP-based
SM parameter estimation algorithm in order to output a list
of boxes instead of a single box given by the convex hull
of the boxes. The convex hull is indeed a very conservative
approximation when the solution set is not convex.

The second stream of work is to consider contextual con-
ditions and their associated uncertainties. Environmental
conditions, like weather, different usage, etc. may indeed
significantly affect the stress input and prognostics results.
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Abstract 

Although many approaches to knowledge-based 
configuration have been developed, the genera-
tion of optimal configurations is still an open is-
sue. This paper describes work that addresses this 
problem in a general way by exploiting an analo-
gy between configuration and diagnosis. Based on 
a problem representation consisting of a set of 
ranked goals and a catalog of components, which 
can contribute in combination to their satisfaction, 
configuration is formulated as a finite constraint-
satisfaction-problem. Configuration is then solved 
by state-search, in which a problem solver selects 
components to be included in an appropriate con-
figuration. A variant of Conflict-Directed A* has 
been implemented to generate optimal configura-
tions. To demonstrate its feasibility, the concept 
was applied, among other domains, to personal-
ized automatic training plan generation for fitness 
studios.  

1 Introduction 

Besides diagnosis, the task of configuration has been one 
of the earliest application areas of work on knowledge-
based systems, initially in the form of rule-based “expert 
systems”, for instance in [1]. Today, systems for automat-
ed configuration have reached maturity for practical appli-
cations, as shown in [2], [3], and [4]. Despite this success, 
developing algorithms for computing optimal or opti-
mized configurations with general applicability still de-
serves more research efforts.  

Driven by a number of different configuration tasks, we 
developed GECKO (Generic constraint-based Konfigura-
tion), a generic solution to the configuration problem that 
can be specialized to different application domains and 
that, among other objectives, aims at supporting the gener-
ation of optimal configurations.  
In a nutshell, the solution exploits an analogy: 

 The configuration task can be seen as searching 
for an assignment of active or non-active to the 
components in a given repository, representing 
whether or not a component is included in the 
configuration, such that it achieves some goals in 
an optimal way 

 Diagnosis has been formalized as a search for an 
assignment of behavior modes (normal or fault_x) 

to a set of system components such that it is op-
timally compliant with a set of observations. 

Based on this analogy, we exploit a search technique that 
has been developed as consistency-based diagnosis, see 
[5]), and as a generalization for optimal constraint satisfac-
tion, called conflict-directed A*, see [6] 

In the following section, we discuss related work on 
configuration systems. In section 3, we present some ex-
amples of configuration problems that we tackled using 
GECKO and that will serve for illustration purposes. Next, 
we introduce our formalization of the configuration task 
and the key concepts of GECKO. In section 5, we discuss 
the analogy between diagnosis and configuration, the ap-
plication of CDA*, variants of utility functions and how 
they relate to different types of configuration applications. 
The results are shown in section 6. Finally, our current 
work and some of the open issues are discussed. 

2  Knowledge-based Configuration 

Applications of configuration are immensely diverse, 
but they all share a number of common problems, such as 
compliance with domain knowledge, size of the solution 
space, and the resulting complexity of the problem solving 
task. It requires knowledge-based approaches to support 
the problem-solving activities, such as product configura-
tion or variability management see [3] and [4]. 

Current research on configuration, especially for large 
applications, tends to neglect global optimization, focusing 
on local optimization, user interaction, or aiming at pro-
ducing “good” solutions, see [3] and [7].  

The focus of this paper is a generic, constraint-based 
configurator (GECKO) for solving optimal configuration 
problems. The core of GECKO is a variant of Brian Wil-
liams’ Conflict-Directed A* (CDA*, [6]). The solution 
works on a generic representation of configuration 
knowledge and tasks. We consider the task of generating 
configurations as similar to consistency-based diagnosis. 
Instead of assigning modes for fault identification as in [5], 
GECKO assigns the activity to components contributing to 
goals. A configuration is consistent if all task-relevant 
goals are satisfied. The quality of a configuration is given 
by the level of goal satisfaction and the amount of resource 
consumption. Our approach allows the arbitrary selection 
of optimization criteria, like minimal resource consump-
tion or maximal goal contribution. In the presented case 
study, our aim was to maximize the number of satisfied 
goals under consideration of available resources.  

Configuration as Diagnosis: Generating Configurations with Conflict-Directed A* 

- An Application to Training Plan Generation -   
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3  Application Examples 

Configuration problems are almost ubiquitous in modern 
life, with applications as different as creating a customized 
computer as done by R1 in [1] and adapting the system 
functions of a car, see [8]. To illustrate the versatility of 
GECKO, we present three applications.  

3.1 Car Configuration 

Today, car manufacturers offer a vast number of models, 

model variants, and equipment options to their customer. 

The resulting complexity does not only prohibit a compre-

hensive exploration of the solution space, but is also likely 

to provide customers with sub-optimal car variants. A do-

main model for car configuration was created and mapped 

to the GECKO concepts, which are presented in 4.2([9]) 

3.2 User Interface Configuration 

The Beam Instrumentation group at CERN is responsible 

for the design and implementation of particle beam meas-

urement systems. These systems are specifically built for 

each case, resulting in extensive work on constructing 

them. While the generation of the GUIs, that is the imple-

mentation, is automated, the configuration is not. This task 

currently requires an expert to select libraries, graphical 

elements, and data sources and to parameterize them. Such 

tasks are typical configuration tasks and thus enable the 

automation of the configuration of the GUIs by GECKO 

([10]).  

3.3 Training Planning in Sport Science 

At a first glance, training planning may appear to be a typ-
ical scheduling task, instead of a configuration problem. 
Taking a closer look shows that it mainly involves activi-
ties we consider the core of configuration: selecting, pa-
rameterizing, and arranging components to satisfy goals, 
whereas assigning time slots to the selected exercises is, in 
general, fairly straightforward  

A trainer has to analyze the biometric state of his train-
ee, such as fitness or age, to consider constraints on the 
created training plan, for example duration or available 
equipment, and to select and order appropriate exercises.  

The sheer number of existing exercises and the size of 
the solution space show that training planning includes 
optimization. In general, a trainer tries to maximize the 
training effect within the available time and under consid-
eration of the trainee’s goal and abilities. The specializa-
tion of GECKO to training planning is described in section 
5.  

4 GECKO - Foundations  

4.1 Intuition 

With GECKO, we aim at developing a generic solution to 
configuration problems, which can be tailored towards a 
particular domain by specializing some basic classes and 
creating a knowledge base in terms of domain-specific 
constraints. Its design is driven by the following objec-
tives: 

 supporting both automatic and interactive con-
figuration; 

 enabling the use of the system without deep do-
main knowledge, esp. about how high-level goals 
of the user break down to more detailed and 
technical ones; 

 handling also soft domain constraints and user 
preferences, and 

 offering support to the user by providing expla-
nations for generated parts of the configuration 
and for unavailable options and by suggesting re-
visions to resolve inconsistencies. 

However, this paper focuses on the basis, a generic 
problem solver for (optimal) configuration. Determining 
the solution – the configuration - means selecting a set of 
instances of given types of elements - components -, per-
haps with certain attribute values and organized in a par-
ticular structure. The configuration has to 

1. satisfy a set of high-level user goals, 
2. be compliant with particular attributes and re-

strictions supplied by the user, 
3. be realizable both in principle (i.e. not violating 

domain-specific restrictions on valid configura-
tions),  

4. under consideration of available resources, and 
5. optimal (or near optimal) according a criterion 

that reflects the degree of fulfilling the goals and 
the amount of resources consumed.  

Configurations can be physical devices, such as tur-
bines, communication systems, and computers, abstract 
ones like a curriculum or a company structure, or a soft-
ware system. In contrast to a design task involving the 
creation of new types of components, configuration as-
sumes that all required Components are instances of com-
ponent types from a repository ([11]). This leads to differ-
ent kinds of reasoning involved: innovative design has to 
verify that its result satisfies the goals by inferring that 
they achieved by the system behavior based on behavior 
models of the components, whereas for a configuration 
task, it is assumed that behavioral implications of aggre-
gated components have been compiled into explicit inter-
dependencies of Goals and Components. As a result, soft-
ware systems for configuration are typically based on 
knowledge encoded as constraints or rules, as in [1] and 
[2], and do not require the exploitation of behavior models.  

4.2 Core Concepts 

The core concepts of GECKO are derived from the de-
scription above, as depicted in Fig. 1: 

 Goals express the achievements expected from a 
specific configuration. They may have an 
associated priority dependent on the task and 
different criteria for goal satisfaction.  

 Components are the building blocks of the Con-
figuration. They may be organized in a type hier-
archy (for example, Lithium battery is a voltage 
source). In addition, there may be Components 
that are aggregations of lower level components. 

 A Task specifies the requirements on a configura-
tion from the user’s perspective. It is split into  
three kinds of restrictions:  

Task  
= TaskGoals  TaskParameters  TaskRestrictions. 
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TaskGoals are a collection of Goals the user is aware of 
and which can be (de)activated or prioritized by the user. 
Each TaskGoaln is stated as a restriction Task-
Goaln.Satisfied=T in the Task description.  

While TaskGoals represent objectives a user requires, 
TaskParameters associate values to properties of the 
Task, hence have the form TaskParameterk=valuekj. For 
instance, in vehicle configuration, the target country may 
have an influence on daytime running lights being manda-
tory. However, these implications are not drawn by the 
user (who only provides the country information), but by 
the domain knowledge represented in the system. 

In contrast, TaskRestrictions refer explicitly to the 
choice of Components and their attributes, e.g. that for the 
user, a convertible is not an option or that the engine 
should be a Diesel engine.  
A specific, and often essential, TaskRestriction can be in-
cluded: 

 A ResourceConstraint limits the cost of the con-
figuration, which may be indeed money (car con-
figuration) or time (in training plan configura-
tion), but also computer memory etc. Components 
have to have an attribute that allows calculating 
the resources needed for the entire configuration 
(often as the sum). 

4.3 Constraints on Configurations 

The configuration knowledge of a particular application 
comprises the domain-specific specialization and instantia-
tion of Goals, Components (possibly including component 
attributes and their domains), and relevant TaskParameters 
and their domains as well as constraints that capture inter-
dependencies among these instances. Dependent on which 
kinds of objects are related, we distinguish between the 
following (illustrated in Fig. 1): 

 
Fig. 1 Task constraints in GECKO 

 
 TaskParameterGoalConstraints express that 

certain TaskParameter values may exclude or re-
quire certain goals 

 GoalConstraints relate goals to each other, in 
particular for  refinement of higher-level (esp. 
TaskGoals) to lower-level ones, such as goals re-
lated to various muscle groups that should be ex-
ercized, although the user is not aware of this 

 GoalComponentConstraints capture essential 
configuration knowledge, namely whether and 
how the available components contribute to the 
achievements of goals 

 ComponentConstraints establish interdependen-
cies among components (and their attributes): a 
component may be dependent on or incompatible 
with the presence of another component in the 
configuration 

 TaskParameterComponentConstraints may in-
clude or exclude certain components based on 
TaskParameter values  

A fundamental constraint type is 
 Requires (x, y) 
which is defined by 
 x.active=T   y.active=T 
and used to express dependencies among goals (e.g. refin-
ing a goal to a set of mandatory sub-goals) and compo-
nents (e.g. cruise control requires automatic transmission) 
and as the fundamental coupling between goals and com-
ponents (to achieve high-speed driving, an engine of a cer-
tain power is needed). Furthermore, in order to express that 
several goals or components provide some partial contribu-
tions that jointly result in the satisfaction of a goal (or es-
tablish the preconditions of a component), we introduce 
the concept of a choice, which can also fill the role of y in 
a Requires-constraint. A choice is given by a relation 
 GoalChoice  Goals  ContributionDom 
or  
 ComponentChoice  Components  ContributionDom, 
where ContributionDom specifies a set of values for quan-
tifying how much a goal or component contributes to the 
satisfaction of the choice and needs a zero element and an 
operator  to add up contributions (e.g. addition of inte-
gers). The idea behind choices is implemented by three 
kinds of constraints. The degree of the satisfaction of a 
(component) choice is given by the combined contribu-
tions of the active components of the choice: 
 Choice.satLevel =  Choice.goal.actContribution 
and  
 Choice.goal.actContribution =  

Choice.goal.contribution   IF goal.active=T 
zero           IF goal.sctive=F  . 

The choice is satisfied, if the satLevel lies in a specified 
range, satThreshold: 
 Choice.active = T    
   Choice.satLevel  Choice.satThreshold  . 

This allows implementing not only a minimum level as 
a precondition for the satisfaction of a choice, but also a 
maximum. Preventing “over-satisfaction” may not be a 
common requirement, but in the fitness domain, one may 
want to restrict the set of exercises that impose a load on a 
particular muscle group.  
Another predefined general type of constraint is  

Excludes (x, y) 
defined by 
 x.active=T   y.active=F 
to express conflicting goals, incompatible components, and 
TaskParameterGoal/ComponentConstraints (e.g. high 
body weight may rule out certain exercises).   

The application-specific configuration knowledge is, 
thus, basically encoded as a set of the constraints explained 
above. This, together with the domain-specific ontology 
(as a specialization of the basic GECKO concepts, includ-
ing choices, and associated attributes) and, perhaps, specif-
ic contribution domains and operators, establishes the con-
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figuration knowledge base, called ConfigKB in the fol-
lowing. 
We make some reasonable fundamental assumptions about 
ConfigKB: 

 Each potential TaskGoal is supported: it is the 
starting node of a connected hyper graph of Re-
quires constraints that includes components, i.e. it 
actually needs a (partial) configuration in order to 
be satisfied (which does not mean it can actually 
be satisfied). 

 Closure assumption: the encoded interdepend-
encies, esp. the Requires constraints, are com-
plete. In other words, if all constraints Requires 
(x, y) associated with x are satisfied by a configu-
ration, then x is satisfied. 

 It is consistent. 

4.4 Definition of the Configuration Task 

The goal is to select an appropriate subset of the available 

components, which we call the active ones, and possibly 

determine or restrict their attributes.  

Definition 1 (Complete Configuration) 
A configuration  

PARCONFIG = (ACTCOMPS, COMPATTR) 

is complete if includes exactly the active components:  

comp  ACTCOMPS  comp.Active = T. 

GECKO has to generate a configuration PARCONFIG that 
satisfies the criteria stated in section 4.1. 

Definition 2 (Solution to a Configuration Task) 
A configuration task is a pair  

(ConfigKB,  Task) 

(as specified in sections 4.3 and 4.2, respectively), and a 
complete configuration PARCONFIG is a solution to it, if 
it is consistent with the ConfigKB and the Task, 

PARCONFIG  ConfigKB  Task ⊭ . 

This may seem too weak, because criterion 1 in section 4.1 
requires the entailment of the satisfaction of the TaskGoals 
in Task.  

Proposition 1 
If PARCONFIG is a solution to a configuration task (Con-
figKB,  Task), then  

 PARCONFIG  ConfigKB ⊨  
 goalTaskGoals goal.Satisfied = T. 

This follows from the closure assumption: Since for the 
chosen TaskGoals, Satisfied=T is explicitly introduced in 
Task, it follows that all Requires constraints related to 
them are satisfied, and, hence, they are not only consistent, 
but entailed. As for the other criteria of section 4.1: 

2. Compliance with specific application require-
ments is guaranteed by consistency with the 
TaskParameters under the TaskParameter-
Goal/ComponentConstraints in ConfigKB and 
with TaskRestrictions in Task 

3. Realizability is established by consistency with 
ComponentConstraints 

4. The ResourceConstraint is also consistent. 

Criteria 5, optimality, will be discussed in the following 
section. 

5 Generating (Near) Optimal Configura-

tions  

5.1 Configuration as Diagnosis 

The current version of GECKO is based on the assumption 
that there exists a finite set of components, COMPS, as a 
repository for all configurations. This means, no new in-
stances of components types are created during configura-
tion and, more specifically, a component will not be dupli-
cated if it is included in the configuration due to several 
constraints. In this case, determining ACTCOMPS of a 
complete configuration can be seen as an activity assign-
ment 

AA: COMPS  {active, inactive} , 
indicating the inclusion in or exclusion from the configura-
tion, and the consistency test of Definition 2 becomes  
 AA  ConfigKB  Task ⊭ . 
This representation shows the analogy to the consistency-
based formalization of component-oriented diagnosis: an 
assignment MA of modes (i.e. nominal or faulty behavior) 
to a set of components,  
 MA  {OK, fault1, fault2, …} 
characterizes a diagnosis, if it is consistent with the do-
main knowledge (a library of behavior models and a struc-
tural description), called system description, SD, and a set 
of observations, OBS: 
 MA  SD  OBS ⊭ . 
In both cases, the assignments to the components 

AA  MA 
are checked for consistency with a fixed set of constraints 
representing the domain knowledge 

ConfigKB  SD ,   
and a set of constraints representing a specific problem 
instance 

Task  OBS .  
In consistency-based diagnosis, theories and algorithms 

have been developed to determine diagnostic solutions, 
which can be exploited for the configuration task based on 
the analogy outlined above. 

5.2 Conflict-directed A* 

Based on the above formalization, many implementations 
of consistency-based diagnosis exploit a best-first search 
for consistent mode assignments, using probabilities of 
individual behavior modes as a utility function (and usual-
ly making the assumption that faults occur independently) 
as SHERLOCK does([12]). Classical A* search has been 
extended and improved by pruning the search space based 
on inconsistent partial mode assignments that have been 
previously detected during the search (called conflicts), 
exploiting a truth-maintenance system (TMS, such as the 
assumption-based TMS [13]) as a dependency recording 
mechanism that delivers conflicts. From the diagnostic 
solutions, this approach has been generalized later as con-
flict-directed A* search, see [6].  
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Procedure CDASTAR  

1) Terminate=F 
2) Solutions= 
3) Conflicts= 
4) VA=VAinitial 

5) DO WHILE Terminate=F 
6)   Apply Constraints(VA) 
7)   Check consistency of VA 
8)   IF consistent 
9)    THEN append VA to Solutions 
10)     Terminate=Solutions.Terminate 
11)  ELSE  
12)  Conflicts=APPEND(Conflicts, newConflicts) 
13)  END IF 
14)  VA=Conflicts.BestCandidateResolvingConflicts 
15) END DO WHILE 
16) RETURN Solutions 

The effectiveness of the pruning of the search space 
based on previously detected inconsistencies (highlighted 
in the above pseudo code) grows with the number of (non-
redundant) conflicts that are extracted. Achieving this, 
however, can be computationally expensive and may have 
to be traded off against the computational cost of the con-
sistency test and/or the optimality of the solution. We will 
get back to this issue below. 

The straightforward mapping of the configuration prob-
lem to CDA* is obtained by representing configurations as 
variable assignments: 
 VARS={ Compi.active   CompiCOMPS} 

DOM(Compi.active)={T, F} . 
To illustrate how the algorithm works using a simple 

example, assume that goal G1 depends on a component 
choice that involves 3 components, Ci, each with a contri-
bution of 1 in this choice, which has a satisfactionThresh-
old (2,3), i.e. it is satisfied if at least two of the  compo-
nents are active. Search starts with an empty configuration 
(active=F for all components) which leads to an incon-
sistency with the constraints related to the choice. Each 
pair of inactive components establishes a (minimal) con-
flict: 
 { C1,active=F, C2,active=F },  

{ C1,active=F, C3,active=F }, 
{ C2,active=F, C3,active=F }.  

Configurations resolving these conflicts are the ones with 
active components  

{ C1, C2}, { C1, C2}, or { C2, C3},  
and the best one would be checked further. If this is done 
against another choice for a goal G2, which is based on 
components C3, C4, C5 (again all with contribution 1) and a 
threshold (1, 3), then a new conflict 
 { C3,active=F, C4,active=F, C5,active=F } 
is detected, and the configurations resolving all include 
active components are 

{ C1, C3}, { C2, C3}, { C1, C2, C4}, or { C1, C2, C5}.  

5.3 Diagnosis vs. Configuration 

Despite the mentioned basic commonality, there are some 
important distinctions at a conceptual level, but with a po-
tentially strong impact on the computational complexity. 
Partial vs. complete assignments 

In diagnosis, it is possible to check partial mode as-
signments to detect useful conflicts. In configuration, we 
have to consider complete variable assignments, which, in 
assigning T or F to activity variables of all components, 
correspond to complete configurations.  The reason is that, 
as illustrated by the above trivial example, the constraints 
related to a choice deliver important conflicts based on 
components being not active. A partial configuration, e.g. 
assigning active=T to, say, C1 only, is consistent with the 
respective choice; that this configuration does not satisfy 
G1 is detected only, if all other components are assumed to 
be inactive (Of course, if the satThreshold has an upper 
limit, we obtain conflicts involving too large sets of active 
components, as well). This observation is related to anoth-
er difference: 
(NON-)Locality of the Domain Theory 
In diagnosis, the domain theory is as modular as the de-
vice: it consists of constraints that represent the local inter-
action of components and constraints that capture the local 
behavior of components under certain modes. Checking 
the consistency of a partial mode assignment requires ap-
plying the directly related constraints only. In contrast, 
constraints representing configuration knowledge are al-
most by definition non-local: they are meant to relate many 
components across the entire configuration, e.g. as choices. 
If choices play a major role and are large, this can be a 
source of severe problems.  

The training plan generation application forms an ex-
treme example: choices may involve in the order of 100 
components, because many exercises may be related to a 
particular muscle group, while only a handful of them to-
gether satisfy the goal. In addition, exercises are challeng-
ing several muscle groups. If the lower boundary of the 
satisfactionThreshold of a choice is k and the size of the 
choice is n, then (assuming a contribution 1 for each com-
ponent), the number of resulting minimal conflicts will be 

(
𝑛

𝑘 − 1
) 

– prohibitively large in the training application. This has 
an impact on the algorithm, as discussed in section 5.5. 
First, we have to introduce appropriate utility functions to 
measure the quality of a configuration. 

5.4 Utility Functions 

The utility of a configuration should essentially reflect 
 the degree of fulfillment of the relevant goals 

and  
 the amount of resources required.  

A measure of the former may also consider priorities of 
goals. The same holds for individual components. Since 
inactive components neither make contributions nor con-
sume resources, it is plausible to assume that the utility of 
a configuration depends on its active components only. 

In the following, it is assumed that  
 the contribution of a configuration is obtained 

solely as a combination of contributions of the 
active components included in the configuration 
and otherwise independent of the type of proper-
ties of the components, 

 we can define a subtraction “-” of contributions, 
 the cost of the contribution is given as the sum of 

the cost of the involved active components and 
will usually be numerical, 
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 we can define a ratio “/” of contributions and re-
sources, 

 there is a function that maps priority of goals to a 
weight of the contributions and a kind of  multi-
plication,  
*: DOM(weight)xDOM(contribution) 

 DOM(contribution),  
is defined. 

Then the following specifies a family of utility functions 
(where we simplify the notation by writing 
Goalj.SatThreshold instead of  Choicej.SatThreshold etc.): 

For an active Goal Goalj, the TotalContribution of a 
Configuration is 

Configuration.TotalContribution(Goalj):=  
 CompiConfiguration.ACTCOMPS  Compi.Contribution(Goalj) 

where   denotes the Combine operation, the ActualCon-
tribution is given as  

Configuration.ActualContribution(Goalj):= 
max(Configuration.TotalContribution(Goalj), 
          Goalj.Combine(Goalj 

SatThreshold,posTolerance)), 
and a penalty (for over-satisfaction) as  
 Configuration.Penalty(Goalj):= 

max (0, 
Configuration.TotalContribution(Goalj) 

 - Goalj.Combine(Goalj SatThreshold,posTolerance).  
Based on this, we define the utility function as  
 Configuration.Utility(ACTGOALS):= 
  Goalj Configuration.ACTGOALS   

weight(Goalj.Priority)  
* Configuration.ActualUtility(Goalj)  

+ f * Configuration.Penalty(Goalj) )  
/  CompiConfiguration.ACTCOMPS  Compi.Resource. 

The factor f determines whether or not excessive contri-
butions are penalized (by the excessive amount); the 
weight can emphasize contributions to Goals with high 
priority, and the tolerance interval can express how exactly 
the intended SatThreshold has to be hit. 

5.5 GECKO Algorithm 

For the GECKO variant of CDA* we modified CDA* by 
activating only the constraints needed at a specific stage, 
thereby reducing the number of occurring conflicts signifi-
cantly.  
GECKO characterizes a stage in the problem solving pro-
cess and hence the criteria for constraint activation as a 
pair 

S = (GOALS, configuration), 

that is a set of goals that are considered and a configuration 
to be checked for consistency. This allows for search strat-
egies that do not consider all active goals from the begin-
ning. Therefore, the constraints to be applied are not only 
determined by the variable assignment, but also by the 
goals. In our first application, goals are activated in a de-
scending order, according to their priority.  

To determine the hitting sets of the conflicts we use dif-
ferent algorithms from [14], depending on the domain. In 
BestCandidateResolvingConflicts, the next-best solution is 
generated.  

Procedure GECKO Configuration Algorithm  

1)  ApplyConstraints(Constraints(Initial) 
2)  ActComps=ACTCOMPS0 

3)  Priority=max(actGoals.Priority) 
4)  DO WHILE Priority >=1 
5)   ApplyConstraints(Constraints( 

GoalPriorityClass(Priority)) 
6)   VA=VA(ActComps,COMPS\ActComps) 
7)   NewActComps= 

GECKO.CDASTAR(VA).ActComps 
8)   ActComps = NewActComps.Commit 
9)  END DO WHILE 
10)  RETURN ActComps 

In line 8, the algorithm fixes the components added to 
satisfy the recently considered goals. This means, when 
trying to satisfy further goals (with lower priority) they 
will not be de-activated. This heuristic aims at satisfying as 
many goals as possible with the given resources in the or-
der of their priority, but, obviously, may miss a globally 
optimal  solution. 

6 Case Study: Training Plan Generation 

We are working on the realization of the three applications 
presented in section 3. To demonstrate the specialization of 
GECKO concepts and the capabilities of the GECKO algo-
rithm, we selected the fitness training example. From the 
three examples, fitness is best suited to illustrate the ad-
vantages of CDA* in configuration.  

6.1 Domain Theory 

In fitness, trainees perform exercises, like push-ups or run-
ning, to train body parts under certain aspects (endurance, 
muscle gain). To train means to improve physical abilities, 
like endurance, and to influence biometric parameters, 
such as weight. In configuration terms: exercises contrib-
ute to a set of fitness goals. Hence, we created the domain 
theory for training planning using the concepts specified in 
section 4.2. Table 1 contains an overview on the most im-
portant specializations.  
The result may appear straightforward to outsiders, but it is 
actually the result of several months of analyses carried out 
jointly with experts from sports sciences, which took as to 
several versions and revisions of the model. 

Table 1: Specialization of GECKO Concepts 

GECKO Concept Fitness Concept Example 

Goal TraineeGoal Muscle Gain 

TrainingGoal Strength 

TargetGoal Biceps 

Component Exercise Push-up 

Task Trainee - 

TaskRestriction  TrainingDuration 

TaskParameter TrainingProperty Equipment 

TraineeProperty Fitnesslevel 

Task 
A GECKO Task in fitness is a trainee, or more precisely 
the request of a training plan by a trainee. A trainee has 
expectations regarding the result of the training, represent-
ed by TraineeGoals. The Trainee also has a set of Train-
eeProperties, like Fitnesslevel, and sets the TrainingProp-
erties. Furthermore, a trainee has to specify the desired 
TrainingDuration.   
 Special among the TraineeProperties are the FitnessTar-
gets and FitnessCategories. A FitnessTarget has to be 
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trained by an Exercise, such as legs. FitnessCategories are 
the main abilities of a Trainee, such as strength.  

Goals 
The domain theory contains three types of goals: 

 TraineeGoal: The only TaskGoal in fitness, de-
scribing the expected effect of the fitness training 

 TrainingGoal: Abstract goals, specifying the type 
of physical ability to be improved e.g. strength  

 TargetGoal: Body part the training has to stimu-
late.  

To capture the structure of the human body and the 
differences in fitness categories, we decompose the 
TargetGoals into three levels: 

o RegionGoal 
o MuscleGroupGoal 
o MuscleGoal 

Reflecting the FitnessTargets, TargetGoals are struc-
tured in a goal tree. Because FitnessTargets are trained at 
different levels, the tree is unbalanced. For example En-
durance is generally trained for the whole body, while 
Strength is trained at a muscular level. 

Components 
All components in fitness are exercises. Each exercise is 
related to a FitnessCategory, e.g, pushup is a StrengthEx-
ercise. Exercises can contribute to multiple TargetGoals, 
but only TargetGoals of their own FitnessCategory. For 
example, a StrengthExercise can only contribute to Tar-
getGoals related to strength.  
 Exercises comprise a set of fixed attributes, such as re-
quiredEquipment or requiredFitnesslevel, as well as a set 
of unspecified attributes, like TrainingWeight or Dura-
tions. The values of such volatile attributes depend on the 
selected TraineeGoal, because they define how an exercise 
effects a FitnessTarget – an increase in strength is achieved 
by a small number of slow repetitions with very high 
weight, while fat is burnt best with many fast repetitions 
with little weight.  

Utility  
The utility of a configuration in SmartFit depends on the 
contributions of the active components to required Choices 
DOM(compi.contributioni) ={20,40,60,80,100} 
The satThreshold of the Choices depends on the priority of 
the associated goal  
satThreshold = combine(Goali.Priority,normThreshold),  
with DOM(Priority) ={1,2,3,4,5}. 

For the example in 6.2, we simply multiplied the priori-
ties with the normThreshold =80.  
The domain of the combined contribution is from 0 to 500 
in steps of 20. In case of contributions larger than 500, the 
overshoot is cut, and the value set to 500.  

The utility for fitness training is given by the following 
equation: 

Config.Utility (ACTGOALS):= 
 Goalj Config.ACTGOALS  
weight (Goalj.Priority) * Config.ActualUtility (Goalj))  
/  CompiConfig.ACTCOMPS Compi.Resource. 

6.2 Simplified Example 

To make the capabilities of GECKO more tangible, we 
present a small experiment. For brevity and clarity, we use 
a reduced knowledge-base, with three MuscleGoals( table 

2), 12 exercises( table 3), and 2 TaskParameters, namely 
Equipment and a general Fitnesslevel – thus omitting the 
consideration of different Fitnesslevels related to the spe-
cific FitnessTarget, as done in the application system. Fur-
thermore, we set the duration of all exercises to require 5 
minutes. 

Using this reduced knowledge-base, we applied both the 
basic GECKO algorithms and the goal-focused variant. 
The results are described in the following subsection. 

Table 2: Exemplary muscle goals with priorities 

ID MuscleGoal 
Priority: 

MuscleGain 

Priority:   

GeneralFitness 

G1 Biceps 1 2 

G2 Triceps 1 2 

G3 Latissimus 2 3 

Table 3: Exercises and parameters 

ID Exercise Contributions 
Required 

Equipment 

Required 

Fitness 

level 

C1 Biceps 

Curl 

Biceps: 100 None 1 

C2 Dips Triceps: 100 None 1 

Latissimus: 20 

C3 Lat-Pull Biceps:20 Machines 1 

Latissimus: 

100 

C4 Rev. But-

terfly 

Triceps: 40 Machines 1 

C5 Pushup Triceps: 80 None 2 

C6 Pushup on 

knees 

Triceps: 60 None 1 

C7 Shoulder 

press 

Triceps: 80 Machines 1 

C8 Rowing Biceps: 40 Machines 1 

Latissimus: 80 

C9 Pull up  Biceps: 100 None 2 

Latissimus: 80 

C10 Triceps 

Pulldown 

Triceps 100 Machines 2 

C11 Pull up 

(supported) 

Biceps: 20 None 1 

Latissimus: 80 

C12 Rowing 

one-armed 

Biceps: 40 Machines 2 

Latissimus: 

100 

To compare the results of different tasks, we conducted to 

experiments with different TraineeGoals and TaskParame-

ter values. For the basic algorithm, we used the Tasks 

shown in Table 4. 

Table 4: Task for experiments A and B 

Variable Values A Values B 

TaskGoal General Fitness Muscle Gain 

TaskParameter: 

FitnessLevel 

Untrained (1) Trained (2) 

TaskParameter: 

Equipment 

Machines none 

TaskRestriction: 

TrainingDuration 

15 minutes 30 minutes 

The results of the configuration with the basic GECKO 

algorithm are shown in Tables 5 and 6. 
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Table 5: Configuration results basic GECKO Algorithm 

Experiment A Experiment B 

Lat-Pull Pull up 

Dips 

Rowing Pull up (supported) 

Pushup on knees 

Shoulder press Biceps Curl 

Table 6: State of the Goals after running the basic Algorithm 

Muscle Goal Value A Value B 

Biceps Partially Satis-

fied 

Satisfied 

Triceps Satisfied Satisfied 

Latissimus Satisfied Partially Satis-

fied 

Application Evaluation 
The results indicate that the GECKO algorithms are capa-
ble of generating optimal solutions to configuration prob-
lems. In experiment B, it can be seen that GECKO was not 
able to satisfy G3 completely, since there were not enough 
consistent exercises available. Thus, the less important 
goals were satisfied, but not the important one. In experi-
ment A on the other hand, the algorithm was able to fully 
satisfy G3 but not G1, since the duration resource was only 
sufficient for three exercises.  

6 Discussion and Outlook 

The results shown above indicate that treating configura-
tion as a diagnostic problem, and solving it with tech-
niques from consistency-based diagnosis is a promising 
approach to user-oriented configurators for optimal con-
figuration problems.  

The analysis of different application domains, including 
the ones mentioned in section 3, triggers the insight that 
variations of the search algorithm may be required in order 
to reflect the specific requirements and structure of the 
problems. This is particularly true for applications that 
involve a high level of interaction, such as leaving choices 
to the user, providing explanations for system decisions, 
and allowing him to modify his/her decisions in an in-
formed way. Retracting decisions and also generating ex-
planations can be supported by the ATMS, which also 
produces conflicts. 

The conceptual and algorithmic solution to configura-
tion generation presented in this paper could certainly be 
implemented using other techniques that have been pro-
posed and used for configuration. However, our choice of 
an ATMS-based solution (and CDA*) was strongly moti-
vated by the overall objectives stated in section 4.1: we 
intend to base explanation facilities (“which user inputs 
and domain restriction prevent option x to be viable?”), 
preferences and soft constraints, and the possibility to re-
tract input and explore several alternative solutions on ca-
pabilities of the ATMS.   

A goal of our work is to extract features from the case 
studies that can support a classification of configuration 
applications as a basis for selection from a set of prede-
fined algorithm variants and strategies for man-machine 
interaction. 

Other options, such as compiling (parts of) the con-
straint network and moving search heuristics to a lower 

technical level (the constraint system) will also be ex-
plored.  

Furthermore, we are currently preparing an application 
to configuration of automation systems for collaborative, 
flexible manufacturing and modular multi-purpose vehi-
cles. This application of GECKO is likely to require 
stronger spatial and also temporal constraints for structur-
ing a configuration.  
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Abstract
In this paper, a decentralised fault diagnosis ap-
proach for large-scale systems is proposed. This
approach is based on obtaining a set of local
diagnosers using the analytical redundancy rela-
tion (ARRs) approach. The proposed approach
starts with obtaining the set of ARRs of the sys-
tem yielding into an equivalent graph. From that
graph, the graph partitioning problem is solved
obtaining a set of ARRs for each local diagnoser.
Finally, a decentralised fault diagnosis strategy is
proposed and applied over the resultant set of par-
titions and ARRs. In order to illustrate the ap-
plication of the proposed approach, a case study
based on the Barcelona drinking water network
(DWN) is used.

1 Introduction
Large-scale systems (LSS) present new challenges due to
the large size of the plant and its resultant model [1, 2]. Tra-
ditional supervision methods for LSS (including diagnosis
and fault tolerant control) have been mostly developed as-
suming a centralized scheme that assumes to have the full
information. In the same way, a global dynamical model
of the system is considered to be available for supervision
design (off-line). Moreover, all measurements must be col-
lected in one location in a centralised way. When consid-
ering LSS, the centrality assumption usually fails to hold,
either because gathering all measurements in one location
is not feasible, or because a centralised high-performance
computing unit is not available. These difficulties have re-
cently led to research in fault diagnosis (and fault-tolerant
control) algorithms that operate in either decentralised or
distributed way. Depending on the degree of interaction of
the diagnoser associated to the subsystems and their diag-
nosis process, they can be classified into decentralised and
distributed diagnosis categories.

In the decentralised diagnosis, both a central coordina-
tion module and a local diagnoser for each subsystem that
forms the whole supervision system are running in paral-
lel. Some examples were presented in [3, 4, 5], where local
diagnosers are communicated to a coordination process (su-
pervisor), obtaining a global diagnosis. On the other hand,
in the distributed approach, a set of local diagnosers share
information by means of some communication protocol in-
stead of requiring a global coordination process such as in
a decentralised approach. In the related literature, there are

several proposals where there is no centralised control struc-
ture or coordination process among diagnosers [6, 7, 8]. Ev-
ery diagnoser shares information with the neighbouring di-
agnosers. In these systems the model is distributed, the di-
agnosis is locally generated and the consistency among the
subsystems should be satisfied.

In this paper, the main contribution relies on the devel-
opment of a decentralised fault diagnosis approach for LSS
based on analytical redundancy relations (ARRs) and graph
theory. The algorithm starts considering a set of ARRs and
then stating an equivalent graph. From that graph, the prob-
lem of graph partitioning is then solved. The resultant parti-
tioning consists of a set of non-overlapped subgraphs whose
number of vertices is as similar as possible and the num-
ber of interconnecting edges between them is minimal. To
achieve this goal, the partitioning algorithm applies a set of
procedures based on identifying the highly connected sub-
graphs with balanced number of internal and external con-
nections in order to minimize the degree of coupling among
the resulting partitions (diagnosers). This algorithm is spe-
cially useful in systems where there is no a clear functional
decomposition. Finally, a decentralised fault diagnosis strat-
egy is introduced and applied over the resultant set of par-
titions, in a similar way to the one introduced in [5]. In
order to illustrate the application of the proposed approach,
a case study based on the Barcelona drinking water network
(DWN) is used.

The remainder of this paper is organised as follows. Sec-
tion 2 presents and discusses the overall problem statement.
Section 3 presents the ARR graph partitioning methodology.
Section 4 describes the proposed decentralised fault diag-
nosis approach. Section 5 shows both the considered case
study and the way of implementing the proposed decen-
tralised fault diagnosis approach. Finally, Section 6 draws
the main conclusions.

2 Problem Statement
2.1 Fault Diagnosis using ARRs
Consider a dynamical system represented in general form
by the state-space model

x+ = g(x, u, d), (1a)
y = h(x, u, d), (1b)

where x ∈ Rn and x+ ∈ Rn are, respectively, the vectors
of the current and successor system states (that is, at time
instants k and k + 1, respectively if the model is expressed
in discrete-time), u ∈ Rm is the system input vector, d ∈

Proceedings of the 26th International Workshop on Principles of Diagnosis

99



Rp is the vector containing a bounded process disturbance
and y ∈ Rq is the system output vector. Moreover, g :
Rn × Rm × Rp 7→ R is the states mapping function and
h : Rn × Rm × Rp 7→ Rq corresponds with the output
mapping function.

The design of a model-based diagnosis system is based
on utilizing the system model (1) in the construction of the
diagnosis tests. According to [9], by means of the structural
analysis tool and perfect matching algorithm, a set of ARRs,
namely R, can be derived from (1). ARRs are constraints
that only involve measured variables (y, u) and known pa-
rameters θ. The set of ARRs can be represented as

R = {ri | ri = Ψi(yk, uk, θk), i = 1, . . . , nr}, (2)

where Ψi is the ARR mathematical expression and nr is the
number of obtained ARRs. Then, fault diagnosis is based
on identifying the set of consistent ARRs

R0 = {ri|ri = Ψi(yk, uk, θk) = 0, i = 1, . . . , nr}, (3)

and inconsistent ARRs,

R1 = {ri|ri = Ψi(yk, uk, θk) 6= 0, i = 1, . . . , nr}, (4)

at time instant k when some inconsistency in (2) is de-
tected [10]. Fault isolation task starts by obtaining the ob-
served fault signature, where each single fault signal indi-
cator φi(k) is defined as follows:

φi(k) =

{
0 if ri(k) ∈ R0,
1 if ri(k) ∈ R1.

(5)

Fault isolation is based on the knowledge about the bi-
nary relation between the considered fault hypothesis set{
f1(k), f2(k), . . . , fnf

(k)
}

and the fault signal indicators
φi that are stored in the fault signature matrix M . An el-
ement of this matrix, namely mij , is equal to 1 if the fault
hypothesis fj is expected to affect the residual ri such that
the related fault signal φi is equal to 1 when this fault is af-
fecting the monitored system. Otherwise, the element mij

is zero-valued. A column of this matrix is known as a the-
oretical fault signature. Then, the fault isolation task in-
volves finding a matching between the observed fault signa-
ture with some of theoretical fault signatures.

2.2 Partitioning the Set of ARRs
In order to design a decentralised fault diagnosis system fol-
lowing the ARR approach recalled above, the set of ARRs in
(2) should be decomposed into subsets with minimal degree
of coupling. Each subset of ARRs will allow to implement
a local diagnoser. With this aim, a graph representation of
R in (2) is determined. The graph G(V,E) representing the
set of ARRs is obtained considering that
• the ARRs are the graph vertices collected in a set V ,

and
• the measured input/output variables are the graph

edges collected in a set E.
The graph incidence matrix IM is obtained considering that,
without loss of generality, the directionality of the edges are
derived from the relation between ARRs (rows of IM ) and
input/output variables (columns of IM ), in analog way as
proposed by [11] (and references therein) for the partition-
ing of LSS1. Once IM has been obtained from the ARR

1There are alternative matrix representations for a graph such
as the adjacency matrix and the Laplacian matrix (see [12]), which
are related to the matrix representation used in this paper.

graph, the problem consists in partitioning the graphR into
subgraphs. Since such partitioning is oriented to the appli-
cation of a decentralised fault diagnosis, it is convenient that
the resultant subgraphs have the following features:
• nearly the same number of vertices;
• few connections between the subgraphs.
These features guarantee that the obtained subgraphs

have a similar size, fact that balances computations be-
tween local diagnosers and allows minimising communica-
tions with a supervisory diagnoser. Hence, the partitioning
the ARR graph can be more formally established following
the dual problem proposed in [13] as stated here in Problem
1.
Problem 1 (ARR Graph Partitioning Problem). Given a
graph G(V,E) obtained from a set of ARRs, where V de-
notes the set of vertices, E is the set of edges, and p ∈ Z≥1,
find p subsets V1, V2, . . . , Vp of V such that

1.
p⋃

i=1

Vi = V ,

2. Vi ∩ Vj = ∅, for i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , p},
i 6= j,

3. #V1 ≈ #V2 ≈ · · · ≈ #Vp,
4. the cut size, i.e., the number of edges with endpoints in

different subsets Vi, is minimised.
Remark 2.1. Conditions 3 and 4 of Problem 1 are of high
interest from the point of view of a decentralised scheme
since they are related to the degree of interconnection be-
tween resultant subsystems and their size balance. �
Remark 2.2. The inclusion of additional specifications di-
rectly related to the FDI performance of each subsystem di-
agnoser will be addressed as a future extension of the pro-
posed partitioning approach. �
Remark 2.3. The partitioning approach starts from a given
set of ARRs obtained using the perfect matching algorithm.
The selection of the best ARRs from the set of the all pos-
sible ARRs (that could be obtained using the available sen-
sors and system structure) such that when applying the par-
titioning algorithm produces a set of diagnosers with good
FDI performance could be considered as an additional fu-
ture improvement. �

In general, graph partitioning approaches are considered
asNP-complete problems [2]. However, they can be solved
in polynomial time for #Vi = 2 (Kernighan-Lin algorithm);
see, e.g., [14]. Since the latter condition is quite restric-
tive for large-scale graphs, alternatives for graph partition-
ing based on fundamental heuristics are properly accepted
and broadly discussed.

3 Proposed Partitioning Approach
Starting from the system ARR graph obtained as described
in Section 2, this section proposes a partitioning algorithm
through which a decomposition of the set of system ARRs
can be performed. This decomposition allows the splitting
of a centralised diagnoser into local diagnosers. The philos-
ophy of the proposed approach comes from the partitioning
methodology reported in [13], where a dynamic system is
decomposed into several subsystems following certain cri-
teria towards fulfilling a set of design conditions. For com-
pleteness and full understanding of the proposed diagnosis
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methodology, that approach is explained below and suitably
adapted if needed.

The algorithm is divided into the main kernel and auxil-
iary routines in order to refine the final result according to
the nature of the system and the given criteria depending
on the case. Here, the ARR graph is decomposed into sub-
graphs in the same way as a system would be divided into
subsystems.

3.1 Main Kernel
This part performs the central task of defining how the
equivalent ARR graph of the LSS is split into subgraphs.
The steps of the algorithm are followed in the form of sub-
routines towards reaching the main goals outlined in Prob-
lem 1. Notice that the whole algorithm is used off-line,
i.e., the partitioning of the ARR graph is not carried out dy-
namically on-line. Ongoing research is focused to adapt the
proposed algorithm such that the partitioning could be per-
formed on-line when some structural change of the network
occurs. The different subroutines are briefly described next.

• The start-up routine, which requires the matrix-based
definition of the graph, e.g., via the incidence matrix,
in order to state the connections between the graph ver-
tices.

• The preliminary partitioning routine, which performs
a clustering-like procedure where all graph vertices are
assigned to a particular subset according to predefined
indices related to the resultant subgraph and its inter-
nal weight (defined as the number of vertices of a sub-
graph), its external weight (defined as the number of
shared edges between subgraphs) and other statistical
measures. The resultant amount of partitions at this
stage is automatically obtained.

• The uncoarsening routine, which is applied for reduc-
ing the number of resultant subgraphs if their internal
weight is unbalanced, which would produce partitions
with large differences of amount of vertices. This rou-
tine defines a design parameter ϕmax for determining
the variance of the internal weight for all the resultant
subgraphs.

• The refining routine, which aims at reducing the cut
size of the resultant subgraphs, i.e., the number of
edges they share. This routine is based on the connec-
tivity of the vertices of a subgraph with other vertices
in the same subgraph and in neighbouring subgraphs2.

Applying the aforementioned routines to the entire ARR
graph, the expected result consists of a set of subgraphs that
determines a particular decomposition. This set P is finally
defined as

P =

{
Gi, i = 1, 2, . . . , p :

p⋃

i=1

Gi = G

}
. (6)

3.2 Auxiliary Routines
Although the decomposition algorithm yields to an auto-
matic partitioning of a given graph, it does not imply that
the resultant set P follows the pre-established requirements
stated in Problem 1. Therefore, complementary routines
enhance the partitioning routine depending on their tune

2Two subgraphs are called neighbours if they are contiguous
and share edges (see, e.g., [15] among many others).

for the particular case study. Additional auxiliary routines
might be designed in such a way that the diagnosis perfor-
mance that would be achieved when used in decentralised
or distributed fault diagnosis is taken into account. These
auxiliary routines are:

• The pre-filtering routine, which lightens the start-up
routine by merging all these vertices with single con-
nection to those to which they are connected. It al-
lows to have a smaller initial graph and then perform-
ing faster clustering of vertices.

• The post-filtering routine, which adds a tolerance pa-
rameter δ in such a way that the uncoarsening rou-
tine yields in less subgraphs when two of them may
be conveniently merged but the numerical constraints
does not allow to do so. This routine might increase
the complexity since the internal weight of some sub-
graphs would also increase, unbalancing the resultant
set of partitions.

• The anti-oscillation routine, which leads to solve a pos-
sible issue when the refining (external balance) routine
is run since it defines a maximum number of iterations
ρ that the refining routine is executed.

4 Decentralised Fault Diagnosis
Once a partitioned set of ARRs has been obtained by means
of the algorithm presented in Section 3, the decentralised
fault diagnosis approach is introduced. In order to explain
how the proposed fault diagnosis approach works, it is con-
centrated on faults affecting the sensors measuring the in-
put/output variables implied in the ARRs. The approach
could be easily extended to other type of faults, but in order
to keep the explanation simpler, it is restricted to the discus-
sion about the set of considered faults. In this way, a fault
can be associated to each measured input/output variable.

Each subset of ARRs will allow to implement a local di-
agnoser Di in the way described in Section 2.1. The ARRs
associated to a local diagnoser can be split in two groups.
The first group, named in the following local ARRs, is com-
posed of ARRs that do not involve shared variables with
other ARRs in a different local diagnoser. On the other
hand, the second group, named shared ARRs, is composed
by ARRs that involve shared variables. Figure 1 shows two
sets of ARRs associated to two local diagnosers, named
D2 and D4. These two diagnosers share some variables
(in this case only outputs, but can be both inputs and out-
puts). This set of shared variables allows to define the set
of shared ARRs, named DC in the figure. The remaining
ARRs, which do not share variables, are local ARRs.

Similarly, faults in the fault signature matrix M of the lo-
cal diagnoser that only involve local ARRs can be locally di-
agnosed. Thus, the local diagnoser works in a decentralised
manner regarding those faults. On the other hand, faults that
involve ARRs with shared variables in different subgraphs
can not be locally diagnosed. On the contrary, a global diag-
noser that evaluates the involved ARRs is used. This diag-
noser has a fault signature matrix M collecting the involved
ARRs with shared variables between local diagnosers and
faults that should be globally diagnosed. When local diag-
nosers evaluate an ARR composed of shared variables, they
send the result of the consistency check to the global di-
agnoser, which proceeds with the global diagnosis using a
fault signature matrix that contains the involved ARRs. As
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Figure 1: Subsets of ARRs of two local diagnosers sharing
some variables

a result of the global diagnosis based on the involved ARRs
with shared variables, a fault in these variables could be di-
agnosed or alternative excluded. In case of exclusion, local
diagnosers sharing a given ARR whose shared variable has
been considered non-faulty continue reasoning now with all
ARRs, i.e., all the involved ones, proposing a fault candidate
using the local fault signature.

5 Application to a Case Study
This section briefly describes a case study in order to exem-
plify the application of the proposed decentralised diagnosis
approach in a real LSS. In particular, the transport infras-
tructure of the Barcelona Drinking Water Network (DWN)
is used.

5.1 Case Study Description
The Barcelona DWN, managed by Aguas de Barcelona,
S.A. (AGBAR), supplies drinking water to Barcelona city
and its metropolitan area through four drinking water treat-
ment plants: the Abrera and Sant Joan Despí plants, which
extract water from the Llobregat river, the Cardedeu plant,
which extracts water from Ter river, and the Besòs plant,
which treats the underground flows from the aquifer of the
Besòs river. All source together provide a total amount of
flow of around 7 m3/s. The water flow from each source
is limited, what implies different water prices depending on
water treatments and legal extraction canons. See [16] for
further information about this system and [17] for further
details about its modelling and management criteria.

5.2 Monitoring-oriented Model
In order to obtain a monitoring-oriented model of the DWN,
the constitutive network elements (i.e., tanks, actuators, wa-
ter demand sectors, nodes and sources) as well as their basic
relationships should be stated [16].

By considering the mass balance at tanks and the static
relations at α network nodes, the monitoring-oriented
discrete-time state-space model of the DWN can be written
as

xk+1 = Axk + Γνk, (7a)
E1νk = E2, (7b)
yk = Cxk, (7c)

with Γ = [B Bp], νk = [uTk dTk ]T , where x ∈ Rn is the
state vector corresponding to the water volumes of the n
tanks, u ∈ Rm represents the vector of manipulated flows

through the m actuators (pumps and valves), d ∈ Rq cor-
responds to the vector of the q water demands (sectors of
consume) and y ∈ Rn are the vector of measured water
volumes of the n tanks. In this case, the difference equa-
tions in (7a) describe the dynamics of the storage tanks,
the algebraic equations in (7b) describe the static relations
(i.e., mass balance at junction nodes) in the network and
in (7c) describe the relation between the physical and mea-
sured tank volumes. Moreover, A, B, Bp, C, E1 and E2

are system matrices of suitable dimensions dictated by the
network topology.

5.3 Implementation of the Proposed Approach
This section discusses the way the proposed decentralised
fault diagnosis approach is implemented in the considered
real case study. Figure 2 corresponds to the aggregate model
of the Barcelona DWN, which is a simplification of the com-
plete model, where groups of elements have been aggre-
gated (not discarded) in single nodes to reduce the size of
the whole network model. Using this aggregate model, the
ARR graph of the Barcelona DWN has been derived after
generating the set of ARRs from the mathematical model
(7) by using the perfect matching algorithm [9] that aims
to find a causal assignment which associates unknown sys-
tem variables with the system constraints from which they
can be calculated. Applying the partitioning algorithm to
this graph, five groups of ARRs are obtained, which corre-
sponds to five diagnosers that monitor a different part of the
Barcelona DWN represented with different colors in Fig-
ure 2. Table 2 collects the descriptions of the resultant sub-
graphs, their number of ARRs and shared variables (ma-
nipulated flows through actuators) represented using circles
in Figure 2. At this point it should be recalled that one of
the goals of the partitioning algorithm is to reduce as much
as possible the number of shared edges between subgraphs
obtaining a graph decomposition as less interconnected as
possible and with similar number of vertices for each sub-
system (internal weight). This will allow an easier global
diagnosis configuration, not only with respect to the num-
ber of distributed diagnosers but also with respect to the
complexity of each local diagnoser Di. Thus, the appli-
cation of the approach to the Barcelona DWN implies the
design of five decentralised diagnosers together with a cen-
tralised/supervisory one, which is in charge of the coupled
relations within the corresponding fault signature matrix of
the whole system.

Table 1: Barcelona DWN subsystems and number of both
shared elements and ARRs

Number Color # ARRs # Shared variables

1 green 4 1
2 red 5 5
3 yellow 8 6
4 blue 8 16
5 purple 5 5

For this example, it is important to highlight that ARRs
have been obtained by considering the following assump-
tion.

Assumption 5.1. Fault in actuators are only taken into ac-
count. Sensors are supposed to operate properly. �
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Figure 2: ARR Partitioning of the Barcelona DWN

Table 2: Barcelona DWN subsystems and number of both
shared elements and ARRs

Number Color # ARRs # Shared variables

1 green 4 1
2 red 5 5
3 yellow 8 6
4 blue 8 16
5 purple 5 5

In order to easyly understand how the proposed decen-
tralised fault diagnosis approach would work, it will be ex-
plained focusing on subsystems S1 and S4 presented in Fig-
ure 3 in red lines that corresponds to the subsystems in green
(S1) and in blue (in S4) in Figure 2. In particular, consider-
ing the set of ARRs corresponding to S1 as

rS1

1,k = y1,k − y1,k−1 −∆t[u1,k−1 + u2,k−1 − d1,k−1],

rS1

2,k = u1,k − u2,k − d2,k,
rS1

3,k = y2,k − y2,k−1 −∆t[u5,k−1 − d3,k−1],

rS1

4,k = u3,k − u4,k − u5,k − u6,k,

the fault signature matrix presented in Table 3 can be ob-
tained. From this table, it is possible to identify the shad-
owed part, which corresponds to the faults that the local di-
agnoser D1 is able to isolate when a fault activates any of
the ARRs ri,k, i = 1, 2, 3, since those ARRs only involve
local variables. However, if the resiual r4,k is activated, it is
necessary that a global diagnoser interacts with D1 discrim-
inating whether the corresponding ARR in S4, defined here
as rS4

1,k, was also activated. If this is the case, the element

S1
S2

S3

S4

S5

1 4

55

1

Figure 3: Scheme of decentralised diagnoser scheme for the
Barcelona DWN resultant subsystems and their number of
shared variables

Table 3: Fault signature matrix of S1

ARR fy1 fu1 fu2 fy2 fu5 fu3 fu4 fu6

rS1

1,k 7 7 7

rS1

2,k 7 7

rS1

3,k 7 7

rS1

4,k 7 7 7 7

u6 is then in fault and hence isolated. Otherwise, D1 can
decide locally (then isolating u3, u4 or u5).

In Table 4, the fault signature matrix for the ARRs that
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Table 4: Part of the fault signature matrix accounting shared
variables between S1 and S4

ARR . . . fu5
fu6

fu7
. . .

rS1

4,k 7 7

rS4

1,k 7 7

contain shared variables between both S1 and S4 is pre-
sented. There, rS1

4,k corresponds with the fourth ARR of S1

(last row of Table 3), while

rS4

1,k = x3,k − x3,k−1 −∆t[u7,k−1 + u8,k−1

+ u6,k−1 − u9,k−1]

corresponds with the first defined ARR for S4. Notice that
the global diagnoser should decide by looking at the ARR
activations occurred in this fault signature matrix and then
interact with the different local diagnosers if needed.

6 Conclusions
In this paper, a decentralised fault diagnosis approach for
large-scale systems based on graph-theory has been pre-
sented. The algorithm starts with the translation of the sys-
tem model into a graph representation. Then, applying the
perfect matching algorithm, a set of analytical redundancy
relations is obtained. From the analytical redundancy rela-
tion graph, the problem of graph partitioning is then solved.
The resultant partition consists of a set of non-overlapped
subgraphs whose number of vertices is as similar as possi-
ble and the number of interconnecting edges between them
is minimal. To achieve this goal, the partitioning algorithm
applies a set of procedures based on identifying the highly
connected subgraphs with balanced number of internal and
external connections. Finally, a decentralised fault diagno-
sis strategy is introduced and applied over the resultant set
of partitions. In order to illustrate and discuss the use and
application of the proposed approach, a case study based on
the Barcelona DWN has been used. As further research, the
partitioning algorithm will be improved by acting directly
on the system model and not on the set of ARRs in order
to generate a set of ARRs for each local diagnoser with en-
hanced fault diagnosis properties.
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Abstract

We introduce the problem of self healing, in
which a system is asked to self diagnose and
self repair. The two problems of computing
the diagnosis and the repair are often solved
separately. We show in this paper how to tie
these two tasks together: a planner searches
a prospective plan on a sample of the belief
state; a diagnoser verifies the applicability of
the plan and returns a state of the belief state
(added to the sample) in which the plan is
not applicable. This decomposition of the
self healing process avoids the explicit com-
putation of the belief state. Our experiments
demonstrate that it scales much better than
the traditional approach.

1 Introduction

Autonomous systems are subject to faults and require
regular repair actions; systems capable of performing
such tasks are called self healing. Finding the optimal
repair involves solving a diagnosis problem (what may
the current system state be?) together with a planning
problem (what optimal/near optimal course of actions,
applicable in all of the possible states, leads to an ac-
ceptable state?). In large, partially observable, systems
computing an explicit “belief state” can be intractable;
finding a plan applicable in all elements of this belief
state can be also intractable.
In this paper we propose a method that avoids these

two intractable problems. This method relies on the in-
tuition that the full belief state is not necessary to find
the appropriate repair. For instance, if a self-healing
problem requires to make sure that n given machines
are turned off and if the status (on or off) of these ma-
chines is unknown, then the belief state is comprised of
2n states. However the optimal plan (press the stop but-
ton on every machine) happens to be the optimal plan
of the state where none of the machines has been shut:
this single state is “representative” of all the states in
the belief state.
Our approach uses a planner to compute an opti-

mal plan for a small sample of the belief state (at most
dozens of elements); the plan is applicable in all these
states and leads to the goal state. In order to vali-
date the plan for the full belief state we search for an

element of the belief state in which the plan is not ap-
plicable. To this end we define a new type of diagnoser
that solves the following problem: find a possible be-
haviour of the system (that agrees with the model and
the observations) that ends up in a state q in which the
plan is not correct; this state q is added to the sample
of the belief state so that the planner finds a more suit-
able repair plan at the next iteration. Failure on the
part of the diagnoser to find such a behaviour proves
that the plan is indeed correct. In practice the prob-
lem of verifying the correctness of a plan is reduced to a
propositional satisfiability (sat) problem that is unsat-
isfiable iff the plan is applicable in all states and that
returns a counterexample if not.
The contributions of this paper are i) a formal def-

inition of the self-healing problem, ii) the solving of
self-healing as a combination of diagnosis and planning
steps, and iii) the reduction of each step to sat.
This work is performed in the context of discrete

event systems [Cassandras and Lafortune, 1999]. As
opposed to supervisory control, where actions (either
active or passive, such as forbidding some events) are
performed while the system is running, we follow the
work from Cordier et al. [2007] and assume that the
repair is being performed whilst the system is inactive.
The paper is divided as follows. Next section defines

the self-healing problem formally. Section 3 presents
the proposed algorithm with a set-based perspective.
The sat implementation is presented in Section 4. Ex-
perimental validation is given in Section 5. A compar-
ison with other problems and approaches is given in
Section 6.

2 Problem Definition
The problem we are addressing is illustrated on Fig-
ure 1. We are concerned with finding the most appro-
priate repair for a partially observed system that has
been running freely.
We assume that the system can run in two different

modes: the “active” (and useful) mode in which the
system is free to operate (left half of the figure) and
the “repair” mode in which the system state is being
re-adjusted (right half). The system behaves quite dif-
ferently in the two modes. In the active mode, the sys-
tem is partially observable but uncontrolled. In the re-
pair mode, the system is not observed albeit controlled;
the state changes only through explicit application of
actions; and special attention must be made to their
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q0 q1 . . . qn−1 qn=q
′
0 q′1 . . . q′k−1 q′k

e1 e2 en−1 en a1 a2 ak−1 ak

Initial state Current state (unknown) Goal state

Partially observed,
uncontrolled, behaviour

Repair plan (problem solution)

Figure 1: Schematic description of the self-healing problem: find a repair plan that returns the state in the goal
set.

applicability/effects. One reason for assuming that the
system does not run freely in the repair mode is that we
do not want to consider scenarios where faults can oc-
cur during the repair, which would increase the overall
complexity of the problem. We believe that this limi-
tation, essentially the fact that the repair actions have
deterministic effects, can be lifted.

2.1 Explicit Model

We are considering discrete event systems (DES, [Cas-
sandras and Lafortune, 1999]). The system is modeled
as a finite state machine, i.e., a finite set Q of states
together with a set T of transitions labeled with finitely-
many events/actions.

Definition 1 An explicit self-healing system model is
a tuple M = 〈Q, I,Σ,Σo,Σa, T,G, U〉 where
• Q is a finite set of states, I ⊆ Q is a set of initial
states, G ⊆ Q is a set of goal states, U ⊆ Q is a
set of unstable states,

• Σ is a finite set of events, Σo ⊆ Σ is the set of
observable events, Σa ⊆ Σ is the set of actions,
and

• T ⊆ (Q× Σ×Q) is the set of transitions 〈q, e, q′〉
also denoted q

e−→ q′.

In the active mode the system takes a path ρ = q0
e1−→

. . .
en−→ qn such that {e1, . . . , en} ⊆ Σ \ Σa, q0 ∈ I and

qn 6∈ U . This last condition is used to prevent situ-
ations where a fault happened right before the repair
is applied, i.e., before any observation of this fault was
made. This assumption is similar to the one made, e.g.,
by Lamperti and Zanella that the system is quiescent
(no more event is about to happen) when diagnosis is
performed [Lamperti and Zanella, 2003]. This assump-
tion can be removed by assuming U = Q. Finally the
observation O = obs(ρ) of this path is the projection
of e1, . . . , en on the observable events Σo (i.e., all non-
observable events are eliminated from the sequence).
In the repair mode a sequence of actions, called a plan

π = a1, . . . , ak, is applied ({a1, . . . , ak} ⊆ Σa). From
state q′0 ∈ Q, the application of π leads to the (single)

state q′k = π(q′0) such that q′0
a1−→ . . .

ak−→ q′k. We assume
that every action is applicable in every state (if this is
not the case a non-goal sink state can be created where
all inapplicable actions lead to) and have deterministic
effects. If π leads q′0 to a goal state, we say that π is
correct for q′0.

Notice that a plan is a simple sequence: we do not as-
sume that additional observations are available at run-
time. There is no probing action available. After non
deterministic action effects, the use of conditional plans
is a second natural extension of this work.

Definition 2 The self-healing problem is a pair P =
〈M,O〉 where M is a model and O is an observation.
A repair plan for P is a plan that is guaranteed to be
correct in the current state. Formally a repair plan is
a plan π such that

∀ρ = q0
e1−→ . . .

en−→ qn.
(q0 ∈ I ∧ obs(ρ) = O ∧ qn 6∈ U) ⇒ π(qn) ∈ G.

(1)

The set of repair plans is denoted Π(M,O) or simply
Π.
Given a cost function on sequences of actions, the

objective of the self-healing problem is to find a cost-
minimal repair plan (for simplicity we assume that such
a plan exists):

π⋆ = argmin
π∈Π

cost(π).

This definition assumes a cost function that provides
a total order on the plans. In practice we will try to
minimise the number of actions (all actions have the
same cost, the cost is cumulative) and break ties at
random.
We see two main categories of self-healing problems,

namely i) a recurring situation where the system is
stopped regularly, which provides a good opportunity
to perform corrective actions on the system; ii) a situa-
tion where a diagnoser/monitor detects an anomaly on
the system and triggers a self-healing procedure. The
present work is independent from how the problem was
prompted.

2.2 Solving the Problem Explicitly

This paper works under the assumption that the sys-
tem model is very large and that it is impractical to
manipulate sets of states. We discuss this issue here
and present some notations.
The simplest way to solve the self-healing problem

is to compute the belief state and then compute the
optimal plan for this set of states.
Given a model M and the observation O, the belief

state BO is defined as the set of states that the system
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could be in:

BO = {q ∈ Q | ∃ρ = q0
e1−→ . . .

en−→ qn.
q0 ∈ I ∧ obs(ρ) = O ∧ qn 6∈ U ∧ q = qn}.

Notice that the definition of the belief state matches
the first part of Equation (1).

A conformant plan for the set of states BO is a plan
π that is correct for all states of BO: ∀q ∈ BO. π(q) ∈ G
(cf. Figure 2). Compared to the general definition of a
conformant plan (a more detailled comparison is given
in Section 6) we only deal with uncertainty on the initial
state and we assume that actions have deterministic
effects. Conformant planning is provably pspace-hard
for explicit models.
We consider the conformant planning problem from

the initial set of states BO and use b = |BO| to denote
the size of BO. The problem can be solved by consid-
ering the finite state machine M ′ where each state of
M ′ is a set of states of the original model and each
transition from state S labeled by action a leads to
S′ = {q′ ∈ Q | ∃q ∈ S. 〈q, a, q′〉 ∈ T }. The initial
state of M ′ is BO; a state S of M ′ is a goal state if
it satisfies S ⊆ G. A plan π is a sequence of actions
such that π(BO) (in M ′) is a goal state. Because the
original model is deterministic the transition 〈S, a, S′〉
is such that the size of S′ is smaller than S. The num-
ber of states in M ′ is bounded by the sum of binomial

coefficients

(
|Q|
1

)
+ · · ·+

(
|Q|
b

)
.

qb0 qb1
. . . qbk−1 qbk

...
...

. . .
...

...

q10 q11 . . . q1k−1 q1k

Initial states B Goal states

Figure 2: Solving conformant problems; the vertical
lines mean that the transitions are labeled by the same
action.

The model M ′ presented before cannot be easily ex-
pressed in planning modeling languages such as strips
or pddl, or implemented in sat. Another reduction, to
M ′′, can be introduced whose states are tuples (with b
elements) of states from the original model: Q′′ = Qb.
A tuple state is a goal state if all its elements are in the
goal: G′′ = Gb. The transitions in M ′′ correspond to
the parallel execution of the same action in each state
of the tuple (represented by the vertical lines on Fig-
ure 2).
In generalM ′′ is larger thanM ′. The model also con-

tains symmetries that efficient implementations might
need to address explicitely: for instance in model M ′′

states 〈q1, q2〉 and 〈q2, q1〉 are different while they would
be the same in M ′: {q1, q2} = {q2, q1}.
Clearly this type of approach is only applicable if BO

comprises no more than a few dozen elements.

Finally we look at a formulation of the planning prob-
lem that is complementary to the computation of the
belief state. Assume that a plan π is given and we want
to compute the set of states Bπ in which the plan π is
correct: Bπ = {q ∈ Q | π(q) ∈ G}.
Lemma 1 Plan π is a correct plan iff BO ⊆ Bπ.

Writing Bπ def
= Q \ Bπ the set of states for which π is

not correct, plan π is a correct plan iff BO ∩ Bπ = ∅.

3 Set Formulation of Self-Healing
We first present a formulation of our solution that is
based on sets and that does not consider implementa-
tion issues (presented in the next section).
We propose a lazy approach to self-healing. In this

approach we search a correct plan for a sample of the
belief state (a “belief sample”) and then search for a
state of the belief state in which the plan is not applica-
ble; this state is added to the sample and the procedure
is iterated again until a robust plan has been found.
We first give the theoretical results that justify the

algorithm presented at the end of the section.
In the following we use the notations BO and B to

represent sets of states such that B ⊆ BO. BO will
represent the belief state and B a small subset (a few
elements) of BO. S, S′ will represent any set of states.
Let Π(q) be the set of repair plans that are correct

for state q. Let Π(S) be the set of repair plans that are
correct whichever is the current state from S. Then
Π(S) =

⋂
q∈S Π(q). Notice that Π = Π(BO).

A trivial result is:

S ⊆ S′ ⇒ Π(S) ⊇ Π(S′).

A consequence of this proposition is that the optimal
repair for BO is a correct plan for B. Computing the
optimal repair plan for the latter may therefore yield
the optimal plan for the former. Let π∗(S) be the op-
timal plan for a set of states. The next proposition
determines how to characterize that an optimal plan
was found:

S ⊆ S′ ∧ (π∗(S) ∈ Π(S′)) ⇒ π∗(S) = π∗(S′).

This result can be derived from the previous propo-
sition. π∗(S′) belongs to Π(S) since S ⊆ S′; therefore
π∗(S) is better than (or equal to) π∗(S′). However, if
π∗(S) ∈ Π(S′) and yet π∗(S′) 6= π∗(S), then π∗(S′)
must be strictly better than π∗(S), which contradicts
what was just said.
Applied to S = B and S′ = BO ⊇ B, this means

that π∗(B) ∈ Π(BO) implies π∗(B) = π∗(BO).

We reuse the notation Bπ for the set of states in
which the plan π is correct, and Bπ = Q \ Bπ for the
set of states in which it is not. With this notation,

π∗(B) ∈ Π(BO) is equivalent to BO ∩ Bπ∗(B) = ∅.
Assume that there exists a procedure

verify applicability (S, π) that extracts a state
q ∈ S ∩ Bπ if such a state exists, and returns ⊥
otherwise. Then, for S ⊆ S′, the following results are
trivial:

• verify applicability (S′, π∗(S)) = ⊥ ⇒ π∗(S) =
π∗(S′);
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• let q = verify applicability (S′, π∗(S)) 6= ⊥ be a
state where π∗(S) is not applicable, then q 6∈ S
and π∗(S ∪{q}) 6= π∗(S) (and cost(π∗(S ∪{q})) >
cost(π∗(S)))1.

The first proposition shows that verify applicability can
be used to check whether the plan π∗(B) is correct for
BO. The second proposition indicates how a better
prospective plan can be computed if π∗(B) is not cor-
rect: the addition of q to S guarantees that a different
plan will be generated.
These results lead to the procedure presented in Al-

gorithm 1. In this procedure, find plan(B) is a method
that computes a conformant plan from B as defined
at the end of the previous section (and described next
section). The procedure computes the optimal plan for
a belief sample B. If verify applicability finds a state
q ∈ BO in which this plan is not correct, then this state
is added to the belief sample and a new optimal plan
is generated and tested.

Algorithm 1 Diagnosis algorithm for the self-healing
problem without enumerating the belief state BO

B := ∅
loop
π := find plan(B)
q := verify applicability (BO, π)
if q = ⊥ then
return π

else
B := B ∪ {q}

end if
end loop

Because i) each loop iteration adds an element to B
and ii) BO is finite, this procedure is guaranteed to ter-
minate. The number of iteration is, in the worst case,
the size of BO; we expect however that a handful of
calls to find plan(·) will be sufficient to find the opti-
mal plan.

Example

We illustrate Algorithm 1 with the example of Figure 3.
Assume that the observations are O = [o1, o2]. Accord-
ing to the model, the belief state is BO = {A,D, F,H}
(state B is unstable, so the system cannot be in this
state). The state needs to be returned to a subset of
{A,G}.
Since the belief sample B0 is initially empty, Algo-

rithm 1 first generates the empty plan π0 = ε. The
procedure verify applicability exhibits state F such that

B
u−→ D

o1−→ E
o2−→ F could explain O and such that

plan π0 does not lead to a goal state when applied from
F . The optimal plan for B1 = {F} is π1 = a1. This
time verify applicability extracts stateH which also be-
longs to the belief state and for which the application
of a1 leads to sink state I. The belief sample B2 now
equals {F,H} and the optimal conformant plan for B2

is π2 = a2, a1 (remember that unobservable transition

F
u−→ H cannot trigger after the execution of a2). This

plan is correct for all elements in the belief state. Notice

1Remember that no two plans have the same cost.

A

B

C

D

E F

G

H

I

o1

a2

o1

u

o2

o2 o1

a2

o1 o2

a1

u

a2

a1

Figure 3: System example with two initial states (A
and B), two goal states (A and G), one unstable state
(B), two observable events (o1 and o2), and two actions
(a1 and a2; an action affects the system state only if
there is a transition).

that neither A norD from BO were explicitly generated
during the procedure.

4 SAT Formulation of Self-Healing

In this section we show how Algorithm 1 can be im-
plemented using sat. This implementation assumes
a symbolic representation of the model, i.e., a repre-
sentation where states and transitions are not enumer-
ated but are, instead, implicitly defined by a set V of
Boolean state variables (aka fluents) as can be found,
e.g., in a strips model.

4.1 Computing a Conformant Plan for B

The procedure we use to compute the optimal plan for
a belief sample relies on a sat solver and follows the
schematic representation of Figure 2. In planning by
sat [Kautz and Selman, 1996], given a horizon k and a
planning problem a propositional formula Φ is defined
that is satisfiable iff there exists a sequence of actions
of length k that solves the planning problem.2 Fur-
thermore Φ is defined over k + 1 copies of the state
variables (the state sat variables p0 to pk where p is a
state variable) and k copies of the actions (the action
sat variables a0 to ak−1 where a is an action). Φ is
defined such that a solution to the planning problem
can be trivially extracted from the satisfying assign-
ment (for instance, if ai evaluates to true, then the ith
action of the plan is a). If, for instance, action a sets
state variable p to false, Φ will be defined such that for
all i ∈ {1, . . . , k}

Φ ≡ (ai−1 → ¬pi) ∧ · · ·
We refer the reader to the literature on planning by sat
for more details on this reduction.
Given a sample B of b states we create b copies of the

state sat variables: p1i , . . . , p
b
i ; the variables pℓi model

the effects of applying the plan on the state qℓ ∈ B.
We stick to a single set of action sat variables and
each copy of the state sat variables is linked to this

2The value of k is initialized to 0 and incremented until
Φ becomes satisfiable.
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set. The formula Φ presented in the example above
will therefore now translate as

Φ ≡
((
ai−1 → ¬p1i

)
∧ · · · ∧

(
ai−1 → ¬pbi

))
∧ · · ·

4.2 Verifying Correctness of a Plan

Like the plan generation, plan correctness is imple-
mented in sat. This time it matches the representation
of Figure 1.
A plan is proved incorrect if an explanation of the

observations can be found in which the application of
the plan leads to a non final goal (remember that all
plans are applicable).
Once again a propositional formula is defined that is

satisfiable iff such an explanation exists. This formula
contains two parts: sat variables pi∈{0,...,n} represent
the state of the system in the active mode while vari-
ables p′i∈{0,...,k} represent the state in the repair mode.3

The formula is the conjunction of the formulas:

• Φactive a propositional formula that is satisfiable
iff there exists an explanation to the observa-
tions (whose final state is represented by the vari-
ables pn); this type of reduction is quite standard
[Grastien and Anbulagan, 2013];

• Φ′
repair a propositional formula that is satisfiable

iff there exists a state in which the proposed plan
is not correct (this state is represented by the vari-
ables p′0);

• ∧
p∈V (pn ↔ p′0), where p ranges over the state

variables, the formula that links the final state of
the active phase and the initial state of the repair
phase.

Intuitively, the assignments of the variables pn that
are consistent with Φactive are a symbolic representa-
tion of BO. Formally let V be the set of variables that
appear in Φactive; then ∃(V \ {pn | p ∈ V }). Φactive is
logically equivalent to the symbolic representation of
BO. Similarly the variables p′0 of Φ′

repair represent Bπ.

As a consequence any other representation of BO or
Bπ could be used if such representations are more con-
venient (e.g., if they are more compact or if they help
the sat solver).

Difference Between the Two Reductions

The first reduction aims at finding a plan of length k
that is applicable in b states. Therefore it includes b×k
copies of the state variables and k copies of the action
variables.
The second reduction aims at finding a plan com-

posed of two parts: a trajectory in the active space and
a trajectory in the repair space. Therefore it includes
n + k copies of the state variables and n copies of the
events (there could be k copies of the actions but the
value of these variables is known in advance since the
plan is an input of this reduction).
An interesting difference between the two reductions

is that the trajectories of the former should lead to goal
states while the trajectory of the latter should lead to
a non goal state. As a consequence when the repair

3It is assumed that the length of the explanation can be
bounded by a known value n; k is the length of the plan
being tested.

plan is finally computed the conformant planning re-
duction to sat is satisfiable while the reduction of the
applicability function is not.

5 Experiments

We ran some experimental evaluation of the approach
presented in this paper.
Since the problem presented here is new, we had to

build new benchmarks. We propose a variant of the
benchmark presented by Grastien et al. [2007] which
will be made available to the community. The sys-
tem comprises 20 components interconnected in a torus
shape. Each component contains eight states, including
two unstable states and one goal state. The behaviour
on each component can affect its neighbour and the
local observations cannot allow to determine anything
about the local behaviour: the full system needs to
be monitored in order to understand the state system.
Repair actions can also be local or affect several com-
ponents.
We built 100 problem instances on this system. We

restricted ourselves to totally ordered observations, but
notice that one of the benefits of using diagnostic tech-
niques is to be able to handle partially-ordered obser-
vations (observations where the order of the observed
events is only partially known because the delay be-
tween their reception is small compared to the trans-
mission/processing delay).
We compare our approach to a symbolic approach

that uses BDDs (specifically the buddy package) to
track the belief state and then uses A* to find the op-
timal repair plan. The heuristic used by A* is imple-
mented as follows: a state of the system is extracted
from the BDD and the optimal repair is computed for
this state using sat; the length of this optimal repair is
used as a lower bound for the optimal repair from the
current search node.
Our belief sample method uses glucose_static 4.0

[Audemard and Simon, 2009]. glucose is heavily based
on the minisat solver [Eén and Sörensson, 2003].
The experiments were run on 4-core 2.5GHz cpu with

4GB RAM, with GNU/Lunix Mint 16 “petra”. A ten
minutes (600s) timeout was provided.
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Figure 4: Runtime in seconds required to solve self-
healing problem instances; sorted.

The results are summarized in Figure 4. The in-
stances are sorted in increasing runtime, meaning that
the instance at position x for one implementation may
be different from the instance at the same position for
the other. The approach based on the generation of the
belief state only saw 64 instances solved before timeout,
against 83 for our approach. In general our approach
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is two orders of magnitude faster than A*, although
we would need more benchmarks and comparisons to
understand better the strength of this approach.
Out of the 87 instances instances solved by the Belief

Sample method, 82 could be solved by exhibiting only
one element of the belief state. Another three instances
could be solved with a sample of two elements, and
two required a sample of three elements to generate a
conformant plan.

6 Discussion

The objective of connecting the diagnostic and plan-
ning tasks is quite ambitious. From the diagnostic per-
spective, and since the seminal work from Sampath et
al. [1995] the problem has generally been the detection
of specific events or patterns of events [Jéron et al.,
2006]. The main inspiration of the present work is the
self-heability question asked by Cordier et al. [2007];
the aforementioned work is one of the first attempt to
frame diagnosis as the problem of finding the optimal
repair plan, although the complexity of computing the
plan is not addressed. In static contexts similar ques-
tions have been asked where the problem was framed as
finding the optimal balance between increasing the cost
of gathering information (observations) and improving
the precision of diagnosis (and, consequently, reducing
the cost of planning) [Torta et al., 2008].
Supervisory control [Ramadge and Wonham, 1989] is

a problem very similar to self-healing. The goal is to
control some actions (forbid their occurrence) in order
to meet some specification. The main difference with
our work is the fact that control applies continuously
while we assume that self-healing is performed when the
system is not active (either because the repair process
is expensive—it might require to stop the system for
instance—or because it can only be performed at some
time—every night for instance). Furthermore control
tries to be as unobtrusive as possible: it merely forbids
some transitions and generally does not choose actions
to perform.
Conformant planning [Smith and Weld, 1998] is the

problem of finding a sequence of actions that is guar-
anteed to lead to the specified goal, despite uncertainty
on the initial state and nondeterministic action effects.
Solutions to conformant planning have been proposed
that compute the belief state and run heuristic search
[Bonet and Geffner, 2000] or that represent the belief
state symbolically [Cimatti and Roveri, 2000]. More
similar to our work Hoffmann and Brafman [2006] pro-
posed Conformant-FF in which the belief state is rep-
resented implicitly by the set of initial states and the
sequence of actions leading to the current state; at ev-
ery time step, a sat solver is used to determine the state
variable values that can be inferred with certainty. This
approach is similar to ours in the way it avoids comput-
ing belief states. More generally, we would like to adapt
our method to solve conformant planning problems.
The combination of planning and diagnosis has also

been studied in the context of plan repair. There, a
(possibly conformant) plan is computed that assumes
that contigencies are unlikely to happen. The plan ex-
ecution is then monitored and if the outcome of exe-
cution does not match the predictions, a new plan is

generated [Micalizio, 2014].

7 Conclusion and Extensions
In this paper we presented a method to solve the self-
healing problem. The problem consists in finding a
repair plan that can lead back to a goal state a sys-
tem whose execution has been partially observed. We
avoid computing the belief state. Instead we propose a
method whereby plans are computed on a sample of the
belief state whilst a diagnoser verifies their correctness
and generates an element of the belief state (added to
the sample) if the plan is not correct. Both the plan-
ning and the diagnosis problems are reduced to sat
problems. We show that non trivial problems can be
easily solved by this approach.

There are many possible extensions to this work.
One issue is that enforcing a conformant plan may be
too restrictive. We want to avoid prohibitive repairs
in situations where the system is healthy. This is a
common problem in diagnosis of dynamic systems: the
state of the system can never be precisely determined
at the current time; it is often not unconceivable that
a fault just happened on the system and has not had
time to develop into a visible faulty trace. The issue
here is that conformant plans must provide for such
contingencies even when there is no evidence for them.
An implicit assumption of our work is that unhealthy
system behaviours can be detected to a large extend.
The set of unstable states serves this purpose: they are
useful to model the fact that any “failure” in the sys-
tem will lead to abnormal observations before a repair
action is performed.
We see two avenues to handle situations where the

unstability feature cannot address the problem pre-
sented before. First probabilities can be incorporated
into the model, which allows for chance-constrained
planning [Santana andWilliams, 2014]. Issues with this
approach include the problem of building large models
with meaningful probabilities and the problem of ex-
tending the sat reduction to deal with probabilities
(as well as scaling up to large models). A second, qual-
itative, possibility is to ignore contingencies that are
supported by no strong evidence. For instance failures
that are not part of a minimal diagnosis might be ig-
nored.
Another restriction of the current approach is that

the goal G is assumed to be known explicitly. Speci-
fication of goal states may however be more complex:
Ciré and Botea [2008] have proposed to define goals
as properties of states defined in linear temporal logic
(LTL). Other relevant goal properties is diagnosability
[Sampath et al., 1995], i.e, the property that the obser-
vations on the system will allow to detect/identify the
important system failures. A related issue is the incre-
mental aspect: how to handle a repair after an active
period following a first repair. A simple solution is to
assume that the initial state after the repair is the goal
state.

Acknowledgments
NICTA is funded by the Australian Government
through the Department of Communications and the

Proceedings of the 26th International Workshop on Principles of Diagnosis

110



N0

N1

N2

F1

F2

R0

R1

R2

nf

nf

nf

nf

nf

reb reb reb

back back back

f
f

Figure 5: Active model for one component (observable
events are reb and back).

N0

N1

N2

F1

F2

R0

R1

R2

t

t

t

t

t

sz

Figure 6: Repair model for one component (no transi-
tion means that the state is not affected by action).

Australian Research Council through the ICT Centre
of Excellence Program.

A Problem Benchmark

We now present the system we used in the experi-
ments.4

The system includes 20 components ci,j where i
ranges between 0 and 3 and j between 0 and 4. The
component ci,j is connected to ci′,j′ iff the total differ-
ent |i − i′|+ |j − j′| is at most one (where i and j are
taken modulo 3 and 4). For instance, c0,1 is connected
to four components c0,0, c0,2, c3,1, and c1,1.
The model of one component for the active mode is

given in Figure 5 and the model for the repair mode
is given in Figure 6. The connections between com-
ponents implies forced transitions when some events
occur; these are summarised in Table 1 For instance,
when event f occurs on component c0,1, event nf oc-
curs on every one of its four neighbours.
A component state contains two types of informa-

tion: whether a failure occurred on the component and
whether it is run. The first part of the state is initially

4The benchmark is available at this address:
http://www.grastien.net/ban/data/bench-dx15.tar.gz.

event/action neighbour event/action
f nf
t z

Table 1: Synchronised events

N (no fault); it moves to F when a fault occurs and R
when it recovers. The second part of the state is gener-
ally 0 (the component is running) and moves to 1 when
it needs to reboot and to 2 when it is rebooting. A fault
on a component forces its neighbours to reboot. One
difficulty of diagnosis for this type of system is that the
observations (reb and back) do not point precisely to
the faulty component.
The repair consists in returning to state N0. Most

states require action t to return to state N0 but this
action can move the neighbours of the component to
state N2. Therefore finding the optimal repair requires
to order the actions carefully.

References

[Audemard and Simon, 2009] G. Audemard and L. Si-
mon. Predicting learnt clauses quality in modern
SAT solver. In 21st International Joint Conference
on Artificial Intelligence (IJCAI-09), 2009.

[Bonet and Geffner, 2000] B. Bonet and H. Geffner.
Planning with incomplete information as heuristic
search in belief space. In Fifth International Con-
ference on AI Planning and Scheduling (AIPS-00),
pages 52–61, 2000.

[Cassandras and Lafortune, 1999] C. Cassandras and
S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri.
Conformant planning via symbolic model checking.
Journal of Artificial Intelligence Research (JAIR),
13:305–338, 2000.
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L. Anselma. Hypothesis discrimination with abstrac-
tions based on observation and action costs. In Nine-
teenth International Workshop on Principles of Di-
agnosis (DX-08), pages 189–196, 2008.

Proceedings of the 26th International Workshop on Principles of Diagnosis

112



Implementing Troubleshooting with Batch Repair

Roni Stern1 and Meir Kalech1 and Hilla Shinitzky 1

1Ben Gurion University of the Negev
e-mail: roni.stern@gmail.com, kalech@bgu.ac.il, hillash@post.bgu.ac.il

Abstract
Recent work has raised the challenge of efficient
automated troubleshooting in domains where re-
pairing a set of components in a single repair ac-
tion is cheaper than repairing each of them sepa-
rately. This corresponds to cases where there is a
non-negligible overhead to initiating a repair ac-
tion and to testing the system after a repair ac-
tion. In this work we propose several algorithms
for choosing which batch of components to repair,
so as to minimize the overall repair costs. Experi-
mentally, we show the benefit of these algorithms
over repairing components one at a time (and not
as a batch).

1 Introduction
Troubleshooting algorithms, in general, plan a sequence of
actions that are intended to fix an abnormally behaving sys-
tem. Fixing a system includes repairing faulty components.
Such repair actions incur a cost. These costs can be parti-
tioned into two types of repair cost. The first, referred to as
the component repair cost, is the cost of repairing a compo-
nent. The second, referred to as the repair overhead, is the
cost of preparing the system to perform repair actions (e.g.,
halting the system may be required), and the cost of testing
the system after performing a repair action.

This paper considers the case where the repair overhead
is not negligible and is potentially more expensive than a
component repair cost (of a single component). Therefore,
it may be more efficient to repair a batch of components
in a single repair action. We call the problem of choosing
which batch of components to repair the Batch Repair Prob-
lem (BRP). BRP is an optimization problem, where the task
is to minimize the total repair costs, which is the sum of the
repair overheads and component repair costs incurred by all
the repair actions performed until the system is fixed.

Note that in this paper we use the term “repair” for a sin-
gle or a set of components and the term “fix” to refer to
the entire system. Thus, repairing components eventually
causes the system to be fixed, and a system is only fixed if it
returned to its nominal behavior.

Most previous work assumed that components are re-
paired one at a time [1; 2; 3; 4]. This approach can be
wasteful for BRP. For example, if a diagnosis engine infers
that multiple faulty components need to be repaired to fix
the system, then it would be wasteful to repair these com-
ponents one at a time since each repair action incurring its

repair overhead. Instead, an efficient BRP algorithm would
repair all the faulty components in a single repair action.
More generally, we expect an intelligent BRP algorithm to
weigh the cost of repairing batches of components as well
as the repair overhead. Some discussion on repairing mul-
tiple components together was done in prior work on self
healability [5].

Due to the repair overhead, repairing a single component,
even if it is the component most likely to be faulty, can
be wasteful. This is especially wasteful in cases where all
the found diagnoses consists of multiple faulty components,
thus suggesting that repairing a single component would not
fix the problem. Alternatively, one may choose to repair the
components in the most likely diagnoses. This may also
be wasteful, especially if there are several diagnoses which
have similar likelihood. It might be worthwhile to repair
by a single repair action a set of components that “covers”
more than a single diagnosis. This may reduce the number
of repair actions until the system is fixed, thus saving repair
overhead costs. The downside in this approach is that the
component repair costs can be high, as more healthy com-
ponents may be repaired.

out1=1

in1=1

in2=1

A

B

Consider the small system described in 
Figure~\ref{fig:simple-example}. It is a logical circuit 
whose output is fault, and assume that there are only 
two possible diagnoses: either A is faulty or B is faulty, 
where the probability that A and B are faulty is 0.6 and 
0.4, respectively. There are three possible repair action –
to repair A, to repair B, and to repair A and B. 
Assume that the repair overhead costs 10, and repairing 
a component costs 1. If A is repaired, there is a 0.4 
chance that the system would not be fixed and another 
repair action would bee needed (repairing B). Thus, the 
expected total repair cost of repairing A first is 15. 
Similarly, the total repair cost for repairing B first is 17. 
The best option in this case is thus to repair A and B 
together, in a  single repair action incurring a total repair 
cost of 12.

p({B})=0.4

p({A})=0.6

Figure 1: An example where
repairing components one at
a time is wasteful.

For example, consider
the small system de-
scribed in Figure 1. It is
a logical circuit whose
output is fault. Assume
that the “OR” gate is
known to be healthy
and there are only two
possible diagnoses: either
A is faulty or B is faulty,
where the probability that
A and B are faulty is
0.6 and 0.4, respectively. There are three possible repair
actions: to repair A, to repair B, and to repair A and
B. Assume the repair overhead costs 10, and repairing a
component costs 1. If A is repaired, there is a 0.4 chance
that the system would not be fixed and another repair action
would be needed (repairing B). Thus, the expected total
repair cost of repairing A first is 15.4. Similarly, the total
repair cost for repairing B first is 17.6. The best option is
thus to repair A and B together in a single repair action,
incurring a total repair cost of 12.

Recent work [6] proposed two high-level approaches to
solve BRP: as a planning under uncertainty problem, or as a
combinatorial optimization problem. When modeling BRP
as a planning under uncertainty problem the task is to find a
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repair policy, mapping a state of the system to the repair ac-
tion that minimizes the expected total repair costs. This ap-
proach, while attractive theoretically, quickly becomes not
feasible in non-trivial scenarios.

In this work we focus on the second high-level approach
proposed for BRP, in which BRP is modeled as a combi-
natorial optimization problem, searching in the combinato-
rial space of possible repair actions for the best repair ac-
tion. There are two challenges in implementing this ap-
proach. First, how to measure the quality of a repair ac-
tion and how to efficiently search for the repair action that
maximizes this measure. There are many efficient heuristic
search algorithms in the literature, and thus the main chal-
lenge addressed in this work is in proposing several heuris-
tics for estimating the merit of a repair action.

The contributions of this work are practical. A range of
heuristic objective functions are proposed and analyzed, and
we evaluate their effectiveness experimentally on a standard
benchmark. A clear observation from the results is that in-
deed considering batch repair actions can save repair cost
significantly. Moreover, the most effective heuristics pro-
vide a tunable tradeoff between computation time and re-
sulting repair costs.

2 Problem Definition
A classical MBD input 〈SD,COMPS,OBS〉 is assumed,
where SD is a model of the system, COMPS represents
the components in the system, and OBS is the observed
behavior of the system. Every component can be either
normal or abnormal. The assumption that a component
c ∈ COMPS is abnormal is represented by the abnormal
predicate AB(c).
A batch repair problem (BRP) arises when the assumption
that all components are normal is not consistent with the
system description and observations. Formally,

SD ∧OBS ∧
∧

c∈COMPS

¬AB(c) is not consistent

In such a case, at least one component must be repaired.

Definition 1 (Repair Action). A repair action can be ap-
plied to any subset of components and results in these com-
ponents becoming normal. Applying a repair action to a set
of components γ is denoted by Repair(γ).

Definition 1 assumes that repair actions always succeed,
i.e., a component is normal after it is repaired.

After a repair action, the system is tested to check if it
has been fixed. We assume that the system inputs in this test
are the same as in the original observations (OBS). The
observed system outputs are then compared to the expected
system outputs of a healthy system. Thus, the result of a
repair action is either that the system is fixed, or a new ob-
servation that may help choosing future repair actions.

Repairing a set of components incurs a cost, composed
of a repair overhead and component repair costs. The repair
overhead is denoted by costrepair, and the component repair
cost of a component c ∈ COMPS is denoted by costc.

Definition 2 (Repair Costs). Given a set of components γ ⊆
COMPS, applying a repair action Repair(γ) incurs a cost:

cost(Repair(γ)) = costrepair +
∑

c∈γ
costc

We assume that all repair costs are positive and non-zero,
i.e., costrepair > 0 and costc > 0 for every component
c ∈ COMPS. As defined earlier, the task in BRP is to fix
a system with minimum total repair cost.

As shown in Figure 1, an efficient BRP solver should con-
sider the possibility of repairing a set of components in a
single repair action. Thus, the potential number of repair
actions is 2|COMPS|. Therefore, from a complexity point of
view BRP is an extremely hard problem.

3 Preliminaries
Next, we provide background and definitions required for
describing the BRP algorithms we propose.
SD describes the behavior of the diagnosed system, and

in particular the behavior of each component. The term be-
havior mode of a component refers to a state of the compo-
nent that affects its behavior. SD describes for every com-
ponent one or more behavior modes. For every component,
at least one of the behavior modes must represent the nomi-
nal behavior of the component.

A mode assignment ω is an assignment of behavior
modes to components. Let ω(+) be the set of components
assigned a nominal (i.e., normal) behavior mode and ω(−)

be the set of components assigned one of the other modes.
Definition 3 (Diagnosis). A mode assignment ω is called a
diagnosis if ω ∧OBS ∧ SD is satisfiable.

A model-based diagnosis engine (MBDE) accepts as in-
put SD, OBS, and COMPS and outputs a set of diag-
noses Ω. Although a diagnosis is consistent with SD and
OBS, it may be incorrect. A diagnosis ω is correct if
by repairing the set of components in ω(−) the system is
fixed. Some diagnosis algorithms return, in addition to Ω, a
measure of the likelihood that each diagnosis is correct [7;
8]. Let p : Ω → [0, 1] denote this likelihood measure. We
assume that p(ω) is normalized so that

∑
ω∈Ω p(ω) = 1 and

use it to approximate the probability that ω is correct.
A common way to estimate the likelihood of diagnoses,

assumes that each component has a prior on the likelihood
that it would fail and component failures are independent.
Therefore, if p(c) represents the likelihood that a component
c would fail then diagnosis likelihood can be computed as

p(ω) =

∏
c∈ω− p(c)∑

ω′∈Ω

∏
c∈ω′− p(c)

(1)

where the denominator is a normalizing factor. We assume
in the rest of this paper that diagnoses likelihoods are com-
puted according to Equation 1. Other methods for comput-
ing likelihood of diagnoses also exist [9].

3.1 System Repair Likelihood
If the MBDE returns a single diagnosis ω that is guaranteed
to be correct, then the optimal solution to BRP would be to
perform a single repair action: Repair(ω−). This, however,
is rarely the case, and more often a possibly a very large
set of diagnoses is returned by diagnosis algorithms. This
introduces uncertainty as to whether a repair action would
actually fix the system. We define this uncertainty as fol-
lows:
Definition 4 (System Repair Likelihood). The System Re-
pair Likelihood of a set of components γ ⊆ COMPS,
denoted SystemRepair(γ), is the probability that
Repair(γ) would fix the system.
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Consider the relation between p(ω) and
SystemRepair(ω). If ω is correct, then repairing
all components that are faulty, meaning ω(−), would fix the
system. Therefore, the likelihood of repairing ω(−) causing
the system to be fixed is at least p(ω), i.e.,

SystemRepair(ω(−)) ≥ p(ω)

Moreover, if ω is correct then repairing any superset of ω(−)

would also fix the system. Thus, SystemRepair(ω(−))
may be larger than p(ω). On the other hand, repairing any
set of components that is not a superset of ω(−), as there
would still be faulty components in the system. Therefore,
a repair action Repair(COMPS′) would fix the system if
and only if ω∗(−) ⊆ COMPS′, where ω∗ is the correct
diagnosis. While we do not know ω∗, we can compute
SystemRepair(γ) from Ω and p(·):

SystemRepair(γ) =
∑

ω∈Ω∧ω⊆γ
p(ω)

For example, in the logical circuit depicted in Fig-
ure 1, there are two diagnoses, {A} and {B}, such
that p({A}) = 0.6 and p({B}) = 0.4. Thus,
SystemRepair({A})=0.6, SystemRepair({B})=0.4, and
SystemRepair({A, B})=p({A})+p({B})=1.

4 BRP as a Combinatorial Search Problem
As mentioned in the introduction, the approach for solving
BRP that we pursue in this paper formulates BRP as a com-
binatorial search problem. The search space is the space of
possible repair actions, i.e., every subset of the set of com-
ponents there were not repaired yet. The search problem is
to find the repair action that maximizes a utility evaluation
function u(·) that maps a repair action to a real value that
estimates its merit.

The effectiveness of this search-based approach for BRP
depends on the search algorithm used and how the u(·) util-
ity function is defined. There are many existing heuristic
search algorithm for searching large combinatorial search
spaces [10; 11]. Thus, in this work we propose and evalu-
ate a set of possible utility functions. Note that for some of
the utility functions described next it is possible to find the
best repair action without searching the entire search space
of possible actions, while others are more computationally
intensive.

4.1 k Highest Probability
A key source of information for all the utility functions de-
scribed below is the set of diagnoses Ω and their likelihoods
(p(·)). We assume that this information is obtained by us-
ing a diagnosis engine over the observations of the current
state of the system. The set of returned diagnoses may be
very large. The first utility function we propose is based on
the system’s health state, which has been recently proposed
as a method for aggregating information from a set of diag-
noses [12].

Definition 5 (Health State). A health state is a mapping F :
COMPS → [0, 1] where

F (c) =
∑

ω∈Ωs.t.c∈ω
p(ω)

F (c) is an estimate of the likelihood that component c
is faulty given a set of diagnoses Ω and their likelihoods.
Based on the system’s health state, we propose the following
utility function, denoted uHP :

uHP (γ) =
∑

c∈γ
F (c)

where γ is any subset of COMPS that has not been re-
paired yet.

The repair action that maximizes uHP is trivial — repair
all components. This would result in the system being re-
pairs, but of course, may repair many components that are
likely to be healthy. To mitigate this effect, we propose the
k highest probability repair algorithm (k-HP), which limits
the number of components that can be repaired in a single
repair action to k, where k is a user-defined parameter. Note
that computing k-HP does not need any exhaustive search:
simply sort the health state in descending order of F (·) val-
ues and repair the first k components.

The k-HP repair algorithm has two clear disadvantages.
First, the user needs to define k. Second, k-HP does not
consider repair costs (neither component repair costs nor
overhead costs). The next set of utility functions and cor-
responding repair algorithms address these disadvantages.

4.2 Wasted Costs Utilities
Before describing the next set of proposed utility functions
we explain the over-arching reasoning behind it. Repair-
ing a system requires performing repair actions. Some re-
pair costs are inevitable. These are the repair overhead of
a single repair action, and the component repair costs that
repair the faulty components. We propose a family of utility
functions that try to estimate the expected total repair costs
beyond these inevitable costs. We refer to these costs as
wasted costs and to utility functions of this family as wasted
cost functions.

We model these wasted costs as being composed of two
parts.
• False positive costs (costFP ). These are the costs

incurred by repairing components that are not really
faulty.

• False negative costs (costFN ). These are the overhead
costs incurred by future repair actions.

It is clear why the false positive costs are wasted costs —
these are repair costs incurred on repairing healthy compo-
nents. The false negative costs are wasted costs because if
one knew upfront which components are faulty, then the op-
timal repair algorithm would repair all these components in
a single batch repair action, incurring no further overhead
costs. Thus, future overhead costs represent wasted costs.

We borrow the terminology of false positive and false
negative from the machine learning literature, but use it in a
somewhat different manner. To explain this choice of ter-
minology, assume that positive and negative mean faulty
and healthy components respectively. Choosing to repair
a faulty component is regarded as a true positive, and not
repairing a healthy component is regarded as a true nega-
tive. Thus, the wasted costs incurred by repairing healthy
components are costs incurred due to false positives, and
the wasted costs incurred by not repairing a faulty compo-
nent are costs incurred due to false negatives. While this is
not a perfect match in terminology, we belief that it helps
clarify the underlying intention of costFP and costFN .

Proceedings of the 26th International Workshop on Principles of Diagnosis

115



The Wasted Cost Utility Function
For a given set of components γ, we denote by costFP (γ)
and costFN (γ) the fast positive costs and false negative
costs, respectively, incurred by performing a batch repair ac-
tion of repairing all the components in γ. Given costFP (γ)
and costFN (γ), we propose the following general formula
for computing the expected wastes costs, denoted by CWC .

costFP (γ) + (1− SystemRepair(γ)) · costFN (γ)

The left hand side of the formula is the false positive costs.
The right hand side of the formula is the false negative
costs, multiplied by the probability that the system will
not be fixed by repairing the components in γ. Thus, the
formula gives the total expected wastes costs. We define
UWC = −CWC as the wasted cost utility function.

The wasted cost utility function is a theoretical utility
function, since one does not know upfront the values of
costFP and costFN . Next, we propose several ways to
estimate uWC by proposing ways to estimate costFP and
costFN .

Estimating the False Positives Cost
We propose to estimate the false positive costs by consider-
ing the system’s health state (Definition 5), as follows.

ĉostFP (γ) =
∑

c∈γ
(1− F (c)) · cost(Ci)

This estimate of the false positive costs can be understood
as an expectation over the false positive costs. The cost of a
repaired component c ∈ γ is part of the false positive costs
only if c is in fact healthy. The probability of this occurring
is (1 − F (c)). Thus, (1 − F (c)) · cost(c) is the expected
false positive cost due to repairing component c.

False Negatives Cost
Correctly estimating costFN is more problematic than
costFP , as it requires considering the future actions of the
repair algorithm. In the best case, only one additional repair
action would be needed. This would incur a single addi-
tional overhead cost. We call this the optimistic costFN ,
or simply costoFN , which is equal to costrepair. The other
extreme assumes that every component not repaired so far
would be repaired by a single repair action, and correspond-
ingly an incurred overhead cost. We experimented with a
slightly less extreme estimate, in which we assume that only
faulty component will be repaired in the future, but each will
be repaired in a single repair action, incurring one costrepair
per faulty component. Since we do not know the number of
faulty components, we use the expected number of faulty
components according to the health state:

∑
c/∈γ F (c). The

resulting estimate is referred to as the pessimistic estimate
of costFN , denoted by costpFN , is thus computed as:

costpFN (γ) = costrepair ·
∑

c/∈γ
F (c)

Summarizing all the above, we propose two utility func-
tions from the wasted cost utility function family. A pes-
simistic wasted cost function, that uses ĉostFP and costpFN
to estimate costFP and costFN , and an optimistic wasted
cost function that uses ĉostFP and costoFN . The cor-
responding repair algorithms search in the combinatorial
space of all possible sets of components to find the set of
components that maximizes uWC .

4.3 Handling the Computational Complexity
The search space is very large — the size of the power set of
all components that were not repaired so far. We explored
two simple ways to handle this. The first approach is to
only consider subset of components with up to k compo-
nents, where k is a parameter. This approach is referred to
as Powerset-based search.

The second approach we considered is to consider only
supersets of the diagnoses in Ω. This has the intuitive rea-
soning that at least one of these diagnoses is supposed to be
true (according to the known observation), and thus a repair
algorithm should try to aim for fixing the problem in the
next repair action. Thus, in this approach, we considered
in the search for the best repair action every set of compo-
nents that are unions of at most k diagnoses, where k is a
parameter. This approach is referred to as the Union-based
search.

For both powerset-based search and union-based search,
increasing k results in a larger search space. This means
higher computational complexity, but also increases the
range of repair actions considered, and thus using higher
k can potentially find better repair actions than using lower
k values. This provides an often desired tradeoff of com-
putation vs. solution quality. Experimentally, we observed
that the union-based search approach yields much better re-
sults and thus we only show results for it in the experimental
results below.

5 Experimental Results
We evaluated the proposed batch selection algorithms on
two standard Boolean circuits: 74283 and 74182. We exper-
imented on 21 observations for system 74283 and 23 obser-
vations for system 74182. These observations were selected
randomly from Feldman et al.’s [13] set of observations. For
each observation, all subset minimal diagnoses were found
using exhaustive search.

5.1 Baseline Repair Algorithms
The main hypothesis of this line of work is that performing
a batch repair action can save repair costs. To evaluate if
the proposed batch repair algorithms are able to do so, we
compare them with two repair algorithms that do not con-
sider batch repair actions. These baseline repair algorithms,
named “Best Diagnosis” (BD) and “Highest Probability”
(HP), are inspired by previous work on test planning [14]
and work as follows. BD chooses to repair a single com-
ponent from the most preferred diagnosis in Ω (that with
the highest p(·) value). From the set of components in the
most probable diagnosis, BD chooses to repair the one with
the lowest repair costs. The HP repair algorithm chooses
to repair the component that is most likely to be faulty, as
computed by the system’s health state (F [·]).

Another baseline repair algorithm we evaluated experi-
mentally that serves as a baseline is to repair all components
of the most likely diagnosis in a single batch repair action.
Note that this algorithm, denoted Batch Best Diagnosis, ig-
nores repair costs, and serves as an extreme alternative to
the BD algorithm that repairs a single component from the
most likely diagnosis.

Table 1 shows the average repair costs incurred until the
system was fixed for the proposed repair algorithms. The
average was over all the observations we used for system
74182. The rows labeled BD, HP, 2-HP, and 3-HP show the
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Overhead cost
Algorithm 10 15 20 25
BD & HP 83.5 111.3 139.1 167.0
2-HP 61.5 77.8 94.1 110.4
3-HP 53.0 65.0 77.0 88.9
Opt.(1) 55.2 68.9 82.6 96.3
Opt.(2) 53.0 65.0 75.2 86.7
Opt.(3) 55.2 66.5 72.6 83.7
Pes.(1) 55.0 68.9 81.3 96.1
Pes.(2) 52.8 59.8 63.7 70.0
Pes.(3) 49.6 50.4 55.9 64.6

Table 1: Average repair costs for the 74182 system.

Overhead cost
Algorithm 10 15 20 25
BD 116.4 155.2 194.0 232.9
HP 109.3 145.7 182.1 218.6
2-HP 81.2 102.1 123.1 144.0
3-HP 70.5 85.7 101.0 116.2
Opt.(1) 76.0 95.7 115.2 134.8
Opt.(2) 72.9 89.8 102.4 111.7
Pes.(1) 75.2 95.7 114.0 134.8
Pes.(2) 72.4 84.8 93.6 96.0

Table 2: Average repair costs for the 74283 system.

results for the BD, HP, and k-HP repair algorithms (for k=2
and 3). The rows Opt.(1), Opt.(3), and Opt.(3) show the re-
sults for the union-based search repair algorithm using the
wasted cost utility function with ĉostFP to estimate costFP
and costoFN to estimate costFN . The rows Pes.(1), Pes.(2),
and Pes.(3) show results for the same configuration, except
for using costpFN to estimate costFN instead of costoFN .
The repair costs of a single component was arbitrary set
to 5 and the cost of the overhead (costrepair) was varied
(10,15,20,25). Each column represents results for different
values of costrepair. In this domain, the results of HP and
BD were virtually the same, and thus we grouped them to a
single row.

The results clearly show the benefit of considering batch
repair actions. The best performing repair algorithm is
Pes.(3), which required more than half the repair costs
needed for BD and HP, which do not consider batch repair.
This supports the main hypothesis of this paper: batch re-
pair actions can save significant amount of repair costs. As
expected, the gain of batch repair actions increases as the
repair overhead (costrepair) increases. Also note that for
Pes.(k) we observe the desired trend of increasing k result-
ing in lower repair costs. This is also observed for the k-HP
repair algorithm (note that the HP algorithm is in fact 1-HP),
but is not always the case for Opt.(k), where for lower over-
head cost k = 2 yielded lower repair costs than k = 3. This
suggests that the optimistic estimate of costFN is not robust.
Computationally, increasing k required much more runtime,
and we could not run experiments with k = 4 on our cur-
rent machines in reasonable time. Table 2 shows the results
for the 74283 system. The trends observed are the same as
those discussed above for the results of 74182 system.

6 Related Work
BRP is a troubleshooting problem, where the goal is to per-
form repair actions so as to fix a system. Algorithms for au-

tomated troubleshooting were proposed in previous works.
Heckerman et al. [1] proposed the decision-theoretic trou-
bleshooting (DTT) algorithm, that uses a decision theoretic
approach for deciding which components to observe in or-
der to identify the faulty component. Later work also ap-
plied a decision theoretic approach that integrated planning
and diagnosis to a real world troubleshooting application [3;
15]. Torta et al. [4] proposed using model abstractions for
troubleshooting while taking into account the cost of repair
actions. All these works did not consider the possibility of
repairing a set of components together, allowing only repair
actions that repair a single component at a time.

Our current paper on BRP do not consider applying
further diagnostic actions such as probing and testing,
which are considered by previous troubleshooting algo-
rithms. Thus, our work on BRP could be integrated in previ-
ous troubleshooting frameworks so as to consider both batch
repair actions and diagnostic actions. This is left to future
work.

Friedrich and Nedjl [2] discussed the relation between di-
agnoses and repair, in an effort to minimize the breakdown
costs. Breakdown costs roughly correspond to a penalty in-
curred for every faulty output in the system, for every time
step until the system is fixed. In BRP, the goal is to mini-
mize costs until the system if fixed, and there is no partial
credit for repairing only some of the system outputs.

7 Conclusion and Future Work
We addressed the problem of troubleshooting with the pos-
sibility of performing a batch repair action — a repair action
in which more than a single component is repaired. Batch
repair makes sense only if repairing a set of components
in a single repair action is cheaper than repairing each of
them separately. We proposed several algorithms for select-
ing which batch of components to repair. Experimental re-
sults clearly show the benefit of batch repair over single re-
pair actions, and the benefit of the algorithms we suggested
for choosing these set of components to repair. Future work
will investigate when should batch repair be considered, and
how to detect such cases upfront. Additionally, expanding
beyond Boolean circuits is also needed, as well as address-
ing uncertainty on the outcome of repair actions.
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Abstract

We claim that in scenarios involving a human
operator with responsibility over systems being
monitored by diagnoser, presenting said operator
with a concise set of observations capturing the
essence of a failure improves the operator’s un-
derstanding of the diagnosis.
We take this in the context of Discrete Event Sys-
tems and demonstrate how the idea can be ap-
plied to systems utilising event-based observa-
tions, which can contain implicit information. We
introduce the notion of an abstracted event stream,
called a sub-observation, that makes the implicit
information explicit for the operator and allows a
diagnoser to arrive at the same diagnosis. We call
the most abstract of these the critical observation.
We provide relevant definitions, properties, and a
procedure for computing the critical observation
in a diagnosis problem.

1 Introduction
Diagnosis problems are concerned with the detection and
identification of occurrences of specific events in a system,
generally called faults or failures. These occurrences are
difficult to detect as the fault events are typically not di-
rectly observable, however, they can be inferred from the
system model (a description of the system behaviour) and
the observations produced by the system.

Diagnosis is the first step in the fault recovery process.
Once a fault has been detected and identified, the appropri-
ate actions can be taken to mitigate its effects. The issue,
however, is that this procedure acts as a black box; given a
model and a sequence of observations, a diagnoser asserts a
fault by claiming that there is no possible nominal execution
of the system that would produce the observation sequence.

The present work is written under the assumption that a
diagnosis procedure is fundamentally built for a human op-
erator in charge of taking actions after a fault is identified.
In this scenario, a black box approach does not allow for
the presentation of the information relevant to the diagno-
sis. We assume that providing the operators with explana-
tory evidence is useful in convincing them of the validity of

∗NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

the diagnosis, in addition to providing information as to the
causes of the fault.

Further, we assume that a more concise explanation is
strictly preferred to more verbose explanation, and conse-
quently that there is merit to isolating the “smallest” amount
of supporting evidence, or what we call the critical obser-
vations. In cognitive psychology, the seminal paper on the
topic of working memory in humans supports this view, giv-
ing the average working memory capacity as 7 ± 2 distinct
pieces of information [1]. Providing only the observations
critical to the diagnosis also has the additional benefit of
ameliorating privacy concerns in systems where privacy is
considered important.

We extend the results of Christopher et al. [2] to event-
based observations. We first present preliminary theory and
notation, before going on to show that event-based observa-
tions contain implicit information. We then introduce what
we call sub-observations that can capture this implicit in-
formation and make it available for use in diagnosis pro-
cedures. We then provide formal definitions of sufficiency
and criticality in addition to several important properties
that allow for a terminating algorithm. We present an algo-
rithm for computing the critical observation and discuss its
complexity. A discussion of alternate ways of defining sub-
observations precedes a brief discussion of related work and
a conclusion.

2 Preliminaries and Notations
The present work takes place in the context and standard
framework of discrete event systems (DES) [3]. We denote
as Σ the set of events that can take place on the system. A
system run is a finite sequence of events, w = e1e2 . . . ek,
and the system is modeled as the prefix-closed language
LM ⊆ Σ⋆ that represents all possible runs.

The set of events is partitioned into observable events
Σo—events that are recorded—and unobservable events
Σu—those that are not. The observation o generated by run
w = e1e2 . . . ek, hereafter called the trace of w, is the pro-
jection of w on the set of observable events (i.e., all unob-
servable events of the run are deleted):

o = PΣo(w) =

{
ε if k = 0
e1PΣo(e2 . . . ek) if k > 0 and e1 ∈ Σo
PΣo(e2 . . . ek) otherwise.

The observed language of a trace o, denoted Lo, is the set
of finite sequences of events that could produce the observed
sequence: Lo = P−1

Σo
(o) = {w ∈ Σ⋆ | PΣo(w) = o}.
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The set of unobservable events includes a subset of fault
events, Σf ⊆ Σu. With slight abuse of notation we write
f ∈ w as short for w ∈ Σ⋆fΣ⋆ (or “f appears in w”) and
F ∩ w as short for {f ∈ F | f ∈ w} (or “the subset of
events from F that appear in w”).

A set δ ⊆ Σf of faults is consistent with the model LM
and the trace o if there exists a run w ∈ LM that would
produce this trace (PΣo(w) = o) and that exhibits exactly
these faults (w ∩Σf = δ). The diagnosis of trace o, denoted
∆(o), is the collection of all consistent sets of faults:

∆(o) =

{
δ ⊆ Σf

∣∣∣∣
∃w ∈ LM.
PΣo(w) = o ∧ δ = w ∩Σf

}
(1)

Hereafter we use the hat notation (ˆ) to indicate that the
given symbol represents what actually occurred. Given a
run ŵ, δ̂ = ŵ ∩ Σf is the set of faults that occurred during
the run; then the following result is trivial: ŵ ∈ LM ⇒ δ̂ ∈
∆(PΣo(ŵ)). (The premise, completeness of the model, is
assumed.)

We find it more convenient to define the diagnosis in
terms of emptiness of languages. Let Lδ be the language
that represents all sequences that contain exactly δ:

Lδ = {w ∈ Σ⋆ | w∩Σf = δ} =
⋂

f∈δ
Σ⋆fΣ⋆∩

⋂

f∈Σf\δ
(Σ\{f})⋆

That is, Lδ represents the set of all runs containing all
of the faults of δ, intersected with all possible runs where
the faults not in δ never occur—the result is a set of all
runs where the only faults that occur are those in δ. With
Lδ defined, we can equivalently express the diagnosis as an
emptiness of languages problem:

δ ∈ ∆(o) ⇐⇒ LM ∩ Lo ∩ Lδ 6= ∅. (2)

3 Sub-Observations
We first discuss event-based observations, and in particular
that event-based observations contain implicit information
that must be taken into consideration when performing di-
agnosis. We then introduce the notion of sub-observations,
providing formal definitions and an explanatory example.
Once this has been established, a procedure is given for di-
agnosing with sub-observations.

3.1 Event-Based Diagnosis and Implicit
Information

Event-based diagnosis, contrasted with state-based diagno-
sis, comes with a subtlety; specifically, there is a type of
implicit information encoded in the trace. Take for example
the repeated observation of a window being closed without
there ever being an observation of the window opening; in
this case, the fact that we never observed an open event is
distinctly relevant to a diagnosis procedure.

To further illustrate this, we provide a simple abstract ex-
ample in the form of a DES: Take Σ = {a, b, c, d, e, f1, f2},
with Σo = {a, b, c, d, e}, Σu = Σf = {f1, f2}. We provide
the system model in the form of a NFA in Figure 1 and con-
sider some example traces over it:
o1 = abababc. The model specifies that f2 must have oc-
curred in strings containing a followed by c. In this case,
the intervening sequence is long (babab), and could be much
longer. The important information, however, is that a was at
some point followed by c. Reporting in some abstract sense

1
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a

{b, e}

b

a

f1

{a, d}

f2

c

{c, d}
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f2

a

{b, c, d, e}

Figure 1: Example DES

that a was followed by c is enough to convince an operator
of the correctness of the diagnosis.
o2 = ababaa. The model specifies that f1 must have oc-
curred for there to be two a events that are not separated by
another observable event. More specifically, the lack of an
intervening event is the crucial piece of information that de-
termines the fault. In this case, reporting in some abstract
sense that multiple a occurred consecutively is enough to
indicate the fault convincingly.

3.2 Framework
We first present a general framework for sub-observation,
which is then further specified for our particular choice of
implementation.

General Definition
Definition 1 We define a framework for sub-observations
as a tuple: 〈O,�, sub〉:

1. A sub-observation, θ, is an abstraction over a trace that
represented an intentional relaxation (or weakening) of
the concrete knowledge contained in the trace.

2. O is the space of possible sub-observations.
3. The symbol � is a binary relation and partial order

over O and relates two sub-observations θ, θ′ such that
θ′ � θ iff θ′ is a more abstracted form of θ.

4. sub is an injective function, mapping traces to maximal
(w.r.t. �) sub-observations θ ∈ O:

sub : Σ∗
o → O

A sub-observation θ implicitly represents the set of traces
for which it is a more abstract form of:

ψ(θ) = {o ∈ Σ∗
o | θ � sub(o)}

Therefore, θ′ � θ ⇒ ψ(θ′) ⊇ ψ(θ).

The language of a sub-observation, denoted Lθ , repre-
sents the set of all possible runs θ could represent. How-
ever, these runs are already captured by Lo, and so Lθ can
be expressed as the union of the languages of the traces it is
a more abstract form of:

Lθ =
⋃

o∈ψ(θ)
Lo (3)

Specific Definition
For the purposes of our specific definition of sub-
observations, it is necessary to distinguish between what we
call hard and soft events. A hard event is a singleton observ-
able event, x ∈ Σo, and represents the firm occurrence of an
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event in the system. A soft event is a subset of observable
events, y ⊆ Σo, that any number (including zero) of which
may have occurred along with any number of unobservable
events.

We now explicitly characterize our construction of sub-
observations based on the general framework presented in
Definition 1:
Definition 2 A sub-observation, θ, is a strict time-ordered
alternating sequence of soft and hard events, commencing
and ending with a soft event: θ = y0x1y1 . . . xnyn. We de-
note O(o) the space of sub-observations for a given trace o.
θ ∈ O has length |θ| = n. For readability, sub-observations
may occasionally be written as a comma separated list. The
language of θ can then also be expressed:

Lθ = (y0 ∪Σu)
∗x1(y1 ∪ Σu)

∗ . . . xn(yn ∪Σu)
∗

By way of example, take the sub-observation θ =
({b, d} , a, ∅, c, {a}) – in this case, we say the singleton
events x1 = a and x2 = c are hard and occurred in the spec-
ified order. The first soft event, y0 = {b, d}, represents the
possibility of any number of b or d events in any order hav-
ing occurred before the first hard event – similarly, y1 = ∅
indicates that no events occurred between the hard events
x1 and x2, and y2 = {a} that any number of a events could
have occurred after the final hard event. There are multiple
traces ô that this could represent, ac being the simplest, but
traces such as ddacaa or bac, or indeed up to infinite (or
bounded length depending) other possibilities.
Definition 3 The function sub generates a sub-observation
in O from a given trace by inserting empty soft events at the
head of the trace, and after every hard event:

For o = e1 . . . en

sub(o) = ∅x1∅ . . . xn∅ ∈ O
Where ∀i : xi = ei

Definition 4 The relation � over O is defined such that
θ′ � θ if and only if there exists a mapping function f :

Given |θ′| = n, |θ| = m

f : {0, . . . , n+ 1} → {0, . . . ,m+ 1} such that
f(i) < f(i+ 1), f(0) = 0, f(n+ 1) = m+ 1

x′i = xf(i)

y′i ⊇
⋃

f(i)≤j≤f(i+1)−1

yj ∪
⋃

f(i)<j<f(i+1)

xj

The relation � is provably a partial order.

In words: θ′ � θ if there exists some f that maps the
hard events in θ′ to an equivalent sequence in θ, retaining the
time-ordering of both, and each y′i in θ′ captures the union
of all intervening events – yj (inclusive) and xj (exclusive),
for j ranging between f(i) and f(i+ 1)− 1.
For example take θ = ({ac} , b, {cd} , a, {c} , d, {c} , a, ∅)
and θ′ = ({abcd} , a, {bcd} , a, ∅). The hard events in θ′ are
matched to x2 and x4 in θ, and each y′i “swallows” the other
information. Specifically, f(1) = 2, f(2) = 4, satisfies the
constraints for θ′ � θ. This is illustrated in Figure 2.

To summarize, a sub-observation, in a practical sense, can
be thought of as a relaxation of the information presented
in the original trace. By including soft events in the sub-
observation, we are allowing for the “hiding” (abstraction)
of events such that an operator can be presented with only
the most relevant information.

{ac} b {cd} a {c} d {c} a ∅

{abcd} a {bcd} a ∅

Figure 2: An example map satisfying �

3.3 Diagnosis of Sub-Observations
We now formalize the usage of sub-observations in a diag-
nosis procedure by extending the procedure introduced for
event-based diagnosis presented in §2. This involves check-
ing the consistency of a set of possible faults.

We therefore provide the construction of the diagnosis
of θ, ∆(θ), the set of faults consistent with a given sub-
observation:
Definition 5 The diagnoses of a sub-observation θ is the
union of the diagnoses of the traces for which θ is the more
abstract form of, represented by ψ(θ) as given in Defini-
tion 1:

∆(θ) =
⋃

o∈ψ(θ)
∆(o)

From Definition 5 we note that, given δ̂ ∈ ∆(ô), that if
θ � sub(ô) then δ̂ ∈ ∆(θ). That is, the actual diagnosis δ̂
of the actual trace ô, will by definition be in ∆(θ) if θ is an
abstraction of ô.

First, we observe the following lemma:
Lemma 3.1 The possible traces permitted by the language
of a more abstracted sub-observation strictly contains all
the permitted traces of all its ascendants:

θ′ � θ =⇒ Lθ ⊆ L′
θ

Proof This is a direct consequence of Equation 3

Equation 2 provided a formulation of the diagnosis as a
question of emptiness in the intersection of languages – that
is, is there some run that is simultaneously possible accord-
ing to the system model, the observations, and the faults that
occurred during the run. This can similarly be extended to
a similar question for sub-observations. As Lθ is defined in
Definition 2, then ∆(θ) can be equivalently extended:

∆(θ) ≡ {δ | LM ∩ Lδ ∩ Lθ 6= ∅} (4)

Definition 5 and Equation 4 provide a formal definition
and a characterization of the diagnosis of a sub-observation,
but do not specify how to implement the procedure, in par-
ticular given that ψ(θ) may be infinitely large.

The scientific literature is rich in works dealing with ab-
stract traces. These approaches were developed to handle
situations where observations can be lost [4]; sensors can
fail [5; 4]; the order between observations may be only par-
tially known [6; 4; 7; 8]; the observability can vary [9]; etc.

It is possible to interpret Equation 4 quite literally—build
three finite-state machines representing all three languages
LM, Lδ , and Lθ, synchronize them, and verify emptiness.
Similarly, this emptiness verification can be reduced to a
planning problem [10; 11] or a model-checking one [12].

When the model is represented by a finite-state machine,
the specific definition of sub-observations makes it possible
to solve the problem by tracking the belief state (the set of
states that the system could be in) after each soft and hard
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event in the sub-observation. Assuming the system state
incorporates the diagnosis information, then the diagnosis
can be inferred from the belief state at the end of the sub-
observation. This procedure can be used on-line [13] or pre-
processed in a fashion akin to the diagnoser [14].

4 Critical Observations
The primary objective of this work is to compute a mini-
mal sub-observation that preserves the assertiveness of the
diagnosis: a critical observation. We first give a formal def-
inition of this notion, followed by a discussion of some rel-
evant properties and a procedure for computing the critical
observation.

4.1 Definition of a Critical Observation
We say a sub-observation is sufficiently precise if it allows
us to infer a given diagnosis:

Definition 6 Given a diagnosis D, a sub-observation θ is
sufficient to prove D if ∆(θ) = D. Given a trace ô, a sub-
observation θ � sub(ô) is sufficient for ô if ∆(θ) = ∆(ô).

A corollary of Definition 5 gives us ∆(θ) ⊇ ∆(ô). As
previously noted, abstracting away details to produce a sub-
observation sacrifices some information about the system
behavior—sufficiency, then, is the property that this infor-
mation loss did not affect the diagnosis by making feasible
other potential diagnoses:

∆(θ) \∆(ô) = ∅ (5)

Our goal, then, is to return a sub-observation that is suffi-
cient for the actual trace, ô. By Definitions 1, and 5, we see
that the naı̈ve sub-observation, sub(ô), satisfies the criteria
to be sufficient for ô, and means that at least one solution
can be found:

∆(sub(ô)) =
⋃

o∈ψ(sub(ô))
∆(o) = ∆(ô)

Given two sub-observations θ and θ′, a human operator
will, from our initial assumptions, better understand and as-
similate a diagnosis with θ′ if θ′ is more abstract than θ.
We therefore search for a “most abstract”, or critical, sub-
observation, defined as follows:

Definition 7 Given a trace ô, a sub-observation θ � sub(ô)
is critical for ô if it is sufficient for ô and there is no strict
sub-observation of θ that is also sufficient:

∀θ′ ∈ O. (θ′ � θ) ∧ (∆(θ′) = ∆(ô)) ⇒ (θ′ = θ) . (6)

A critical sub-observation (more simply called a critical
observation) is therefore a sufficient sub-observation that
cannot be abstracted more without damaging (complicating)
the precision of the diagnosis.

As � is only a partial order, it is possible that there could
be several critical sub-observations. For instance, using the
example in Figure 1, both θ1 = ΣocΣoaΣo (the system
emitted a c and later an a) and θ2 = (Σo \ {a})dΣoaΣo
(the system emitted anything bar an a, then a d and later an
a) are critical observations for the trace ô = cda.

4.2 Computing the Critical Observation
We now outline a procedure for computing a critical obser-
vation for a given problem. We rely on two fundamental
properties: the finiteness of the set of sub-observations of
interest, and the monotonicity of sufficiency.

Lemma 4.1 (Finiteness) Given a trace ô, the set O(ô) of
sub-observations of ô ({θ ∈ O | θ � sub(ô)}) is finite.

Proof This can be demonstrated by the fact that, by defini-
tion of �, the length of a sub-observation of ô must be equal
to or smaller than that of ô. This can only decrease until
|θ| = 1, at which point the set is exhausted.

Lemma 4.2 (Monotonicity) Given a trace ô and two sub-
observations θ1, θ2 such that θ1 � θ2 � sub(ô), if θ1 is
sufficient for ô, then so is θ2.

Proof This is a straightforward consequence of the fact that
ψ(θ1) ⊇ ψ(θ2).

Monotonicity guarantees that there is no unreachable “is-
land” of sufficient sub-observations.

Finiteness provides us three decisive properties: One—
that there always exists at least one critical observation (infi-
nite domains can prevent the existence of minimal elements;
e.g., there is no minimal real number strictly greater than 0),
Two—that for any sufficient sub-observation θ, there exists
a critical observation that is a sub-observation of θ (possi-
bly θ itself), Three—the depth of a critical observation (the
maximal number k of different sub-observations θi such that
θ � θ1 � · · · � θk � sub(ô)) is finite.

As a consequence of these properties, as soon as a suf-
ficient sub-observation θ is found the search for a critical
observation can be limited to the set of sub-observations of
θ (we call this a greedy approach). Another consequence
of the above is that we can define a search algorithm that
can find a sufficient, strict sub-observation of a given sub-
observation (or return that no such sub-observation exists),
that is guaranteed to terminate.

Finally, monotonicity together with finiteness, provides
a practical characterization of criticality: a sufficient sub-
observation θ is critical if and only if none of its children
(defined next) are sufficient.
Definition 8 A child of sub-observation θ is a strict sub-
observation θ′ of θ such that no sub-observation sits “be-
tween” θ′ and θ.

θ′ ∈ children(θ) ⇐⇒ (θ′ ≺ θ)∧ (∄θ′′ ∈ O. θ′ ≺ θ′′ ≺ θ) .

If, on the other hand, we find that one child of θ is suffi-
cient, then, according to the greedy approach described pre-
viously, we can iteratively check criticality of this child.

The set of children for our definition of sub-observation is
readily computable. We can prove that the children of a sub-
observation are exactly the sub-observations obtained by ap-
plying one of two operations which we will now define: the
event-softening operation and the collapse operation.

Definition 9 Given a sub-observation θ = y0x1 . . . xkyk,
the event-softening operation θ′ = es(θ, i, e) adds event e
to the ith soft event of the sub-observation: es(θ, i, e) =
y′0x

′
1 . . . x

′
ky

′
k (defined if e 6∈ yi) such that

• ∀j ∈ {1, . . . , k}. x′j = xj ,

• ∀j ∈ {0, . . . , k} \ {i}. y′j = yj , and

• y′i = yi ∪ {e}.
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Procedure FINDCRITICALOBSERVATION
input: trace ô; output: critical observation
diag := ∆(ô)
θ := sub(ô)
candidates := children(θ)
while candidates 6= ∅ do

θ′ := pop(candidates)
if ∆(θ′) = diag then

θ := θ′

candidates := children(θ)
end if

end while
return θ

Figure 3: Finding a critical observation

Definition 10 Given a sub-observation θ = y0x1 . . . xkyk,
the collapse operation θ′ = coll(θ, i) “forgets” the concrete
occurrence of a hard event xi. This operation requires the
soft events before and after xi to be equal and to allow for
xi: coll(θ, i) = y′0x

′
1y

′
1 . . . x

′
k−1y

′
k−1 (defined if xi ∈ yi

and yi−1 = yi) such that

• ∀j ∈ {1, . . . , i− 1}. x′j = xj and y′j−1 = yj−1 and

• ∀j ∈ {i+ 1, . . . , k}. x′j−1 = xj and y′j−1 = yj .

• y′i−1 = yi−1 = yi

Lemma 4.3 The children of a sub-observation θ are exactly
all the sub-observations that can be obtained by applying
either event-softening or collapse to θ.
(See appendix for proof).

An algorithm for finding a critical observation is given in
Figure 3. Starting from θ = sub(ô), the algorithm verifies
whether any child of θ is sufficient. If this is the case, then
θ is replaced with this child and the verification continues
iteratively.

Theorem 4.4 Algorithm FINDCRITICALOBSERVATION al-
ways terminates and returns a critical observation.

This theorem is a direct consequence of the properties de-
rived from the finiteness of O(sub(ô)) and the monotonicity
of the property, as described before.

4.3 Complexity
We now discuss the difficulty of finding a critical observa-
tion, defined in term of the number of ∆(·) calls. Letn = |ô|
be the length of ô (the number of observed events) and let
m = |Σo| be the number of observable events.

The maximal depth,D, of a sub-observation, namely that
of θ0 = {Σo}, is provablyD = (n+ 1)m+n: It is reached
by softening m times each of the n + 1 soft events fol-
lowed by collapsing the n hard events. Furthermore each
sub-observation (of length k ≤ n), can be shown to have a
bounded number of children, C, as given by Definition 8:
At worst each soft event can be softened in any one of m
ways ((k + 1)m), and a potentially up to k hard events can
be collapsed, giving C = (k + 1)m + k, which we see is
the same as D.

Consequently, the maximum number of ∆(·) calls of Al-
gorithm FINDCRITICALOBSERVATION is bounded by D ×
C, and therefore in O(n2m2). It can even be shown that,
for some traces, a naı̈ve implementation may indeed call the

diagnoser a number of times in Θ(n2m2) with different sub-
observations every time (see appendix for proof).

Fortunately it is possible to reduce this number drastically
with heuristics. Indeed it is generally possible to prove that
some children of θ′ are not sufficient simply because some
children of the parent of θ′ were proven not sufficient, thus
pruning the search tree significantly.

Consider for instance the sub-observation θ =
∅a∅b∅a∅a∅ in the example of Figure 1 (with diagnosis: fault
f1). The softening by b of the soft event y3 = ∅ between
x3 = x4 = a leads to a sub-observation (∅a∅b∅a{b}a∅) that
is not sufficient, as the nominal diagnosis N becomes pos-
sible. Consider now the sub-observation θ′ = Σoa∅aΣo of
θ. We can deduce automatically that the softening of y′1 = ∅
by b in θ′ leads to a non sufficient sub-observation, simply
because the mapping function f of Definition 4 associates
y′1 with y3.

It is therefore possible to “carry over” to the children of
any sub-observation the information regarding which soft-
ening and collapse operations complicate the diagnosis and
reduce precision. By doing so, the number of necessary calls
provably drops to Θ(nm).

5 Other Definitions of Sub-Observations
In this article we presented one definition of sub-observation
that, by no means, is the only viable one. We briefly discuss
a few possible variants and then present the necessary ele-
ments that the reader would need to consider to use another
definition.

In many circumstances the order between certain ob-
served facts is irrelevant. In the example of Figure 1, the
occurrence of both c and a, in any order, is symptomatic of
fault f2. Reminiscent of chronicles [15], a sub-observation
could be a directed graph of hard events where a directed
path between two hard events expresses a temporal prece-
dence. This bears a similarity to temporal uncertainty in
observations as described by Zanella and Lamperti [4].

The hard events are currently defined as a single specific
observable event; one could alter the definition to allow for
it could be replaced by a set of events. Indeed in the example
of Figure 1, a fault can be diagnosed when observing either
c or d before e. A reason for not distinguishing c from d in
this specific scenario is that these events could represent the
same message emitted by different components, or different
messages emitted by the same component: the exact emit-
ter of the message or the exact content may be irrelevant to
diagnose the fault. This is similar to logical uncertainty in
observations [4].

One more elaborate abstraction could be to use first-order
representations. For instance, a fault may be identified by
demonstrating that some user who was to be explicitly re-
fused access to some data was actually given access to that
data; the identity of the actual user may be irrelevant.

Defining New Sub-Observations
To apply the theory presented in this paper to a differ-
ent definition of sub-observations, one needs to define the
sub-observation space as given in Definition 1, i.e., the set
of sub-observations O, the partial order relation �, and
an inductive sub function that associates each observation
with an equivalent maximal sub-observation in O. This
also needs to be additionally equipped with a procedure to
compute ∆(θ). Algorithm FINDCRITICALOBSERVATION
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is guaranteed to return a critical observation if the sub-
observation space is finite and if the children function exists
and is specified.

We demonstrate a scenario where these conditions may
not be satisfied: Assume that the set of observable events is
infinite with each observable event associated with a rational
number (modeling some continuous property, e.g., temper-
ature). A natural abstraction would replace each event by a
closed interval where the value associated with the event lies
(the wider the interval, the most abstract the observation).
There could, however, be no maximal interval in a situation
where the relevant information about the observation is that
the temperature measure is strictly positive. Furthermore,
there is no notion of child in this particular sub-observation
space since Q is a dense set. Special attention must there-
fore be taken when defining new types of sub-observations.

6 Related Work
Finding critical observations is a different issue from opti-
mizing sensor placement [16] and dynamic observers [9].
These two problems aim at reducing the cost of monitoring
a system (by reducing the number of sensors or switching
them off). This reduction, however, needs to be conserva-
tive because the decision is made before any observations
are available. Critical observations, on the other hand, can
be computed after all observations are available.

Consider again the trace o = abaa in the example of Fig-
ure 1 whose critical observation is θ = Σoa∅aΣo. Con-
sider the question of whether the first observable event of
the trace is a c. The sub-observation θ does not provide this
information since it is not necessary to infer the diagnosis.
A dynamic observer however, has to check this information
because it is necessary to dismiss fault f2.

There has also been work on abstraction of event-based
observations, as mentioned at the end of section 3. The sub-
sumption (�) between uncertain or partial observations has
been studied by Lamperti et al. [17], although their moti-
vation is different from ours: by identifying that the current
uncertain observation θ is a refinement of a previous obser-
vation θ′ � θ, it is possible to reuse the diagnosis of θ′ (that
is, ∆(θ) ⊆ ∆(θ′)).

7 Conclusion & Future Work
In this work we defined a notion of critical observations for
the diagnosis of discrete event systems. A critical observa-
tion is a maximally abstracted observation that allows only
the same diagnosis to be inferred as was from the complete
observation. Critical observations are beneficial in that they
contain the core proof that supports the diagnosis. An im-
portant assumption of this work is that more abstract ob-
servations are easier for a human operator to understand
and act on; an important extension will be to minimize the
amount of information from the model—and not only from
the observations—necessary to infer the diagnosis.

We also want to be able to handle incremental and on-
line diagnosis. Currently we assume that the critical obser-
vation is extracted once the diagnosis has been performed;
however observations that are not critical for a given trace
might become critical when more observations are produced
by the system. We would like to identify as early as possi-
ble what abstraction of the currently received observations
can be safely made without impairing the future diagnosis.
Kurien and Nayak tried to address a similar problem [18]

of removing intermediate (state-based) observations that do
not provide additional information.

Critical observations are also good at reducing the amount
of information disclosed about the system behaviour. In fu-
ture work we want to explore this line of research and, in
particular, examine the problem of finding sub-observations
that satisfy a privacy criterion, for instance, one defined by
opacity [19].
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8 Appendix
We provide proof sketches that will not be included in the
final version of the paper.

Proof of Lemma 4.3
The proof is three-part:

a) proving that the event-softening operation produces
only children;

b) proving that the collapse operation produces only chil-
dren;

c) proving that there is no other child.

Event-Softenings It is easy to see that θ2
def
=

es(θ1, i, e) ≺ θ1.
Assume now that θ2 � θ3 � θ1 and let f23 and f31 be the

two mapping functions—as presented in Definition 4—used
to verify the two ordering relations.

By definition of �, |θ2| ≤ |θ3| ≤ |θ1|. However since
|θ2| = |θ1| (by definition of event-softening), the size of
all three sub-observations are equal and f23 = f31 are the
identity function.

As a consequence, x3j = x2j = x1j for all j. Furthermore
y2j ⊇ y3j ⊇ y1j for all j. In particular, if j 6= i, since y2j = y1j ,
then y3j = y2j = y1j . For i, y2i = y1i ∪ {e}, meaning that
either y3i = y2i or y3i = y1i .

Therefore either θ3 = θ2 or θ3 = θ1.

Collapse Similarly, it is easy to see that θ2
def
=

coll(θ1, i) ≺ θ1.
Again assume that θ2 � θ3 � θ1 and let f23 and f31 be

the functions defined as before.
The size of θ3 now either equals that of θ2 or θ1; let ℓ ∈

{1, 2} denote the index such that |θ3| = |θℓ|. Notice that
either f23 or f31 is the identity function.

By definition of �, we know that x3j = xℓj . Furthermore
the set inclusions as well as the relations between y2j and y1k
allow us to infer that y3j = yℓj for all j.

Therefore θ3 = θℓ.

No Other Children Assume now that θ′ is a child of θ that
cannot be obtained by event-softening or collapse. Let f be
the mapping function used to verify the ordering relation.

By definition of the partial order �, the size of θ′ is
smaller or equal to θ.

If |θ′| < |θ| (“multiple collapse”), then let i be an index
such that f(i+1) > f(i)+1 (such an index exists if the two
sizes differ). If yi+1\yi 6= ∅, then let θ′′ = es(θ, i, e) (where
e ∈ yi+1 \ yi) be the sub-observation obtained by softening
yi with e; then, θ′ ≺ θ′′ ≺ θ. Similarly if yi ⊇ yi+1 with
θ′′ = es(θ, i + 1, e) (where e ∈ yi \ yi+1). Lastly the same
applies if yi = yi+1 with θ′′ = coll(θ, i).

If θ and θ′ have same size, then all x′is equal the cor-
responding xis, and all the y′is are supersets of the corre-
sponding yis. Let i be an index such that y′i 6= yi (if no
such index exists, then θ′ = θ). Let θ′′ = es(θ, i, e) where
e ∈ y′i \ yi. Then θ′ ≺ θ′′ ≺ θ.

Complexity of FINDCRITICALOBSERVATION
We show that the number of ∆(·) calls in FINDCRIT-
ICALOBSERVATION could be in the order of n2m2

4 where
n is the length of the trace and m the number of observable
events.

1

start

2 34
b b

cc
A

A
A

f

c

Figure 4: Example of a system: a fault is diagnosed if there
are more cs than bs after the occurrence of the last ai (A
stands for {a1, . . . , am−2}).

We use the example of Figure 4 which involves faulty
event f and observable events {a1, . . . , am−2, b, c}. Con-
sider the trace of (odd) length n: ô = a1 . . . a1︸ ︷︷ ︸

n/2

bc . . . bc︸ ︷︷ ︸
n/2

c.

Clearly the trace reveals a faulty system since the number
of cs exceeds the number of bs in this instance. The critical
observation here is:

Σoa1{c}b{c}c{c} . . .{c}b{c}c{c}cΣo,

i.e., all the second half of the trace needs to be kept.
We assume that FINDCRITICALOBSERVATION always

tries to perform event-softening from the end of the sub-
observation first, and only tries to collapse when no soft-
ening is possible. Neglecting the first steps where the c
softenings are successful, the algorithm will need to make
U = n

2 × (m − 1) calls to ∆(·), unsuccessfully trying to
softening the second half of the sub-observation. The num-
ber of successful softenings however is S = n

2 ×m (all the
first half of the sub-observation), meaning that the number
of ∆(·) calls will be at least U × S = n2m(m−1)

4 calls.
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Abstract

“All models are wrong but some are useful" [1].
We address the problem of identifying which di-
agnosis models are more useful than others. Mod-
els are critical to diagnostics inference, yet little
work exists to be able to compare models. We de-
fine the role of models in diagnostics inference,
propose metrics for models, and apply these met-
rics to a tank benchmark system. Given the many
approaches possible for model metrics, we argue
that only information-theoretic methods address
how well a model mimics real-world data. We
focus on some well-known information-theoretic
modelling metrics, demonstrating the trade-offs
that can be made on different models for a tank
benchmark system.

1 Introduction
A core goal of Model-Based Diagnostics (MBD) is to ac-
curately diagnose a range of systems in real-world appli-
cations. There has been significant progress in developing
algorithms for systems of increasing complexity. A key
area where further work is needed is scaling-up to real-
world models, as multiple-fault diagnostics algorithms are
currently limited by the size and complexity of the models
to which they can be applied. In addition, there is still a great
need for defining metrics to measure diagnostics accuracy,
and to measure the computational complexity of inference
and of the models’ contribution to inference complexity.

This article addresses the modeling side of MBD: we fo-
cus on methods for measuring the size and complexity of
MBD models. We explore the role that diagnostics model
fidelity can play in being able to generate accurate diagnos-
tics. We characterise model fidelity and examine the trade-
offs of fidelity and inference complexity within the overall
MBD inference task.

Model fidelity is a crucial issue in diagnostics [2]: mod-
els that are too simple can be inaccurate, yet highly detailed
and complex models are expensive to create, have many pa-
rameters that require significant amounts of data to estimate,
and are computationally intensive to perform inference on.
There is an urgent need to incorporate inference complexity
within modelling, since even relatively simple models, such
as some of the combinational ISCAS-85 benchmark models,
pose computational challenges to even the most advanced
solvers for multiple-fault tasks. In addition, higher-fidelity

models can actually perform worse than lower-fidelity mod-
els on real-world data, as can be explained using over-fitting
arguments within a machine learning framework.

To our knowledge, there is no theory within Model-Based
Diagnostics that relates notions of model complexity, model
accuracy, and inference complexity. To address these issues,
we explore several of the factors that contribute to model
complexity, as well as a theoretically sound approach for
selecting models based on their complexity and diagnostics
performance, i.e., their accuracy in diagnosing faults.

Our contributions are as follows:
• We characterise the task of selecting a diagnosis model

of appropriate fidelity as an information-theoretic
model selection task.
• We propose several metrics for assessing the quality of

a diagnosis model, and derive approximation versions
of a subset of these metrics.
• We use a dynamical systems benchmark model to

demonstrate our compare how the metrics assess mod-
els relative to the accuracy of diagnostics output based
on using the models.

2 Related Work
This section reviews work related to our proposed approach.

Model-Based Diagnostics: There is some seminal work
on modelling principles within the Model-Based Diagnosis
(MBD) community, e.g., [2; 3]; this early work adopts an
approach based on logic or qualitative physics for model
specification. However, this work provides no means for
comparing models in terms of diagnostics accuracy. More
recent work ([4]) provides a logic-based specification of
model fidelity. There is also work specifying metrics for
diagnostics accuracy, e.g., [5].

However, none of this work defines precise metrics for
computing both diagnostics accuracy and model complex-
ity, and their trade-offs. This article adopts a theoretically
well-founded approach for integrating multiple MBD met-
rics.

Multiple Fidelity Modeling There is limited work de-
scribing the use of models of multiple levels of fidelity. Ex-
amples of such work includes [6; 7; 8]. In this article we
focus on methods for evaluating multi-fidelity models and
their impact on diagnostics accuracy, as opposed to devel-
oping methodoligies for modelling at multiple levels of fi-
delity.

Multiple-Mode Modeling One approach to MBD is to
use a separate model for every failure mode, rather than to
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define a model containing all failure modes. Examples of
this approach include [9; 10; 11; 12]. Note that this work
does not specify metrics for computing both diagnostics ac-
curacy and model complexity, or their trade-offs.

Model- Selection The metrics that we adopt and extend
have been used extensively to compare different models,
e.g., [13]. The metrics are used to compare simulation per-
formance of models only. In contrast, we extend this frame-
work to examine diagnostics performance. In the process,
we explore the use of multiple loss functions for penalising
models, in addition to the standard penalty functions based
on number of model parameters.

Model-Order Reduction Model-Order reduction [14]
aims to reduce the complexity of a model with an aim to
limit the performance losses of the reduced model. The re-
duction methods are theoretically well-founded, although
they are highly domain-specific. In contrast to this ap-
proach, we assume a model-composition approach from a
component library containing hand-constructed models of
multiple levels of fidelity.

3 Diagnostics Modeling and Inference
This section formalises the notion of diagnostics model
within the process of diagnostics inference. We first intro-
duce the task, and then define it more precisely.

3.1 Diagnosis Task
Assume that we have a system S that can operate in a nom-
inal state, ξN , or a faulty state, ξF , where Ξ is the set of
possible states of S. We further assume that we have a dis-
crete vector of measurements, Ỹ = {ỹ1, ..., ỹn} observed
at times t = {1, ..., n} that summarizes the response of
the system S to control variables U = {u1, ...,un}. Let
Yφ = {y1, ..., yn} denote the corresponding predictions
from a dynamic (nonlinear) model, φ, with parameter values
θ: this can be represented by Yφ = φ(x0, θ, ξ, Ũ), where x0

signifies the initial states of the system at t0.
We assume that we have a prior probability distribution

P (Ξ) over the states Ξ of the system. This distribution de-
notes the likelihood of the failure states of the system.

We define a residual vector R(Ỹ ,Yφ) to capture the dif-
ference between the actual and model-simulated system be-
haviour. An example of a residual vector is the mean-
squared-error (MSE). We assume a fixed diagnosis task T
throughout this article, e.g., computing the most likely diag-
nosis, or a deterministic multiple-fault diagnosis.

The classical definition of diagnosis is as a state estima-
tion task, whose objective is to identify the system state that
minimises the residual vector:

ξ∗ = argmin
ξ∈Ξ

R(Ỹ ,Yφ) (1)

Since this is a minimisation task, we typically need to
run multiple simulations over the space of parameters and
modes to compute ξ∗. We can abstract this process as
performing model-inversion, i.e., computing some ξ∗ =

φ−1(x0, θ, ξ, Ũ) that minimisesR(Ỹ ,Yφ).
During this diagnostics inference task, a model φ can play

two roles: (a) simulating a behaviour to estimateR(Ỹ ,Yφ);
(b) enabling the computation of ξ∗ = φ−1(x0, θ, ξ, Ũ). It
is clear that diagnostics inference requires a model that has
good fidelity and is computationally efficient for performing
these two roles.

We generalise that notion to incorporate inference effi-
ciency as well as accuracy. We can define an inference com-
plexity measure as C(Ỹ , φ). We can then define our diagno-
sis task as jointly minimising a function g that incorporates
the accuracy (based on the residual function) and the infer-
ence complexity:

ξ∗ = argmin
ξ∈Ξ

g
(
R(Ỹ ,Yφ), C(Ỹ , φ)

)
. (2)

Here g specifies a loss or penalty function that induces a
non-negative real-valued penalty based on the lack of accu-
racy and computational cost.

In forward simulation, a model φ, with parameters θ, can
generate multiple observations Ỹ = {ỹ1, ..., ỹn}. The di-
agnostics task involves performing the inverse operation on
these observations. Our objective thus involves optimising
the state estimation task over a future set of observations,
Ỹ = {Ỹ1, ..., Ỹn}. Our model φ and inference algorithm
A have different performance based on Ỹi, i = 1, ..., n: for
example, [15] shows that both inference-accuracy and -time
vary based on the fault cardinality . As a consequence, to
compute ξ∗ we want to optimise the mean performance over
future observations. This notion of mean performance op-
timisation has been characterised using the Bayesian model
selection approach, which we examine in the following sec-
tion.

3.2 Diagnosis Model
We specify a diagnosis model as follows:
Definition 1 (Diagnosis Model). We characterise a Diag-
nosis Model φ using the tuple 〈V ,θ,Ξ, E〉, where
• V is a set of variables, consisting of variables denoting

the system state (X), control (U ), and observations
(Y ).

• θ is a set of parameters.
• Ξ is a set of system modes.
• E is a set of equations, with a subset Eξ ⊆ E for each

mode ξ ∈ Ξ.
We will assume that we can use a physics-based approach

to hand-generate a set E of equations to specify a model.
Obtaining good diagnostics accuracy, given a fixed E , en-
tails estimating the parameters θ to optimise that accuracy.

3.3 Running Example: Three-Tank Benchmark
In this paper, we use the three-tank system shown in Fig. 1
to illustrate our approach. The three tanks are denoted as T1,
T2, and T3. Each tank has the same area A1 = A2 = A3.
For i = 1, 2, 3, tank Ti has height hi, a pressure sensor pi,
and a valve Vi, i = 1, 2, 3 that controls the flow of liquid
out of Ti. We assume that gravity g = 10 and the liquid has
density ρ = 1.

Tank T1 gets filled from a pipe, with measured flow q0.
Using Torricelli’s law, the model can be described by the
following non-linear equations:

dh1

dt
=

1

A1

[
−κ1

√
h1 − h2 + q0

]
, (3)

dh2

dt
=

1

A2

[
κ1

√
h1 − h2 − κ2

√
h2 − h3

]
, (4)

dh3

dt
=

1

A3

[
κ2

√
h2 − h3 − κ3

√
h3

]
. (5)
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Figure 1: Diagram of the three-tank system.

In eq. 3, the coefficient κ1 denotes a parameter that cap-
tures the product of the cross-sectional area of the tank
A1, the area of the drainage hole, a gravity-based constant
(
√

2g), and the friction/contraction factor of the hole. κ2

and κ3 can be defined analogously.
Finally, the pressure at the bottom of each tank is obtained

from the height: pi = g hi, where i is the tank index (i ∈
{1, 2, 3}).

We emphasize the use of the κi, i = 1, 2, 3 because we
will use these parameter-values as a means for “diagnos-
ing” our system in term of changes in κi, i = 1, 2, 3. Con-
sider a physical valveR1 between T1 and T2 that constraints
the flow between the two tanks. We can say that the valve
changes proportionally the cross-sectional drainage area of
q1 and hence κ1. The diagnostic task will be to compute the
true value of κ1, given p1, and from κ1 we can compute the
actual position of the valve R1.

We now characterise our nominal model in terms of Def-
inition 1:

• variables V consist of variables denoting
the system state (X = {h1, h2, h3}), con-
trol (U = {q0, V1, V2, V3}), and observations
(Y = {p1, p2, p3}).
• θ = {{A1, A2, A3}, {κ1, κ2, κ3}} is the set of pa-

rameters.

• Ξ consists of a single nominal mode.

• E is a set of equations, given by equations 3 through 5.

Note that this model has a total of 6 parameters.
Fault Model In this article we focus on valve faults,

where a valve can have a blockage or a leak. We model
this class of faults by including in equations 3 to 5 an addi-
tive parameter β, which is applied to the parameter κ, i.e., as
κi(1+βi), i = 1, 2, 3, where−1 ≤ βi ≤ 1

κi
−1, i = 1, 2, 3.

β > 0 corresponds to a leak, such that β ∈ (0, 1/κ − 1];
β < 0 corresponds to a blockage, such that β ∈ [−1, 0).
The fault equations can be written as:

dh1

dt
=

1

A1

[
−κ1(1 + β1)

√
h1 − h2 + q0

]
, (6)

dh2

dt
=

1

A2

[
κ1(1 + β1)

√
h1 − h2

− κ2(1 + β2)
√
h2 − h3

]
,

dh3

dt
=

1

A3

[
κ2(1 + β2)

√
h2 − h3 − κ3(1 + β3)

√
h3

]
.

The fault equations allow faults for any combination of
the valves {V1, V2, V3}, resulting in system modes Ξ =
{ξN , ξ1, ξ2, ξ3, ξ12, ξ13, ξ23, ξ123}, where ξN is the nominal

mode, and ξ· is the mode where · denotes the combination
of valves (taken from a combination of {1, 2, 3}) which are
faulty. This fault model has 9 parameters.

4 Modelling Metrics
This section describes the metrics that can be applied to esti-
mate properties of a diagnosis model. We describe two types
of metrics, dealing with accuracy (fidelity) and complexity.

4.1 Model Accuracy
Model accuracy concerns the ability of a model to mimic a
real system. From a diagnostics perspective, this translates
to the use of a model to simulate behaviours that distinguish
nominal and faulty behaviours sufficiently well that appro-
priate fault isolation algorithms can identify the correct type
of fault when it occurs. As such, a diagnostics model needs
to be able to simulate behaviours for multiple modes with
“appropriate" fidelity.

Note that we distinguish model accuracy from diagnosis
inference accuracy. As noted above, model accuracy con-
cerns the ability of a model to mimic a real system through
simulation, and to assist in diagnostics isolation. Diagnosis
inference accuracy concerns being able to isolate the true
fault given an observation and the simulation output of a
model.

A significant challenge for a diagnosis model is the need
to simulate behaviours for multiple modes. Two approaches
that have been taken are to use a single model with multiple
modes explicitly defined (a multi-mode approach), or to use
multiple models [9; 16; 17], each of which is optimised for
a single or small set of modes (a multi-model approach).

The AI-based MBD approach typically uses a single
model φ with multiple modes explicitly defined [18], or a
single model with just nominal behaviour [19]. From a di-
agnostics perspective, accuracy must be defined with respect
to the task T . We adopt here the task of computing the most-
likely diagnosis.

Given evidence suggesting that model fidelity for a multi-
mode approach varies depending on the mode, it is impor-
tant to explicitly consider the mean performance of φ over
the entire observation space Y (the space of possible obser-
vations of the system).

In this article we adopt the expected residual approach,
i.e., given a space Y = {Ỹ1, ..., Ỹn} of observations, the ex-
pected residual is the average over the n observations, e.g.,
as given by: R̄ = 1

n

∑n
i=1R(Ỹi,Yφ).

4.2 Model Complexity
At present, there is no commonly-accepted definition of
model complexity, whether the model is used purely for
simulation or if it is used for diagnostics or control. Defin-
ing the complexity of a model is inherently tricky, due to the
number of factors involved.

Less complex models are often preferred either due to
their low computational simulation costs [20], or to min-
imise model over-fitting given observed data [21; 22]. Given
the task of simulating a variable of interest conditioned by
certain future values of input (control) variables, overfitting
can lead to high uncertainty in creating accurate simulations.
Overfitting is especially severe when we have limited ob-
servation variables for generating a model representing the
underlying process dynamics. In contrast, models with low
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parameter dimensionality (i.e. fewer parameters) are con-
sidered less complex and hence are associated with low pre-
diction uncertainty [23].

Several approaches have been used, based on issues like
(a) number of variables [24], (b) model structure [25], (c)
number of free parameters [23], (d) number of parameters
that the data can constrain [26], (e) a notion of model weight
[27], or (f) type and order of equations for a non-linear dy-
namical model [14], where type corresponds to non-linear,
linear, etc.; e.g., order for a non-linear model is such that a
k-th order system has k-th derivates in E .

Factors that contribute to the true cost of a model include:
(a) model-generation; (b) parameter estimation; and (c) sim-
ulation complexity, i.e., the computational expense (in terms
of CPU-time and memory) needed to simulate the model
given a set of initial conditions Rather than try to formu-
late this notion in terms of the number of model variables or
parameters, or a notion of model structural complexity, we
specify model complexity in terms of a measure based on
parameter estimation, and inference complexity, assuming a
construction cost of zero.

A thorough analysis of model complexity will need to
take into consideration the model equation class, since
model complexity is class-specific. For example, for non-
linear dynamical models, complexity is governed by the
type and order of equations [14]. In contrast, for linear dy-
namical models, which have only matrices and variables in
equations (no derivatives), it is the order of the matrices that
determines complexity. In this article, we assume that mod-
els are of appropriate complexity, and hence do not address
Model order reduction techniques [14], which aim to gen-
erate lower-dimensional systems that trade off fidelity for
reduced model complexity.

4.3 Diagnostics Model Selection Task
The model in this model selection problem corresponds to
a system with a single mode. Given a space Φ of possible
models, we can define this model selection task as follows:

φ∗ = argmin
φ∈Φ

g1

(
R(Ỹ ,Yφ)

)
+ g2

(
C(Ỹ , φ)

)
, (7)

adopting the simplifying assumption that our loss function
g is additively decomposable.

4.4 Information-Theoretic Model Complexity
The Information-Theoretic (or Bayesian) model complex-
ity approach, which is based on the model likelihood, mea-
sures whether the increased “complexity" of a model with
more parameters is justified by the data. The Information-
Theoretic approach chooses a model (and a model structure)
from a set of competing models (from the set of correspond-
ing model structures, respectively) such that the value of a
Bayesian criterion is maximized (or prediction uncertainty
in choosing a model structure is minimized).

The Information-Theoretic approach addresses prediction
uncertainty by specifying an appropriate likelihood func-
tion. In other words, it specifies the probability with which
the observed values of a variable of interest are generated
by a model. The marginal likelihood of a model structure,
which represents a class of models capturing the same pro-
cesses (and hence have the same parameter dimensional-
ity), is obtained by integrating over the prior distribution of
model parameters; this measures the prediction uncertainty
of the model structure [28].

Statistical model selection is commonly based on Oc-
cam’s parsimony principle (ca.1320), namely that hypothe-
ses should be kept as simple as possible. In statistical terms,
this is a trade-off between bias (distance between the aver-
age estimate and truth) and variance (spread of the estimates
around the truth).

The idea is that by adding parameters to a model we ob-
tain improvement in fit, but at the expense of making pa-
rameter estimates “worse"’ because we have less data (i.e.,
information) per parameter. In addition, the computations
typically require more time. So the key question is how to
identify how complex a model works best for a given prob-
lem.

If the goal is to compute the likelihood of a given model
φ(x0, θ, ξ,U), then θ and U are nuisance parameters.
These parameters affect the likelihood calculation but are
not what we want to infer. Consequently, these parameters
should be eliminated from the inference. We can remove
nuisance parameters by assigning them prior probabilities
and integrating them out to obtain the marginal probability
of the data given only the model, that is, the model likeli-
hood (also called integrative, marginal, or predictive like-
lihood). In equational form, this looks like: P (Y |φ) =∫
θ

∫
U
P (φ|Y ,θ,U)P (θ,U |φ)dθdU .However, this multi-

dimensional integral can be very difficult to compute, and it
is typically approximated using computationally intensive
techniques like Markov chain Monte Carlo (MCMC).

Rather than try to solve such a computationally challeng-
ing task, we adopt an approximation to the multidimen-
sional integral. In the statistics literature several decompos-
able approximations have been proposed.

Spiegelhalter et al. [26] have proposed a well-known
such decomposable framework, termed the Deviance In-
formation Criterion (DIC), which measures the number of
model parameters that the data can constrain.: DIC =
D + pD, where D is a measure of fit (expected deviance),
and pD is a complexity measure, the effective number of
parameters. The Akaike Information Criterion (AIC) [29;
30] is another well-known measure: AIC = −2L(θ̂) + 2k,

where θ̂ is the Maximum Likelihood Estimate (MLE) of θ
and k is the number of parameters.

To compensate for small sample size n, a variant of AIC,
termed AICc, is typically used:

AICc = −2L(θ̂) + 2k +
2k(k + 1)

(n− k − 1)
(8)

Another computationally more tractable approach is the
Bayesian Information Criterion (BIC) [31]: BIC =

−2L(θ̂) + klogn, where k is the number of estimable pa-
rameters, and n is the sample size (number of observations).
BIC was developed as an approximation to the log marginal
likelihood of a model, and therefore, the difference between
two BIC estimates may be a good approximation to the nat-
ural log of the Bayes factor. Given equal priors for all com-
peting models, choosing the model with the smallest BIC is
equivalent to selecting the model with the maximum poste-
rior probability. BIC assumes that the (parameters’) prior is
the unit information prior (i.e., a multivariate normal prior
with mean at the maximum likelihood estimate and variance
equal to the expected information matrix for one observa-
tion).

Wagenmakers [32] shows that one can convert the BIC
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metric to

BIC = n log
SSE

SStotal
+ k logn,

where SSE is the sum of squares for the error term. In our
experiments, we assume that the non-linear model is the
“correct" model (or the null hypothesis H0), and either the
linear or qualitative models are the competing model (or al-
ternative hypothesis H1). Hence what we do is use BIC to
compare the non-linear to each of the competing models.

Suppose that we obtain the BIC values for the alternative
and the correct models, using the relevant SS terms. When
computing ∆BIC = BIC(H1)−BIC(H0), note that both
the null (H0) and the alternative hypothesis (H1) models
share the same SStotal term (both models attempt to explain
the same collection of scores), although they differ with re-
spect to SSE. The SStotal term common to both BIC values
cancels out in computing ∆BIC , producing

∆BIC = n log
SSE1

SSE0
+ (k1 − k0)logn, (9)

where SSE1 and SSE0 are the sum of squares for the er-
ror terms in the alternative and the null hypothesis models,
respectively.

5 Experimental Design
This section compares three tank benchmark models accord-
ing to various model-selection measures. We adopt as our
“correct" model the non-linear model. We will examine the
fidelity and complexity tradeoffs of two simpler models over
a selection of failure scenarios.

The diagnostic task will be to compute the fault state
of the system, given an injected fault, which is one of
(ξN , ξB , ξP ), denoting nominal blocked and passing valves,
respectively. This translates to different tasks given the dif-
ferent models.

non-linear model estimate the true value of κ1 given p1,
which corresponds to a most-likely failure mode as-
signment of one of (ξN , ξB , ξP ).

linear model estimate the true value of κ1 given p1, which
corresponds to a most-likely failure mode assignment
of one of (ξN , ξB , ξP ).

qualitative model estimate the failure mode assignment of
one of (ξN , ξB , ξP ).

5.1 Alternative Models
This section describes the two alternative models that we
compare to the non-linear model, a linear and a qualitative
model.

Linear Model
We compare the non-linear model with a linearised version.
We can perform this linearised process in a variety of ways
[33]. In this simple tank example, we can perform the lin-
earisation directly through replacement of non-linear and
linear operators, as shown below.

Nominal Model We can linearise the the non-linear
3-tank model by replacing the non-linear sub-function√
hi − hj with the linear sub-function γij(hi − hj), where

γij is a parameter (to be estimated) governing the flow be-
tween tanks i and j. The linear model has 4 parameters,
γ12, γ12, γ23, γ3.

Fault Model The fault model introduces a parameter βi
associated with κi, i.e., we replace κi with κi(1 + βi), i =
1, 2, 3, where −1 ≤ βi ≤ 1

κi
− 1, i = 1, 2, 3. This model

has 7 parameters, adding parameters β1, β2, β3.

Qualitative Model
Nominal Model For the model we replace the non-linear
sub-function

√
hi − hj with the qualitative sub-function

M+(hi − hj), where M+ is the set of reasonable functions
f such that f ′ > 0 on the interior of its domain [34].

The tank-heights are constrained to be non-negative, as
are the parameters κi. As a consequence, we can discretize
the hi to take on values {+, 0}, which means that M+(hi−
hj) can take on values {+, 0,−}. The domain for dh1

dt must
be {+, 0,−}, since the qualitative version of q0, Q is non-
negative (domain of {+, 0}) and each M+(hi − hj) can
take on values {+, 0,−}. We see that this model has no
parameters to estimate.

Fault Model
The qualitative fault model has different M+ functions

for the modes where the valve is passing and blocked. We
derive these functions as follows. From a qualitative per-
spective, the domain of βi is {0,+} for a passing valve, and
{-,0} for a blocked valve. To create a new M+ function for
the cases of passing and blocked valve, we qualitatively ap-
ply these corresponding domains to the standard M+ func-
tion with domain {-,0,+} to obtain fault-based M+ func-
tions : M+

P (hi − hj) denotes the M+ function when the
valve is passing, and M+

B (hi − hj) denotes the M+ func-
tion when the valve is blocked.

5.2 Simulation Results
We have compared the simulation performance of the mod-
els under nominal and faulty conditions, considering faults
to individual valves V1, V2 and V3, as well as double-fault
combinations of the valves. In the following we present
some plots for simulations of faults and fault-isolation for
different model types.

Figure 2 shows the results from a single-fault scenario,
where valve V1 is stuck at 50%) at t = 250, based on the
non-linear model. The plot from this simulation show that
at the time of the fault injection, the water level in tank T1

starts increasing while the water level at tanks T2 and T3

start decreasing due to the lower inflow.

p_1
p_2
p_3

0

50

100

150

200

time	[s]
0 100 200 300 400

Figure 2: Simulation with non-linear model for the scenario
of a fault in valve 1 at t = 250 s

Table 1 shows the simulation error-difference between the
non-linear and linear models, for the nominal case and the
faulty case (where valve 1 is faulted). Given that we mea-
sure the pressure levels for p1, p2 and p3 every second, we
use the difference in these outputs to identify the sum-of-
squared-error (SSE) values for the simulations.
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p1 p2 p3 Total
Nominal 2600.3 316.2 118.1 3034.6
V1-fault 2583.1 347.5 137.2 3067.8

Table 1: Data for SSE values for simulations using Non-
linear and Linear representations, given two scenarios:
nominal and faulty (valve V1 at 50% after 250 s)

Figure 3 shows the results for diagnosing the V1-fault us-
ing the non-linear model. We can see that the diagnostic
accuracy is high, as P (V1) converges to almost 1 with little
time lag.
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Figure 3: Simulation of fault isolation of fault in valve 1
with non-linear model. The figure depicts the probability of
valve 1 being faulty.

In contrast, Figure 4 shows the diagnostic accuracy and
isolation time with a linear model. First, note that there is
a false-positive identified early in the simulation, and the
model incorrectly identifies both valves 2 and 3 as being
faulty. This linear model thus delivers both poor diagnos-
tic accuracy (classification errors) and poor isolation time
(there is a lag between when the fault occurs and when
the model identifies the fault). After the fault injection at
t = 250 [s], the predictive accuracy improves and the cor-
rect fault becomes the most likely fault.
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Figure 4: Simulation of fault isolation of fault in valve
1 with linear model.The figure depicts the probability of
valves 1, 2 and 3 being faulty.

Figure 5 depicts the diagnostic performance with a mixed
linear/non-linear model (T1 is non-linear, while T2 and T3

are linear). The diagnostic accuracy is almost the same as
that of the non-linear model (cf. Figure 3), except for a
false-positive detection at the beginning of the scenario.

6 Experimental Results
This section describes our experimental results, summaris-
ing the data first and then discussing the implications of the
results.
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Figure 5: Simulation of fault isolation of fault in valve 1
with mixed non-linear/linear model (T1 non-linear and both
T2 and T3 linear). The figure depicts the probability of
valves 1, 2 and 3 being faulty.

6.1 Model Comparisons
We have empirically compared the diagnostics performance
of several multi-tank models. In our first set of experiments,
we ran a simulation over 500 seconds, and induced a fault
(valve V1 at 50%) after 250 s. The model combinations in-
volved a non-linear (NL) model, a model (denoted M) with
tank T1 being linear (and other tanks non-linear), a fully
linear model (denoted L), and a Qualitative model (denoted
Q).

To compare the relative performance of the models, we
compute a measure of diagnostics error (or loss), using the
difference between the true fault (which is known for each
simulation) and the computed fault. We denote the true fault
existing at time t using the pair (ω, t); the computed fault at
time t is denoted using the pair (ω̂, t̂). The inference system
that we use, LNG [35], computes an uncertainty measure
associated with each computed fault, denoted P (ω̂). Hence,
we define a measure of diagnostics error over a time window
[0, T ] using

γD1 =
T∑

t=0

∑

ξ∈Ξ

|P (ω̂t)− ωt|, (10)

where Ξ is the set of failure modes for the model, and ωt
denotes ω at time t.

Our second metric covers the fault latency, i.e., how
quickly the model identifies the true fault (ω, t): γ2 = t− t̂.

Table 2 summarises our results. The first columns com-
pare the number of parameters for the different models, fol-
lowed by comparisons of the error (γ1) and the CPU-time
(γ2). The data show that the error (γ1) does not grow very
much as we increase model size, but it increases as we de-
crease model fidelity from non-linear through to qualitative
models. In contrast, the CPU-time (a) increases as we in-
crease model size, and (b) is proportional to model fidelity,
i.e., it decreases as we decrease model fidelity from non-
linear through to qualitative models.

In a second set of experiments, we focused on multiple
model types for a 3-tank system, with simulations running
over 50s, and we induced a fault (valve V1 at 50%) after 25 s.
The model combinations involved a non-linear (NL) model,
a model with tank 3 linear (and other tanks non-linear), a
model with tanks 2 and 3 linear and tank 1 non-linear, a fully
linear model, and a qualitative model. Table 3 summarises
our results.

The data show that, as model fidelity decreases, the er-
ror γ1 increases significantly and the inference times γ2 de-
crease modestly. If we examine the outputs from AICc, we
see that the best model is the mixed model (T3-linear). BIC
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Tanks 2 3 4
# Parameters NL 7 9 11

M 6 8 10
L 5 7 9
Q 2 3 4

γ1 NL 242 242 242
M 997 1076 1192
L 1236 1288 1342
Q 3859 3994 4261

γ2 NL 10.59 23.7 39.5
M 8.52 17.96 34.6
L 6.11 10.57 32.0
Q 4.64 7.31 26.4

Table 2: Data for 2-, 3-, and 4-tank models using Non-linear
(NL), Mixed (M), Linear (L) and Qualitative (Q) represen-
tations

indicates the qualitative model as the best; it is worth noting
that BIC typically will choose the simplest model.

γ1 γ2 AICc BIC
Non-Linear 0.97 23.7 29.45 43.7
T3-linear 3.12 17.96 26.77 42.9
T2, T3-linear 21.96 13.21 31.12 39.56
Linear 77.43 10.57 35.76 37.55
Qualitative 304.41 9.74 43.01 29.13

Table 3: Data for 3-tank model, using Non-linear, Mixed,
Linear and Qualitative representations, given a fault (valve
V1 at 50%) after 25 s

6.2 Discussion
Our results show that MBD is a complex task with several
conflicting factors.

• The diagnosis error γ1 is inversely proportional to
model fidelity, given a fixed diagnosis task.

• The error γ1 increases with fault cardinality.

• The CPU-time γ2 increases with model size (i.e., num-
ber of tanks).

This article has introduced a framework that can be used
to trade off the different factors governing MBD “accuracy".
We have shown how one can extend a set of information-
theoretic metrics to combine these competing factors in
diagnostics model selection. Further work is necessary
to identify how best to extend the existing information-
theoretic metrics to suit the needs of different diagnostics
applications, as it is likely that the “best" model may be
domain- and task-specific.

It is important to note that we conducted experiments with
un-calibrated models, and we have ignored the cost of cal-
ibration in this article. The literature suggests that linear
models can be calibrated to achieve good performance, al-
though performance inferior to that of calibrated non-linear
models. This class of qualitative models does not possess
calibration factors, so calibration will not improve their per-
formance.

7 Conclusions
This article has presented a framework for evaluating the
competing properties of models, namely fidelity and com-
putational complexity. We have argued that model perfor-
mance needs to be evaluated over a range of future observa-
tions, and hence we need a framework that considers the ex-
pected performance. As such, information-theoretic meth-
ods are well suited.

We have proposed some information-theoretic metrics for
MBD model evaluation, and conducted some preliminary
experiments to show how these metrics may be applied.
This work thus constitutes a start to a full analysis of model
performance. Our intention is to initiate a more formal anal-
ysis of modeling and model evaluation, since there is no
framework in existence for this task. Further, the experi-
ments are only preliminary, and are meant to demonstrate
how a framework can be applied to model comparison and
evaluation.

Significant work remains to be done, on a range of fronts.
In particular, a thorough empirical investigation is needs on
diagnostics modeling. Second, the real-world utility of our
proposed framework needs to be determined. Third, a theo-
retical study of the issues of mode-based parameter estima-
tion and its use for MBD is necessary.
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Abstract 
The improvement of the detection and diagnosis 
capability for the unanticipated fault is a tendency 
in the research and application of fault diagnosis. 
In this paper, some notions and the basic principles 
for the unanticipated fault detection and diagnosis 
are given. A general process model applied to the 
diagnosis for the unanticipated fault is designed, 
by adopting a three-layer progressive structure, 
which is comprised of an inherent detection layer, 
an unanticipated isolation layer and an unantici-
pated recognition layer. Several key problems in 
the general process model are analyzed. The model 
and methods proposed in this paper are driven by 
pure data and they can detect and diagnose the 
unanticipated fault. The approach is evaluated by 
using an example of a satellite’s attitude control 
system, and excellent results have been obtained. 

1 Introduction 
At present, in the research field of fault diagnosis, a great 
majority of methods proposed are based on the premise of a 
perfect fault pattern database. The treatment on the fault 
detection and diagnosis are carried out for anticipated fault 
(AF) [1-3]. However, due to the high complexity and un-
certainty of the technical structure, the process environment 
and the working state of the system etc, the occurrence of 
some faults which cannot be anticipated in advance (Un-
anticipated Fault, UF) is inevitable in actual work [4]. The 
UF is not included in the anticipated fault database, and the 
occurrence of the UF affects normal operation of the system 
and even possibly leads to thorough failure of the system. 
The improvement of unanticipated fault detection and 
diagnosis (UFDD) capability is a difficult issue, as well as a 
developing direction in the research and application for the 
fault diagnosis [5-8]. 

In retrospect to the existing researches, rather little at-
tention has been paid to research UF detection and diagno-
sis. Therefore, no mature solve scheme has been shaped for 
either the problem itself or the technical realization [9-12]. 
Most research on the UF focus on the recognition and the 
match between different patterns based on the known fault 
pattern database [13-14]. For example, Tom Brotherton and 
Tom Johnson (2001) [15] proposed a neural network 
anomaly detector, which was essentially a single neural 
network classifier and could not identify the UF. Z. H. Duan 

(2006) [16] proposed that the UF diagnosis was carried out 
by utilizing particle filter for incomplete patterns. As a 
transmission mechanism of the UF could not be obtained in 
advance, the UF diagnosis could not be realized based on 
model inference. George Vachtsevanos etc. (2008) [17] 
proposed an UF robust detection method, however, the 
isolation on the UF could not be realized. Furthermore, Z. 
M He (2012) [18] proposed a one-class principal compo-
nent analysis (OC-PCA) method, which could only be used 
for processing the system with stable data in a normal pat-
tern, and did not relate to the UF diagnosis at all. The ma-
jority of currently published articles involve only UF de-
tection. However, the fault isolation between the UF and the 
AF as well as the recognition (i.e. identification) of the UF 
has not yet been performed. 

For actual system, some impacts such as nonlinearity, 
uncertainty and external interference are inevitable in its 
actual operation, which will result difficulties in setting up a 
precise model for the system. Consequently, the application 
of the methods for fault detection and diagnosis based on 
model inference will be very limited [19-20]. With the 
development of sensor technology, the input and output 
data or the system’s status under real-time monitor is easier 
to obtain. The data are redundant, real-time and reliable. As 
a result, the fault diagnosis ideology of extracting data 
instead of establishing a system’s model will play a positive 
role. 

This paper proposes a data-driven fault diagnosis method 
for UF. Combined with the fault diagnosis process, a gen-
eral process model (GPM) is advanced, which is comprised 
of an inherent detection layer (IDL), an unanticipated iso-
lation layer (UIL) and an unanticipated recognition layer 
(URL). Firstly, according to different characteristics of the 
monitoring data, the corresponding residual statistics are 
built and a detection criterion of the IDL is provided for 
fault detection. Secondly, the statistic of angle similarity is 
constructed on the basis of the fault feature direction, the 
isolation between the UF and the AF is realized in the UIL. 
Finally, in the URL, by the adoption of the contribution 
factor, the UF is recognized. The method, as a fault diag-
nosis method driven by pure data, is capable of carrying out 
detection, isolation and recognition for the UF. 

The paper is organized as follows. In Section 2, some 
notions and the basic principles for UF and UFDD are 
discussed. A three-layer GPM for UFDD is introduced in 
Section 3. Sections 4 analyzes some key problems in the 
GPM and advances the corresponding solutions. In Section 
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5, performance evaluation of the proposed GPM and 
methods for the satellite’s attitude control system is pre-
sented. Conclusions are drawn in Section 6. 

2 Notions and Basic Principles for UFDD 

2.1 Notion of UF 
The fault can be divided into the anticipated fault (AF) and 
the unanticipated fault (UF). 

Explanation 1: Anticipated fault (AF) is the fault which 
has been recognized by people, existing in the fault pattern 
database with the relevant monitoring data and the pro-
cessing strategy.  

Explanation 2: Unanticipated fault (UF) is the fault 
which lacks prior knowledge without any fault samples or 
with few fault data. UF does not exist in the fault pattern 
database, and the corresponding elimination strategy for it 
has not been detected. 

A perfect fault pattern database should be a set including 
all AF patterns and UF patterns. However, due to some 
objective reasons, the acquisition of the perfect fault pattern 
database is extremely difficult. The AF rarely occurs, and 
most of faults occurs in the actual working process are UF 
[21]. At present, to detect the UF and moreover to diagnose 
the UF is one of the most difficult issues in fault diagnosis 
region, and it is also a great challenge for fault diagnosis 
technology. 

2.2 Notion for UF Detection 
Explanation 3: UF detection is a process for judging 

whether UF occurs.  
The tasks of UF detection and AF detection are different. 

The two methods apply previous normal monitoring data to 
train a discriminator, and then the current monitoring data is 
used as the testing data to be input into the discriminator to 
judge whether the current status is a fault. However, the UF 
detection is carried out after the completion of fault detec-
tion, and the fault is further judged whether to be UF. Ob-
viously, for AF detection, all faults are always assumed to 
be anticipated. Consequently, if the UF occurs, it will be 
misjudged as a certain anticipated fault. 

2.3 Notion for UF Diagnosis 
Explanation 4: UF diagnosis is a process of determining 

whether the UF occur (i.e. UF detection). In addition, the 
UF diagnosis further includes the isolation and the recog-
nition of the UF after the UF detection is completed. 

Compared with the AF diagnosis, due to lack of prior 
knowledge of the UF, the mapping relationship from fault 
data to fault part (essentially, the fault pattern is a function 
between fault data and fault part) cannot be found. There-
fore, the key for UF diagnosis is to quickly establish a 
cognition process. The cognition comprises the recognition 
of superficial data characteristics or the mapping recogni-
tion from data to a physical layer. Based on a fault diagnosis 
method driven by pure data, this paper focuses on the 
recognition of superficial data characteristics. 

3 General Process Model (GPM) for UFDD 
By combining the notion and basic principles of the UF and 
the UFDD, this paper proposes a multi-layer general pro-

cess model (GPM) for UF diagnosis on the basis of pure 
data-driven method. The structure of GPM is shown in 
Figure 1. The first layer is the IDL, which establishes a 
detection discriminator for fault detection; the second layer 
is the UIL, which applies the detection residual to establish 
a fault feature direction so as to build an isolation discrim-
inator to realize the isolation of the AF and the UF; the third 
layer is the URL, which applies a contribution factor to 
analyze the variant which is most relevant to the current UF 
and to realize the fault recognition based on superficial data 
characteristics. 

 
Figure 1 The GPM for UFDD 

3.1 Inherent Detection Layer (IDL) 
The first issue that a diagnosis system faces is to carry out 
normal/abnormal recognition for a feature vector of the 
monitoring data. The task of the IDL is to determine 
whether the monitoring data is normal or abnormal. The 
detection discriminator can be used for reflecting the 
characteristics of the normal system. In a given threshold, 
the testing data is inputted to the detection discriminator for 
judging whether the fault exists. If a value of the discrimi-
nator is smaller than the given threshold, the system is 
thought to be normal; otherwise, a fault is thought to occur. 
Meanwhile the occurrence time (Fault time) and the feature 
direction of the fault (Current fault direction) should be 
determined, and the testing data is presented to the UIL.  

Essentially, the IDL is a single discriminator, which can 
be applied to catch the characteristics of the system in a 
normal pattern as well as to complete the detection and 
discrimination of the testing data. Two key problems are 
involved, the first is the residual generation and the second 
is the residual evaluation. The specific techniques can be 
seen in Section 4.1. 
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3.2 Unanticipated Isolation Layer (UIL) 
The task of the UIL is to finish the isolation between the UF 
and AF. After detected, the current fault shall be judged 
whether to be the AF or the UF. If it is, the current fault will 
be classified as some sort of AF. All AF patterns are saved 
in the pattern database of AF. The isolation discriminator 
matches the feature of the current fault pattern with all those 
of the AF patterns successively, so as to realize the isolation 
between the UF and AF. If the feature of the current fault 
cannot be matched with any AF pattern, it indicates that the 
UF occurs. The testing data is presented to the URL. The 
key problem of the UIL lies in the establishment of an iso-
lator and the design of an isolation criterion. The specific 
techniques can be seen in Section 4.2. 

3.3 Unanticipated Recognition Layer (URL) 
The task of the URL is to perform online learning and 
analysis for the UF data, so as to generate the fault pattern. 
The function of the URL is to learn and summarize the 
pattern found in unknown pattern. As it is different from the 
AF, it is difficult to find the mapping relationship from the 
fault data to the fault part for the UF. Therefore, the key 
point of recognition lies in establishing the corresponding 
relationship between the data and the unknown fault. Due to 
insufficient recognition on the UF and lack of historical 
information and prior knowledge, it is usually more difficult 
to establish the mapping relationship on the physical layer. 
The key point of this paper is to analyze the UF recognition 
based on the superficial data layer. According to contribu-
tion factor, the variant which is mostly relevant to the cur-
rent UF can be found, so that the UF recognition is finished. 
The specific techniques can be seen in Section 4.3. 

4 Some Key Problems in GPM 
In the above section, a basic framework of the UF diagnosis 
is provided. The task of the UF diagnosis is to detect, isolate 
and recognize the UF. The detection is a starting point of 
fault diagnosis, and the target of the fault detection is to 
judge whether the UF occurs; the isolation is the core of 
fault diagnosis; and the recognition is a terminal point of 
fault diagnosis. Additionally, the recognition is also the 
starting point of fault-tolerant control (fault processing). 
The specific techniques on detecting, isolating and recog-
nizing the UF can be seen below. 

4.1 Detection Statistic Construction 
Just as Section 3 shows, the basic task of the IDL is to judge 
whether the testing data is normal. If it is a fault, simulta-
neously the occurrence time and the feature direction of the 
fault shall be determined. The key point of the IDL lies in 
the detection residual generation as well as the residual 
evaluation. The detection statistic is established according 
to the residual, and the fault detection is performed ac-
cording to the given criterion. For different monitoring data, 
different residual generation approaches exist, including 
simple T2 detection [18, 22], baseline data smoothing de-
tection [23], and time-series modeling and predicting de-
tection [24-25].  

The characteristics of the monitoring system and moni-
toring data can be applied to select the corresponding de-
tection method. The simple T2 statistic detection is applied 
to a stable data [22]. The baseline data smoothing detection 

is suitable for the system capable of obtaining the baseline 
data, its calculation amount is small, the detection speed is 
fast, and the detection effect is the best [23]. The time-series 
modeling prediction is suitable for the system with con-
tinuous output and without input; it is also suitable for it-
eration update of the pattern, while the defect is that the 
prediction time is short  [25]. 

In practical application, the characteristics of the moni-
toring system and the monitoring data can be applied to 
select the corresponding detection method.  

Besides, for the three methods analyzed above, only the 
characteristics of data output are considered. However, for 
some systems (such as the satellite’s attitude control sys-
tem), the object of the fault detection always comprises 
control input as well as measuring output, and the control 
input has a certain responding relationship with the meas-
uring output. In the situation where there is no baseline 
training data, an input-output system identification method 
is needed to search a model structure for the system, and 
thus the fault detection both on control input and measuring 
output will be performed in the IDL. 

If we assume that ( ) ( )( 1) ( 1)
1 1, ,n p n m

n n R R− × − ×
− − ∈U Y  are re-

spectively as system input and system output before the nth 
time period, take them as the training data and make 
( ) ( )1 1, ,p m

n n R R× ×∈u y  as the current testing data. The train 
purpose is to find the model structure of the system, usually 
with the rule as follows 

( )1 1min n nf − −−Y f U                          (1) 

Let ( )1 1n̂ nf− −=Y U  is the tendency term, 

( )1 1 1 1 1
ˆ

n n n n nf− − − − −= − = −�Y Y Y Y U  is the residual term; 

( )T

1 1ˆ , ,n n n nf − −=y u U Y  is one-step prediction, and 

ˆn n n= −r y y  is the prediction residual, then the key point 
for the minimum problem in (1) is to construct the function 
f between the system input and system output.  

If a mathematical model can be obtained for the system 
equation by the physical mechanism, the estimation of f can 
be converted into the parameter estimation (Gray-Box 
Model); and if there is no physical background, f can be 
estimated only according to the experiment and the system 
identification (Black-Box Model). Common linear black 
box models comprise an autoregression model (AR Model) 
with external input, an autoregressive moving average 
model (ARMA Model) with external input, an output error 
model (OE Model), a Box-Jenkins model (BJ Model) and a 
prediction error minimized model (PEM Model); and 
common nonlinear black box models comprise a nonlinear 
autoregression moving average model (NLARMA Model) 
and a nonlinear Hammerstein-Wiener model (NLHW 
Model) [26-29] with external input. 

After obtaining the prediction residual, the detection sta-
tistics are as below: 

( ) ( )-12 T covn n nT = �y r Y r                            (2) 

where ( )cov �Y  is the covariance of the residual term �Y , and 
a judging threshold is set to be 

( )( )
( ) ( ) ( )2

1

2
, 1

1 1
m n n

T F m n m
n n mα α−

−
= − −

− −( - )
       (3) 
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where ( ) ( )1 , 1F m n mα− − −  indicates a quantile of F distri-
bution function when a significance level is α , the degree 
of freedom is ( ), 1m n m− − . 

If ( )2 2
nT Tα>y , 1n−y  is considered as the fault point. 

However, a false alarm is inevitable because of noise, thus 
we need a more reliable criterion for detection as follows. 

Criterion 1: If ( )2 2
nT Tα>y  holds continuously for W  

times, then the fault has really happened, where W  is 
called time threshold. The W-th alarm time is considered as 
the fault time (tf) (i.e. the occurrence time of the fault) and 
the residual r of the fault time is called the current fault 
direction or current direction (i.e. the feature direction of 
the fault). 

The detection statistic threshold is decided by Equation 
(3). The time threshold should not be too large (usually 2 to 
4) to avoid any false alarms. A larger time threshold makes 
a more reliable decision, but it will cause some detection 
delay which will cause harm to the system. Current fault 
direction is the key information of each fault, and it is the 
base for the isolation fault. According to Criterion 1, the 
current fault is detectable if and only if  

( ) 12 T 1| || cov( )n n nTα

−−> �r r Y r                       (4) 

In the IDL, the fault detection is realized by the adoption 
of the input-output system identification method. Moreover, 
the occurrence time and feature direction of the fault can 
also be obtained.  

Obviously, the input-output system identification method 
is provided with all the advantages of the time-series mod-
eling prediction method. It is particularly suitable for the 
system with discontinuous input and discontinuous output 
at the same time, its defect is that the calculation amount is 
large, and the iteration process is relatively difficult. 

4.2 Directional Similarity and Isolation Criterion 
The basic task of the UIL is to utilize the feature direction of 
the fault obtained in the IDL to establish the isolation dis-
criminator, and then to realize the isolation between the AF 
and the UF. The key point lies in the isolator establishment. 
Here the concept of direction similarity is induced, and a 
fault isolation criterion is given. In Criterion 1, the defini-
tion of current fault direction or current direction (i.e. the 
feature direction of a fault) is given. We adopt the true fault 
feature direction as defined below to be the fault’s pattern 
characteristics on superficial data layer.  

Explanation 5: True (fault) direction of a fault pattern is 
defined as the unified mean of all possible current fault 
directions from the same pattern. 

The relationship between the current directions and the 
true direction is just like that between discrete random 
variable and its expectation. It is easy to understand that 

1 1 2

1 1lim /
n n

i in i in n→∞
= =

= ∑ ∑ξ r r                          (5) 

= +r r ξ ε                                        (6) 

where { } 1

n
i i=

r  are all possible current directions from the 
same pattern, and ε  is the noise and r  is the magnitude 
of the current direction.  

It is shown in Figure 2 that there are two opposite true 
directions for each fault pattern, e.g. the true direction , 1ξ , 
is in the center of a symmetric cone, around which are the 

current directions from the same pattern. 2ξ  is another true 
direction, corresponding to another fault pattern. The origin 
of the coordinates can be regarded as the true direction for 
the normal pattern. 

1ξ  

1ξ

2ξ

2ξ  

 
Figure 2 True detections and current directions 

Denote ( ),θ r ξ  is the angle between the current direction 
and the true direction, ( ) ( )( ), 1 cos ,Ddisc θ= −r ξ r ξ  is 
called the directional discrepancy between them. We can 
find that if they are from the same pattern, ( ),Ddisc r ξ  will 
be small, otherwise, it will be large. 

Suppose that ( ),N∼ε 0 Ω , the current direction is 

= +r ε r ξ , and { } 1

q
i i=
ξ  is all anticipated true directions, and 

( ){ }0 1
argmin 1 cos ,

q

i i i=
= −

ξ
ξ r ξ , then the isolation statistic is 

given as follows 
( )( )0

0 0

T

1 cos ,
( )

i

i i

Iso
−

=
r r ξ

r
ξ Ωξ

                         (7) 

Theorem 1: If ( )Iso r  is defined in Equation (7), then 
( )( ) 0,1Iso N∼r                            (8) 

Proof: Suppose that the current direction is ε= +r r ξ , 
where ξ  is the true direction and ε  is the observation 
noise, and ( ),N∼ε 0 Ω . According to Explanation 5 we 
have 1=ξ . If cos( , ) 0≥r ξ , we can approximately obtain 
that 

( )
T T

2 Tcos( , ) 1 1N , −= = + ∼
ξ r ξ εr ξ r ξ Ωξ
ξ r r

           (9) 

i.e. cos( , )r ξ  satisfies truncated normal distribution.  
Thus 

( ) ( )0 0 0

T1 cos( , ) 0i i iN ,− ∼r ξ r ξ Ωξ              (10) 

Similarly, if cos( , ) 0<r ξ , we can prove that  

( ) ( )T1 cos( , ) 0N ,+ ∼r ξ r ξ Ωξ                (11) 

According to Equation (10) and Equation (11), we obtain  

( ) ( )T1 cos( , ) 0N ,− ∼r ξ r ξ Ωξ              (12) 

Then 
( )( )

( )0

0 0

T

1 cos ,
( ) 0,1

i

i i

Iso N
−

= ∼
r r ξ

r
ξ Ωξ

             (13) 

and thus the theorem is proved. Therefore, the threshold for 
( )Iso r  is ( )1 α−Φ , where α  is the significance level, and Φ  

is the inverse of the normal cumulative distribution function. 
We provide the isolation criterion as follows. 
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Criterion 2: If 1( )Iso α−> Φr  holds true, the current fault 
is unanticipated; otherwise, it is anticipated. 
Criterion 2 indicates that UF with too small a magnitude 
cannot be isolated. If the current fault is unanticipated, a 
new fault pattern is found and the unified current direction 
is regarded as its true direction. If the current fault is an-
ticipated, then the current direction should be added to the 
corresponding AF direction database in UIL of the GPM, 
and the true direction shall be updated. 

4.3 Calculation for Contribution Factor 
The basic task of the URL is to carry out online learning and 
analysis for UF data. The key point of recognition or iden-
tification is to establish the corresponding relationship from 
the monitoring data to the unknown fault or the character-
istics of the unknown fault. The UF diagnosis discussed in 
this paper is an approach driven by pure data, thus the 
characteristic recognition on the data layer is more focused. 
According to the contribution factor, the variant which is 
most relevant to the current UF can be found, and then the 
UF recognition is completed. 

Known from Criterion 1 that after the residual detection 
statistic is established, if ( )2 2

nT y Tα> , it is thought that a 
fault occurs at time period n-1. For the system with the 
control input and measure output, firstly a residual covari-
ance matrix R (i.e. cov( )Y�  in Equation (2)) is subjected to 
the singular value decomposition, which is 

T ( )diag=R P λ P                             (14) 
where ( )1, , mλ λ= …λ , ( )1, , m= …P p p , ip  indicates the 
ith column of P , and jip  indicates the jth component of 

ip . Let T
i it = r p , and jr  indicates the jth component of 

the current fault feature direction r, where 1 mj≤ ≤ . 
Explanation 6: The contribution factor of the jth variant 

to the current fault feature direction r  is 

( ) ( )
1

/
m

i j ji i
i

Cont j t r p λ
=

= ∑                      (15) 

From the aspect of characteristic recognition in the data 
layer, the variant with the largest contribution factor is the 
fault variant. If it is a sensor fault, the sensor corresponding 
to the variant with the largest contribution factor is the 
sensor hardware with the fault. 

5 Simulation and Performance Evaluation 
The effectiveness of the proposed GPM and the corre-
sponding UF fault detection, isolation and recognition 
method are demonstrated in this section through a satellite’s 
attitude control system model. 

5.1 Input and Output of Satellite Control System 
The satellite’s attitude control system is a main part of a 
satellite, which consists of four main parts: a satellite body, 
a controller, an execution mechanism and a measuring 
mechanism [30]. 

As the complexity of the satellite’s attitude control sys-
tem, faults particularly for the measuring mechanism and 
the execution mechanism occur rather frequently.  

Here on consideration of the monitoring data for the sat-
ellite’s attitude control system. The monitoring data are 
provided by China Aerospace Science and Technology 
Corporation (CASA). 

The monitoring data comprises of not only the output 
data of the measuring mechanism, but also the control input 
of the execution mechanism. The dimension of the data 
output by the measuring mechanism is 7m = , The dimen-
sion of the data input by the execution mechanism is 4p = , 
which can be seen in Table 1. There are altogether 10 
batches of monitoring data, which can be seen in Table 2. 
The first batch is the normal data, and the normal pattern 
data is discontinuous and unstable (Figure 3). The subse-
quent 9 batches are used for testing, and different fault 
patterns (a sudden-change fault, a gradual-change fault and 
so on) are given. In Figure 3, the comparison of the moni-
toring data in the fault with drift-increasing of gyro at roll 
axis and the normal pattern is given. The time of each batch 
of data is 45000s-48000s; each piece data is collected per 
second, and the data length 3000n = .  
Additionally, the public parameters used in the simulation 

are assigned as follows: The significance level 0.01α =  
and the time threshold defined in Criterion 1 is W=3. 

Table 1 Data explain of attitude control system 
Variable 
subscript

 Code Sensor  

1 

Input 

Wheel1 Output of the first momentum wheel 
2 Wheel2 Output of the second momentum wheel
3 Wheel3 Output of the third momentum wheel 
4 Wheel4 Output of the fourth momentum wheel 
1 Output EarthPhi Output of earth sensor at roll axis 
2  EarthTheta Output of earth sensor at pitch axis 
3  SunPhi Output of sun sensor at roll axis 
4  SunTheta Output of sun sensor at pitch axis 

5  GeoPhi Output of gyro at roll axis 

6  GeoTheta Output of gyro at pitch axis 
7  GeoPsi Output of gyro at yaw axis 

Table 2 Batch number of monitoring data 
Batch 

number
Data description 

Fault 
time 

1 Normal data Null 
2 Sudden-change fault data of earth sensor at roll axis 46000s 
3 Gradual-change fault data of earth sensor at roll axis 46000s 
4 Sudden-change fault data of earth sensor at pitch axis 46000s 
5 Gradual-change fault data of earth sensor at pitch axis 46000s 
6 Loss fault data of sun sensor at roll axis 46000s 
7 Loss fault data of sun sensor at pitch axis 46000s 
8 Drift-increasing fault data of gyro at roll axis 46000s 
9 Drift-increasing fault data of gyro at pitch axis 46000s 

10 Drift-increasing fault data of gyro at yaw axis 46000s 

5.2 Performance Evaluation 
The monitoring data are relatively more complex, com-
prising of the output data of the measuring mechanism and 
the control input of the execution mechanism (seen in Table 
1). The normal pattern data is discontinuous and unstable 
(seen in Figure 3), and the fault pattern is diversified (with 
sudden-change fault, gradual-change fault and so on). 
Therefore, the normal pattern data is difficult to be dis-
criminated from the fault pattern data (seen from Figure 3). 

With the input-output system identification method, the 
Hammerstein-Wiener model (NLHW) is adopted. Equation 
(1) is optimized, and the responding function f between the 
input and output is estimated. Similarly, for the same data 
(Drift-increasing fault data of gyro at roll axis (the batch 
number is 8) in Table 2), the detection result of the IDL is 
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given in Figure 4, which can be seen that the fault detection 
is timely, the detection effect is remarkable, and 4s detec-

tion is delayed caused by the time threshold, 3W = . 
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Figure 3 Drift-increasing fault of gyro at roll axis (Blue line shows the output in the normal pattern while green line shows the output in the 
fault patter 
 

By adopting the input-output system identification method, 
the detection results in the IDL for the data in Table 2 are 
shown in Table 3. The fault detection is timely, and the 
detection effect is more obvious (both of the FAP (false 
alarm probability) and the MAP (missing alarm probability) 
are much lower). 

In the IDL, the fault detection can be realized, and the 
fault time and the current fault direction are also determined. 
In the UIL, Criterion 2 is adopted to realize the isolation 
between the UF and the AF. In the initial stage, the AF 
pattern is assumed to be empty, therefore, when the second 
batch of data in Table 2 is filled into the UIL, the detected 
fault must be the UF, and then the isolation result is trans-
ferred into the URL. When the third batch of data in Table 2 
is filled into the IDL, the fault time is that 1001t s= , the 
statistic of the directional similarity is 

( ) T
1 1 11 cos( , ) / 7.3179ξ ξ ξ− =r r R , and the isolation threshold 

of the UF is also 0.99 2.3263Φ = . Obviously 
( ) T

1 1 1 0.991 cos( , ) /ξ ξ ξ− >Φr r R , the current fault pattern is 
different from the first fault pattern, and an UF occurs. Then 
the UF is transferred into the URL. The fault isolation result 
for all the tested data in Table 2 can be seen in Table 4. 
From Table 4, we know that the isolator with the fault fea-

ture direction and the direction similarity is valid, and the 
isolation between the UF and the AF can be truly realized. 

  

tf2: 1004 
ln(T2): 5.483 

 
Figure 4 The detection result (with input-output system 
identification method) for drift-increasing fault data of gyro at roll 
axis 

Table 3 Unanticipated fault diagnosis—IDL 

Inherent Detection Layer (IDL) 

Batch 
number 

Normal 
or Fault 

FAP 
(%) 

MAP 
(%) 

Fault 
time (s) Current fault direction 

1 N 5   0 0 0 0 0 0 0 
2 F 3 2 1000+2 0.9876 -0.0042 0.041 -0.053 0.0453 -0.1342 0.0678 
3 F 4 1 1000+1 -0.9997 0.0005 -0.034 0.049 0.0049 -0.0036 0.0222 
4 F 5 1 1000+2 -0.1510 -0.9747 -0.0097 0.0105 0.0442 -0.1550 0.0345 
5 F 4 1 1000+2 -0.0018 1.0000 0.0007 0.0006 -0.0009 -0.0022 -0.0077 
6 F 5 1 1000+2 0.0086 -0.0093 -0.9752 0.0046 -0.0007 0.0003 0.0008 
7 F 3 2 1000+3 -0.0067 0.0052 0.0016 -0.9925 -0.1553 0.0028 -0.0016 
8 F 5 1 1000+4 -0.0769 0.0051 0.0037 0.0018 0.9682 -0.0139 -0.0549 
9 F 3 1 1000+2 -0.0742 0.0215 -0.0029 0.0016 0.0454 -0.9968 0.0447 
10 F 3 1 1000+2 0.0627 -0.0201 -0.0079 0.0086 -0.0476 -0.0441 -0.9849 
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Table 4 Unanticipated fault diagnosis—UIL 

Unanticipated Isolation Layer (UIL) 

Batch 
number 

Anticipated or 
Unanticipated 

Fault Pattern 
code Updated true fault direction 

1 Null 0 0 0 0 0 0 0 0 
2 U 1 1 -0.0043 0.0415 -0.0537 0.0459 -0.1359 0.0687 
3 U 2 -1 0 -0.0340 0.049 0 0 0.0223 
4 U 3 -0.1549 -1 -0.01 0.0108 0.0453 -0.1590 0.0354 
5 U 4 -0.0018 1 0 0 0 -0.0022 -0.0077
6 U 5 0.0088 -0.0095 -1 0.0047 0 0 0 
7 U 6 -0.0068 0.0052 0.0016 -1 -0.1565 0.0028 -0.0016
8 U 7 -0.0794 0.0053 0.0038 0.0019 1 -0.0144 -0.0567
9 U 8 -0.0744 0.0216 0.0029 0.0016 0.0455 -1 0.0447 
10 U 9 0.0637 -0.0204 -0.0080 0..0087 -0.0483 -0.0448 -1 

 

In the IDL, the fault detection can be realized, and the 
fault time and the current fault direction are also determined. 
In the UIL, Criterion 2 is adopted to realize the isolation 
between the UF and the AF. In the initial stage, the AF 
pattern is assumed to be empty, therefore, when the second 
batch of data in Table 2 is filled into the UIL, the detected 
fault must be the UF, and then the isolation result is trans-
ferred into the URL. When the third batch of data in Table 2 
is filled into the IDL, the fault time is that 1001t s= , the 
statistic of the directional similarity is 

( ) T
1 1 11 cos( , ) / 7.3179ξ ξ ξ− =r r R , and the isolation threshold 

of the UF is also 0.99 2.3263Φ = . Obviously 
( ) T

1 1 1 0.991 cos( , ) /ξ ξ ξ− >Φr r R , the current fault pattern is 
different from the first fault pattern, and an UF occurs. Then 
the UF is transferred into the URL. The fault isolation result 
for all the tested data in Table 2 can be seen in Table 4. 
From Table 4, we know that the isolator with the fault fea-
ture direction and the direction similarity is valid, and the 
isolation between the UF and the AF can be truly realized. 

After isolating the UF, the recognition of the UF should 
be carried out on the data layer. For the data in Table 2, the 
recognition result is that: the fault feature direction 
is ( )T0.9876,-0.0042,0.041,-0.053,0.0453, -0.1342, 0.0678 . The 
variance with the largest contribution factor is the first 
dimension. According to Explanation 6, the contribution 
factor reaches 97 percent, and it indicates that the fault 
occurs for the earth sensor at the roll axis. Similarly, the 
result of the UF recognition in the URL for other batches of 
data is shown in Table 5. From Table 5, the recognition of 
the UF corresponding to the fault variance is correct, and 
the UF recognition of the data layer is reached. 

Table 5 Unanticipated fault diagnosis—URL 

Unanticipated Recognition Layer 

Batch 
number 

Anticipated 
or  

Unanticipated 

Fault 
pattern 
code 

Variable subscript 
in Table 3 

1 Null 0 0 
2 U 1 1 
3 U 2 1 
4 U 3 2 
5 U 4 2 
6 U 5 3 
7 U 6 4 
8 U 7 5 
9 U 8 6 
10 U 9 7 

6 Conclusion 
The paper firstly takes the UF as a main diagnosis object. 
The detection and diagnosis method based on data driven 
for the UFs has been researched. The GPM for the UF di-
agnosis has been designed. The GPM is comprised of the 
IDL, the UIL and the URL. This GPM has provided a 
framework support for the UF diagnosis. According to the 
system both with the control input and the measure output, 
the system identification detection method corresponding to 
the IDL has been provided. The current fault feature direc-
tion and the feature direction of the AF pattern have been 
used to establish the statistic of directional similarity. The 
isolation between the AF and the UF has been realized in 
the UIL. According to the singular value decomposition, the 
fault contribution factor of each variance has been obtained, 
and the fault recognition in data layer has been completed. 
The application to fault diagnosis of the satellite’s control 
system has demonstrated its validity. 

Our research shall be furthered in two directions. Firstly, 
based on the framework of the GPM, the fault detection, 
isolation and recognition method on the foundation of 
model inference shall be researched. Secondly, the GPM 
and methods shall be applied to the diagnosis of other 
complex system for both military and civil use. 
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Abstract

A solution for expanding an already existing
pipeline SCADA for real time leak detection is
presented. The work consisted in attaching a FDI
scheme to an industrial SCADA that regulates liq-
uid distribution from its source to end user. For
isolation of the leak a lateral extraction is pro-
posed instead of the traditional pressure profile of
the pipeline. Friction value is a function of pipe
physical parameters, but on line friction estima-
tion achieved better results. Aspects that were im-
portant in the integration of the FDI scheme into
the SCADA were the non synchrony of pipeline
variables (flow, pressure) and their accessibility,
that leaded to data extrapolation and the use of
data base techniques. Vulnerability of the loca-
tion algorithm due to sensors bandwidth and sen-
sitivity is showed, so the importance of selecting
them. The FDI scheme was programmed in Lab-
VIEW and executed in a personal computer.

1 Introduction
Leak detection and isolation in pipelines is an old problem
that has attracted the attention of the scientific community
since decades. A paradigmatic example is the oil leakage in
the Siberian region [1], where the effects on the surrounding
nature have been disastrous. In Mexico, a semi desert coun-
try, there is the need to transport water to the population on
long distances via aqueducts; this requires complex supervi-
sion systems that detect leakages in early ways. Also, there
exist a complex net of pipelines that transport oil and its
by-products; in this net, besides the leakage problem, there
exist also the illegal extraction of the product transported in
the pipeline; this forces that the distribution system should
have a leak detection and location monitoring system.

Since the 1970’s years have been issued several works
that have been fundamental for the detection and location
of leakages as the one of Siebert [2], where on the basis
of the steady state pressure profile along the pipeline sim-
ple expressions are derived, based on correlations,that detect
and locate a leakage. Later Isermann [3] published a survey
showing the state of the art on fault detection by using the
plant model and parameter identification. Recently, Verde
published a book [4] making emphasis on signal processing,

∗Supported by II-UNAM and IT100414-DGAPA-UNAM.

pattern recognition and analytical models for failure diagno-
sis.

But all the later is pure academical, our aim here is
to share some of our practical experiences acquired dur-
ing a re-engineering project that consisted on adding a real
time leak detection and location layer to an already exist-
ing SCADA. The original objectives of that SCADA were
the administration and delivery of some products, through
pipelines, from the source to the end user. As it was our first
approach to integrating a FDI to an existing SCADA and
that we didn’t have experience on this subject, we proposed
a solution that involves simple algorithms for detecting and
locating a leak. In future work we’ll use more elaborate
algorithms as dedicated observers or detecting two simulta-
neous leaks.

In order to show how we solved the targets of the project
we divided the solution in five major parts (each one in-
cluded in sections 2 to 6 down here). Some of them are
extracted from available theory, as the dynamical model for
a flow in a pipe and the expression for leak location, and
others are consequence of the experience achieved in our lab
facilities, as the calculus of pipe friction and and the choice
of sensors, and finally the data acquisition imposed by the
nature of the available SCADA.

Delivering a fluid to clients means steady operation, then
our solution required a suitable model for that condition,
section two describes how to achieve a simple steady state
model for a pipeline. Once the model is at hand an appro-
priate expression for leak location is needed, for that pur-
pose in section three a simple method for locating a leak is
presented. From our experience, pipe friction plays a fun-
damental role in the exact location of the leak and that real
time estimated friction is better than a beforehand constant
one; an on-line expression for calculating the pipeline fric-
tion is showed in section four. In this project we didn’t have
the option to choose sensors, but we consider appropriate to
share here our experience in this matter, a comparative study
on how different type of sensors affect the leak location is
presented in section five. The data acquisition system of
the SCADA is based on a MODBUS system and a database
with the information of the pipe variables, we didn’t have
the right to get into the MODBUS but in the database, sec-
tion six shows how the indirect measurement of pipe vari-
ables issue was solved by using ethernet and data bases,
also, the extrapolation of data of non existing data during
sample times is presented. Finally, the concluding remarks
of this work are presented in section seven.
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2 Pipeline steady state model
In most applications a dynamical model of the system is re-
quired but not here because of the steady operation of the
pipeline, then a steady state model is more suitable. Be-
sides, the pipeline lies buried in the field and has an irregular
topography, but it is possible to derive a model that handles
it like a horizontal one. This model is simpler as will be
showed.

In the following we modify the model of a pipeline with
topographical profile as showed in Figure 1 into one with a
right profile piezometric head, where the pressure variable
depends on a reference value h, as is the hight over sea level
along the pipeline. Consider the one dimension simplified
flow model in a pipeline with n sections [5],

1

Ai

∂Qi(zi, t)

∂t
+ g

∂Hi(zi, t)

∂zi

+
fQi(zi, t)|Qi(zi, t)|

2Di(Ai)2
+ g sinαi = 0

(1)

∂Hi(zi, t)

∂t
+

b2

gAi

∂Qi(zi, t)

∂zi
= 0 (2)

which assumes that fluid is slightly compressible, pipe walls
are slightly deformable and negligible convective changes
in velocity. Q is volumetric flow, H is pressure head, A
is pipe cross-sectional area, g is gravity, f 1 is the D’Arcy-
Weissbach friction [6], b is the velocity of pressure wave,D
is pipe diameter, z is distance variable and t the time. Super
index i = 1, 2, ..., n indicates pipeline section characterized
by its slop with angle αi, n is the total number of sections.
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Figure 1: 60 km Pipeline topographical layout

We start with the following hypothesis: the system works
in steady state and that the pipeline lay on an horizontal sur-
face. Therefore we need a steady state model that takes into
account these conditions.

In order to describe the behaviour of the pressure head
Hi(zi, t) along a section without branches it is assumed
steady state flow, so from (2) one gets

∂Qi(zi, t)

∂zi
= 0 ⇒ Qi constant (3)

Combining (1) and (2)

dHi(zi)

dzi
+ M i(Qi) = 0, (4)

1This friction characterizes the shear stress exerted by the con-
duit walls on the flowing fluid.

with

M i(Qi) = µiQi|Qi| + sin(αi) = mi(Qi) + sin(αi) (5)

that is independent of the spacial coordinate zi, and µi :=
f i/2Di(Ai)2g. Then the solution of (4) reduces to

Hi(zi) = −M i(Qi)zi + Hi(0) for 0 ≤ zi ≤ Li (6)

with Hi(0) the pressure head at the beginning of section
i. Defining boundary conditions for section i in terms of
pressure at the ends:

Hi(zi = 0) := Hi
in Hi(zi = Li) := Hi

out. (7)

with (7) in (6), we obtain

Hi
in − Hi

out = M i(Qi)Li = mi(Qi)Li + ∆Hi, (8)

where ∆Hi = Lisin(αi) is the height difference between
section ends.

It is reported in [7] and [8] that the pressure head

Hi(zi) =
P i(zi)

ρg
(9)

can be written in terms of the piezometric head H̃i(zi), wich
depends on a heigth h that can be related to sea level, i.e.

H̃i(zi) = Hi(zi) + h(zi), (10)

h(zi) in m over reference datum or sea level, ρ is fluid den-
sity. Then the profile pressure (8) is equivalent to

H̃i
in − H̃i

out = mi(Qi)Li (11)

for section i and sea level h(zi) along the section. Finally,
considering that boundary conditions are related by

H̃i
out = H̃i+1

in , (12)

from this equation and (11) one gets

H̃1
in − H̃n

out =

n∑

i=1

Limi(Qi) (13)

which is function of the piezometric head for a pipeline with
n sections without branches.

The profile of Figure 1 corresponds to the topography of
the pipeline under study. The pressure head H(z) and the
resulting piezometric head H̃(z) are shown in Figures 2 and
3, respectively. Take into account the uniformity of H̃(z)
similar to the one of a horizontal pipeline. The reference
datum was the height of the first sensors location.

As a consequence, if H̃1
in = H̃in and H̃n

out = H̃out, be-
sides if mi(Qi) = m(Q) = M(Q) for all i, then Equation
(13) becomes

H̃in − H̃(z) = LM(Q) (14)

where L =
∑n

i=1 Li the total length of the pipeline. Equa-
tion (14) is the steady state piezometric model for the
pipeline viewed as a horizontal one.

3 Leak location
We consider a leakage as an outlet pipe at the leak location
as is shown in Figure 4. A branch or lateral pipe in sec-
tion i breaks the continuity of variables Q(z, t) and H(z, t),
therefore new boundary conditions must be satisfied [9]. In
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Figure 3: Profile of the piezometric head H̃(z)

particular, the union of three pipes is associated to a geome-
try shown in Figure 4 and the corresponding conditions that
describe the action of separating flow are reduced to

H2 = H1 + κ12(H2,H1) (15)
H3 = H1 + κ13(H3,H1) (16)

where H2 and H3 are pressures at the beginning of pipes
2 and 3 and the functions κ1η(·, ·) with η = 2, 3 repre-
sent losses caused by friction and change of flow direc-
tion. For adjusting the order of magnitude of these func-
tions flow simulations were held with Pipelinestudio [10]
with the topology of the study case shown in Figure 1. Sim-
ulation reported that terms κ12 and κ13 were negligible, then

  

  

  
  

  

  

 

 

 

        

  

  

Figure 4: Union of three branches in point zb of pipeline
with transversal section areas A1, A2 and A3

H1 = H2 = H3. Thereafter in the study was included only
the balance

Q1 − Q2 − Q3 = 0, (17)
as consequence,

Q1 = Qin, Q3 = Qout (18)

with Qin y Qout flows at the ends of the pipeline. So the
differential equation (4) transforms in two equations

dH1(z)

dz
− M(Q1) = 0; for 0 ≤ z ≤ zb

dH3(z)

dz
− M(Q3) = 0; for zb < z ≤ L,

(19)

describing the pressure head along the section with a branch
in point zb. As the equations (19) have the same form as (4),
their solutions also have the same as (6). Therefore, with
boundary conditions:

1. H1(z = 0) = Hin,
2. H3(z = L) = Hout,
3. Qin = Qout + Qzb

and
4. Hzb

− ϵ = Hzb
+ ϵ with ϵ → 0

Assuming that all pipes have same diameters, solutions of
(19) evaluated at the ends are reduced to

Hin − Hzb

zb
− M(Qin) = 0

Hzb
− Hout

L − zb
− M(Qout) = 0.

(20)

Obtaining the variable zb associated to the position of the
branch

zb =
M(Qout)L

i + Hout − Hin

M(Qout) − M(Qin)

=
L sinα + m(Qout)L + Hout − Hin

m(Qout) − m(Qin)
, (21)

in terms of the piezometric head

zb =
m(Qout)L + H̃out − H̃in

m(Qout) − m(Qin)
. (22)

Equation (22) is the key for leak isolation. In order to see
the performance of this leak location method some experi-
ments were held in our pipe prototype [11], which is an iron
pipe of 200 m long, 4 inches diameter and six valves at-
tached to it for leak simulations. Table 1 shows the percent
deviations of locating the leak position. In each experiment
a valve was fully open. Coriolis sensors were used.

4 Pipeline friction
The D’Arcy-Weissbach friction is a function of the pipe
parameters, [6] and [12], and operation conditions, as the
Reynolds number. For practical purposes the friction f is
obtained from tables provided by the pipe manufacturers.
But we observed that that value differs from the real one of a
working pipeline where, no matter that is working in steady
state, the value is influenced by noise -caused by pipe in-
ner surface imperfections and attachments (nipples, elbows,
etc.)-, therefore using a previous fixed value of f is of no
use in Equation (1).
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Table 1: Location error in percentage of total pipe length
Experiment ∆zb [%] Valve position [m]

1 1.66 11.54
2 2.93 49.83
3 0.135 80.36
4 0.54 118.37
5 0.375 148.93
6 3.42 186.95

Mean 1.0

To overcome the problem of not having the friction right
value, we proposed a solution that was an on line friction
estimation. In the following we show how to calculate this
friction. For that, we part from the steady state momentum
equation, Equation (4). Turning back the original parame-
ters we get

g
dH

dz
+

f

2DA2
Q |Q| + gsinα = 0 (23)

solving the integral, considering that H0 and HL are pres-
sures at he beginning and at the end of the pipeline and L
the length, results

g(HL − H0) = −(
f

2DA2
Q2

∞ + gsinα)L (24)

where Q∞ is volumetric flow in steady state, the abso-
lute term disappears when flow goes in one direction only.
Friction has the following expression

f =
2DA2g

L

(H0 − HL − Lsinα)

Q2∞
(25)

Equation (25) is used to calculate on line the friction
value, as is shown in Figure 5, experiment realized in our
pipeline prototype. The calculated friction has a consider-
able amount of noise, but this noise can be attenuated via
weighted mean value with forgetting factor (MVFF, contin-
uous line in figure). Actually, we are working on the use of
recursive identification procedures for a better friction esti-
mated.
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Figure 5: Friction estimated, raw and filtered

5 Influence of sensors on location
Flow measurement in a pipeline is fundamental for leak lo-
cation, in view that most of the pipeline leak detection meth-

ods are based on processing a residual that is a flow differ-
ence. Due to our lack of experience, and by suggestion of
a supplier, we start our flow measurements with a paddle
wheel flow sensor [13]. Later on, as ultrasonic sensors are
widely used in the field, we decide to change to them [14],
thinking that our measurements would be better. Finally,
we reached the conclusion that success on leak detection
and location depends strongly on the sensors quality (make
and sensing principle), so we acquired sensors based on the
Coriolis effect [15].

An experiment that we made in our pipe prototype was
to cause a leakage (outflow in a extraction point) and esti-
mate the location with the measurements of the three sen-
sors. Figure 6 shows the deviation of the calculated location
depending on the type of sensor. Oscillations are observed
around the operating point, which leads to the necessity of
signal filtering in the diagnosis process. Table 2 shows the
error leak location, Paddle Wheel and Coriolis sensors have
similar error, but standard deviation is bigger with the Pad-
dle Wheel. In order to compare performance in the fourth
column the accuracy of the instruments are presented; re-
mark that Coriolis error standard deviation is about seventy
times bigger than sensor accuracy. The observation here is
that the quality of the results depends more on the behavior
of the flow than on the accuracy of the instrument used.
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Figure 6: Leak location with the three sensors

Table 2: Leak location errors
Sensor Error Error STD Accuracy

[%] [%] [% FS]
Paddle wheel -0.28 3.36 0.50
Ultrasonic 2.12 1.39 2.00
Coriolis 0.28 0.84 0.05

One of our goals in the SCADA expansion project was to
deliver results in real time. For this, sensors experiments
were performed to determine which one would have the
faster response. An index to take into account is the time
response, it can be appreciated in Figure 6 but is practically
the same, therefore we measured the settling time from the
moment when the leakage valve is opened. In Figures 7,
8 and 9 the flow development is observed, dotted line indi-
cates the time when the leakage valve is opened to 100%. In
Table 3 are the measured times, being the ultrasonic sensor
which requires more time (this by the number of points used
to calculate a mean value).
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Table 3: Sensors settling time
Sensor ts[s]
Paddle wheel 3
Ultrasonic 35
Coriolis 4
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Figure 7: Flow measurement at the pipe ends, paddle wheel
sensors
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Figure 8: Flow measurement at the pipe ends, ultrasonic
sensors
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Figure 9: Flow measurement at the pipe ends, Coriolis sen-
sors

Considering the settling time and noise in measurements
(taking the STD as the measure for that), Coriolis sensor has
the best performance. Experiments showed in this section
were made with 1 s sampling period.

6 Asynchronous data and data bases
In the academy, we are used to work with benchmark sys-
tems or laboratory facilities with ad hoc data acquisition
systems, sufficient sensors, controlled environments, etc.
But these conditions are not necessarily in the practice, as
was the case of the SCADA expansion, where the access
to flow and pressure sensors of the pipeline were not avail-
able, but through a database. So the solution adopted was as
follows:

1. The leak locator is on a dedicated computer, indepen-
dent of the system that regulates de distribution of the
fluid, it connects to the database server, see Figure 10,
via intranet or VPN (Virtual Private Network) connec-
tion in a LAN (Local Area Network) system.

2. With proper permission a program, task performed
with Visual Studio 2010 tool that runs every minute
(it is a program without GUI -Graphic User Interfacer-
that runs silently), brings system data and creates a
database with pipeline flow and pressure information,
data required by the locator for proper operation.

3. The locator program (made in the LabVIEW plat-
form, [16]) periodically takes data (through SQL data
server of Microsoft), applies the detection algorithm
and when detects a leak proceeds to locate it, displays
on the screen the location of the leak (Figures 12 and
13), generates a visual warning and creates a file with
data leakage.

Figure 10: Communication scheme between leak locator
and database

But the data acquisition system of SCADA do not meet
the condition of sampling the system variables with con-
stant sampling period. The nominal sampling period was
3 min, but in reality this varies from one to several tens of
minutes. On the other hand, the locator was assigned a sam-
pling period of 3 min, determined by the condition that nom-
inally SCADA performs a polling of all measuring stations
in that time span. To solve the problem of having a value
of flow and pressure of each station at all sampling time, it
was added to the localizer an algorithm that extrapolates the
missing data when it is not available. Two algorithms were
tested, one that retains the last data in the following sam-
pling periods and one that generates straight line with the
last two values available, that when the value of the variable
that is brought from the database is not a new one, then the
one determined by straight line is used. In order to compare
results with both proposals a simulation with real data with
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three leaks was carried on, in Figure 11 the real and extrapo-
lated input flow data are shown. It can be seen that at certain
intervals the extrapolation by a straight line delivers values
that may be beyond the normal range of measurements, this
situation is exacerbated in large intervals with empty data as
the line grows monotonically delivering data outside the re-
gion of validity. In Figure 12 the location of a leak is shown
when extrapolated data are used and in Figure 13 when re-
tained data are used. The pipe length is about 20 km, so
that retention has outperformed extrapolation, since the lat-
ter yields higher values than the length of the pipe. Original
leak location was about 10 km.
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Figure 11: Graphics with original, extrapolated and retained
data of input flow with three leaks

Figure 12: Leaks location with extrapolated data

Figure 13: Leaks location with retained data

6.1 Alternate database communication
As part of the project requirements, an alternate way of com-
munication with the SCADA database was experimented. In
previous section the communication between leak locator
and database was direct trough a LAN system, the alternate
way was through a third party via internet and VPN connec-
tion. Figure 14 shows the principal elements of this scheme.

The client is the computer with the locator program build
in LabVIEW platform that performs basically two activities:
leak detection and location, and request and sending data
to communications broker using JSON strings. The remote
client interface is a Java process that runs locally and han-
dles communication, authentication, data formatting, en-
cryption and security of the communication with data server.

It connects to the database in the SCADA through TCP
sockets and VPN.

Figure 14: Communications between client and database

For data handling JSON format is used, which is broadly
used for information interchange trough internet. JSON
(Java Script Object Notation) is a data interchange text for-
mat, easy for humans to read and write [17]. JSON is a
collection of pairs {variable name : value}, realized as an
object, record, structure, dictionary, hash table, keyed list,
or associated array, see in Figure 15 an object example.

Figure 15: JSON data format for an object

An example of a JSON string for reporting a leak is the
following:

{"service":"event",
"options": {

"action":"new",
"vector": {

"Module":XXX,
"EventID":XXX,
"Quantity":XXX,
"PipeID":XXX,
"Location":XXX,
"TimeEvent":"yyyymmddhhmmss"}

} }

Communications broker attends clients requests (leaks lo-
cator is not the only one) and also SCADA requests. The
database attached to the broker contains not only pipeline
data but also data generated by the other clients. At the end,
the SCADA has an interface in which information of leak-
age events is displayed.

Figure 16 shows a test ran with real data but off line. That
experience showed that locator not always received answers
from the broker. But this communications scheme is still in
development.
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Figure 16: Off line experiment with real data. Detail of the
graph, y axis is leak location in km

7 Conclusions
An interesting result is that a pipeline with certain topog-
raphy may be analyzed as an horizontal pipe in which the
piezometric head is a sum of measurements and terrain
heights, Equation (10), as seen in section 2.

Compared with traditional methods for locating a leak in
a pipe, the method shown here, Equation (22), requires less
computational effort and has a simple expression for calcu-
lating it.

Another relevant result is the expression for on line calcu-
lation of the pipeline friction, Equation (25), as it is enough
to measure pressure at the ends and steady state flow. The
value of friction was found to be a key parameter for the
exact location of the leak. It is to remark that when a leak
occurs the pressures change modifying the friction value; in
order to avoid wrong location of the leak we keep a delayed
value of friction that is frozen when leak alarm occurs.

On the other hand, is to highlight the importance of
choosing the appropriate sensor. It is not enough to choose
a sensor capable of measuring a certain physical variable,
also must be included in the selection process the purpose
for which the measurements are needed.

The world of measurements for control targets is not lim-
ited to direct measurement of the physical variable, it is
possible to achieve the control objectives with indirect mea-
surements, as was the case of reading the variables from the
plant via the network to a database. Also, with the partial
absence of data we cannot use the plant model to predict
data, then the use of extrapolation methods proves to be a
powerful tool that helped to achieve the goal of this project;
in this paper we use two simple methods, but this is an area
that we continue to explore.

The experience with JSON format strings showed that it
is easier to work with text characters than with specialized
database commands and, no matter the VPN connection and
data encryption, the scheme depends strongly on internet
conditions. If internet fails leak detection scheme fails, sit-
uation that scarcely appears when the locator connects with
database through a LAN system.

To the moment this paper was written our FDI system
is in the proof stage at the SCADA facilities and we are
waiting for in the field results.
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Abstract
Autonomous systems’ dependability can be im-
proved by performing diagnosis during run-time.
This can be achieved through model-based diag-
nosis (MBD) techniques. The required models of
the system are for the most part handcrafted. This
task is time consuming and error prone. To over-
come this issue, we propose a framework to gen-
erate formal models out of natural language doc-
uments, such as technical requirements or FMEA,
using natural language processing (NLP) tools
and techniques from the knowledge representa-
tion and reasoning (KRR) domain. Therefore, we
aim to enable the usage of MBD in autonomous
systems with few extra burden. So doing, we ex-
pect a significant increase in the usage of MBD
techniques on real-world systems.

1 Introduction
Dependability is a key feature of modern autonomous sys-
tems. It can be achieved by sound design and implemen-
tation, thorough testing and runtime diagnosing. To date,
all these processes are still not completely automated and
need substantial manual work. However, all these fields can
greatly benefit from the use of model-based techniques. De-
sign and implementation can be greatly improved through
model-driven engineering, as stated in [1]. Model-based
testing (MBT) has been demonstrated [2] to outperform tra-
ditional testing techniques in both invested time and number
of errors found. Model-based diagnosis (MBD) is the main
target of this work. It has been successfully used in indus-
trial settings [3], reducing the need for human intervention.
Although it has being increasingly adopted in recent years,
we believe that its full potential is still to be developed.

All model-based techniques require appropriate models
of the system. As stated in [4; 5], creating these models
is the most prevalent limiting factor for their adoption. To
overcome this barrier, we propose a method that automates
models creation from the documents used during the sys-
tem design. These comprise requirements documents, ar-
chitectural designs, FMEA and FTA, among others. The
content of these documents is often given in natural lan-
guage and in semi-structured form and lacks a common
semantics. Thus, the contained information is not acces-
sible for a computer. However, advances in natural lan-
guage processing (NLP) and the availability of common
sense and domain-specific knowledge bases (e.g. Cyc [6],

RoboEarth [7]) make semi-automated derivation of mod-
els possible. Despite recent advances on this area [8; 9;
10], most techniques focus on very specific applications of
the generated formal models. Thus, we pose the problem
of generating a common knowledge base as an interme-
diate representation with a well defined semantics out of
documents used during the system design process. From
this central repository, different algorithms can extract dif-
ferent formal models for particular needs. We believe that
this work can increase the acceptance of model-based tech-
niques and broaden their use.

The motivation for this work came during the develop-
ment of a model-based diagnosis and repair (MBDR) sys-
tem for an industrial application. The aim is to improve the
dependability of a fleet of robots that automatically deliver
goods in a warehouse. As stated in [11], even minor fail-
ures often prevent a robot from accomplishing its task, de-
creasing the overall performance of the system. Moreover,
the frequent need of human intervention increases costs and
customer dissatisfaction. Using MBDR techniques, many
of these failures can be automatically handled, allowing the
robot to remain on service, perhaps with its capabilities
gracefully degraded [12; 13]. In extreme cases, diagnos-
ing a failure on time can prevent robot behaviors harmful
for humans, itself or other elements in the environment.

Confronted with the lack of any formal model of the
system, we were forced to manually code the models we
need. However, this is both a time-consuming and error
prone task, and also impose a maintaining burden as the
system evolves. Accordingly, we believe that a mostly au-
tomated approach is not only convenient for the intended
project but can also help extending the use of MBDR
techniques to other projects and domains. Following this
idea, we propose a framework that, in a first step, gath-
ers the information from the project together with domain
and common-sense knowledge in a machine-understandable
knowledge base. Then, a suit of algorithms can extract for-
mal models from this knowledge base for particular pur-
poses. Though our aim is to automate the process as much
as possible, human assistance will be requested whenever
some pieces of information are missing or contradictory [14;
15].

The novelty of our proposal is two-fold: first, we empha-
sizes the usability of the resulting models for MBD. Second,
we aim to integrate all the sources of information typically
available in an industrial development process, such as re-
quirements, architecture, and failure modes. As a result, we
expect to boost the range and applicability of the automat-
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ically generated models. To better illustrate the proposed
framework, we will use a small running example extracted
from a real-world application. It comes to the robot’s box
loading operation, performed by the robot’s load handling
device (LHD).

The remainder of the paper is organized as follows: Re-
lated research on model generation is discussed in Section
2. Section 3 provides an overview of the proposed process.
Section 4 describes the inputs used, while Section 5 de-
scribes the proposed NLP and KRR tool-chain to interpret
them. Section 6 provides an example of an output model
and its use for MBD. Finally, Section 7 summarizes the pre-
sented framework and discusses future work.

2 Related research

We start the brief discussion of related research with the
work using NLP methods to derive models. The work of
[9] uses NLP methods to derive a formal model out of re-
quirements. This formal model can afterwards be trans-
formed into different representations to test or synthesize
the system. The method proposed in [10] uses NLP meth-
ods to derive design documents (class diagrams, etc.) out
of requirements. These design documents can afterwards be
used to implement the system. The authors of [8] proposes
a method to extract action receipts from websites. These
action receipts comprises the desired behavior in order to
achieve a given goal. The method use how-to instructions
and NLP tools to derive an action receipt which can be ex-
ecuted by a robot. Missing parts are inferred with the help
of common sense knowledge about actions. In contrast to
all these approaches, we propose a framework which incor-
porates different information sources to get a better under-
standing of the system. Furthermore, our framework gen-
erates different models out of an internal formal description
depending on the needs of the intended diagnosis and testing
tasks.

Beside NLP methods, machine learning can also be used
to generate a model of the system. The work in [4] pre-
sented a method to statistically learn the model of the sys-
tem under nominal conditions. The model describes the
static interaction of the system components. In contrast, the
method proposed in [5] learns the behavior of a system. The
method infers from observed events similar/different states
and merges similar ones. Furthermore, the variables in the
system for each state are estimated. Both methods are only
applicable if the system is already built. Instead, we create
a model during the design phase, and so the model can be
used right at the first stages of the life-cycle.

Missing or contradicting information must be detected
and handled when generating models. The method in [15]
tries to avoid faults in the requirements document. This is
done through the transformation of the requirements into so
called boilerplates. Through this semi-structured text, am-
biguities are removed and a consistent naming is enforced.
A different approach was proposed in [14] to diagnose a
knowledge base for consistency. If the knowledge base is
inconsistent, the user is asked as an oracle to pinpoint the
problem. Afterwards, the user needs to fix this issue. In our
framework, we will use ideas from both methods to derive a
consistent knowledge base of the system.

3 Framework overview
We propose the framework depicted in Figure 1 to transform
informal documents and knowledge into models suitable for
MBD. The informal inputs (white squares with solid lines)
are processed into intermediate representations (light gray
squares with dashed lines) using techniques from NLP and
KRR, as well as ontologies (e.g. Cyc). We condense them
into a knowledge base together with all our knowledge about
the system and its domain. Finally, a variety of algorithms
can produce formal models suitable for MBD (gray squares
with dot-dash lines).

4 Sources of information
The proposed framework takes artifacts from the design
phase as inputs. We propose the use of the following four in-
puts, though additional sources can be incorporated if avail-
able:

1. Requirements document: The technical requirements
document describes the expected system behavior.
Therefore, it is a mandatory input. The models’ quality
and so the resulting MBD will heavily depend on the
quality of the requirements. Thus, iterative improve-
ment of the requirements and models is used, as pro-
posed in [15]. For our running example, we have taken
four requirements that describe the box loading process
of a robot:
(a) When the robot is docked, it lowers the barrier.
(b) When the robot is ready to load, the load handling

device starts rotating backward.
(c) The load handling device stops rotating back-

wards when the laser beam is triggered.
(d) After stopping the load handling device the barrier

is raised.
2. Domain knowledge: This is the most fuzzy input, as

it is available not as an artifact but as the knowledge
and experience of the engineers involved. We dis-
tinguish three kinds of knowledge. Common sense
knowledge can be provided by existing ontologies as
Cyc [16]. Generic knowledge about the autonomous
systems domain can be provided by dedicated ontolo-
gies as KnowRob [17]. Particular knowledge about the
targeted system itself can be partially inferred from the
system architecture, though other parts must be pro-
vided by the project engineers. The use of ontologies
range from providing meaning to natural language con-
cepts to inferring missing pieces of information.

3. Architecture: The architecture of the system defines its
composing elements plus the relations between them.
It is typically described as a set of diagrams generated
during the design phase of the system. For our run-
ning example, we use the architecture excerpt depicted
in Figure 2. It states that a robot consists of a LHD
and other unspecified elements. Furthermore, the LHD
consists of a laser beam, rollers and a barrier.

4. Failure Modes and Effects Analysis: FMEA looks at
all potential failure modes, their effects and causes and
determines a risk priority factor. FMEA can be used to
determine which potential errors are critical, how they
can be pinpointed, and how the effects thereof can be
avoided [18]. We incorporate the failure modes into
the resulting behavior models to diagnose these known
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Figure 1: Abstract work-flow for the proposed framework. Starting from left with inputs in natural language, we generate
models that can be applied for diagnosis (right).

Figure 2: Robot architecture excerpt. The figure shows re-
lations of the type part of for components of the Robot.

failures. For our running example, we include the two
failure modes that can occur during the load operation,
depicted in Table 1.

The biggest challenge for handling all these inputs is to
understand semi-structured information. So, we will depict
a NLP/KRR tool-chain using state-of-the-art techniques in
the following section.

5 NLP/KRR tool chain
The process generates three intermediate artifacts: semi-
formal text (boilerplates), syntax trees and semantic cate-
gories. As a showcase, we will concentrate on the require-
ments of our running example, though these techniques can
be extended to other textual inputs, as we will see at the end
of this section.

5.1 Boilerplates
This is a semi-formal representation where most of the
spelling errors, poor grammar and ambiguities have been
removed. Boilerplates also enforce the use of a consistent
naming scheme. There exist tools such as [19] to perform
this task semi-automatically. In our example, the four re-
quirements become the four equivalent boilerplates:

(a) when the robot is docked, it lower the barrier.
(b) when the robot is ready to load, the lhd start rotating

backward.
(c) when the lb is triggered, the lhd stop backward rotation.
(d) after stopping the lhd, the barrier is raised.

Figure 3: Sample syntax tree of the first sentence (a) of the
running example.

Note for example that the 3rd person “s” has been removed
from the verbs. Furthermore complex terms such as “load
handling device” have been replaced by lhd. Finally, the
propositions order is rearranged in a consistent structure.

5.2 Syntax trees
A syntax tree comprises the information of the type of each
word in the sentence, e.g. ”lower“ is a verb. Furthermore,
the tree specifies how the sentence is constructed with these
words. For example, the syntax tree of the first require-
ment in our running example is depicted in Figure 3. In this
syntax tree we can identify that “robot” is a noun and “the
robot” is a so called noun phrase. An example of a tool to
extract syntax trees is the probabilistic context free grammar
parser, described in [20].

5.3 Semantic categories
The semantic categories conceptually describe our system,
e.g. a transition describing the motion of an actuator. These
semantic categories are hierarchical in nature, as more com-
plex and abstract concepts are composed of simpler ones,
e.g. a transition is composed by an action, pre and post
conditions, etc. We obtain the semantic categories by pars-
ing the syntax trees and applying transformation rules in a
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Component Failure Observations
Failure 1 Barrier Barrier stuck up Barrier stuck up regardless commands
Failure 2 Load Handling Device (LHD) Rotation fail Laser beam not triggered

Table 1: FMEA from the running example.

Figure 4: Concepts created from the syntax tree in Figure 3.
The word in quotes is the word as it appears in the sentence.
The word in parenthesis is the Cyc concept it belongs to.

bottom up fashion, following [8]. We start at the leafs of
the syntax tree, containing single words. Each word has
assigned a part-of-speech (POS) label describing its gram-
matical role in the sentence. Furthermore, each word has an
additional label with its WordNet [21] synset, used to de-
rive its semantics from the common sense knowledge base.
From the leafs, higher level transformations can be applied
to create more complex semantic categories. For example,
on our running example we create a semantic category for
each word in the sentence “lower the barrier”. Then, we
can derive that “lower” is an action acting on something.
We can after that use the semantic category of the word to-
gether with its position in the syntax tree to apply further
transformation rules. This process is repeated till the root
node is reached. Then, a new semantic category is assigned
to the sentence capturing its semantics. For the running ex-
ample, the semantic category for “lower the barrier” is a
transition. A transition must contain a precondition, a post
condition, an action and optionally an object of the action.
The semantic category specifies that the action “lower” is
performed on the object “barrier”. With the help of com-
mon sense (Cyc ontology [16]) we can reason that this ac-
tion causes the “barrier” from state “up” to state “down”.
Thus, we can infer the pre and post conditions of “lower”.
Finally, the semantic category together with the reasoning
results are packed into statements on our knowledge base,
as it is depicted in Figure 4.

We can incorporate other documents into the knowledge
base by using a similar NLP tool chain. However, how the
information is treated depends heavily on the context inher-
ent to each document type.

6 Model generation for behavior diagnosis
To illustrate how the framework can be used to diagnose
the behavior of the robot, we create an automaton as output
model. To use techniques such as [22], the automaton must
describe both nominal and faulty behaviors of the system.
To generate this automaton from the knowledge base, we
use four different relations stated on it as transitions:

1. Relations representing a direct transition, as depicted
in Figure 4. Such a transition can be directly mapped
into a transition on the automaton, as can be seen in
Figure 5 through the transitions from state 1 to 2.

2. Relations representing an action with a duration. Such
a relation must be translated into several transitions:
the start of the action, the termination event and a tran-
sition to a final state. Such transformed relation is de-
picted in Figure 5 through the transition from state 2 to
5.

3. Relations representing a failure of the system. The
failure event is represented as a divergent path from
a normal transition. Thus, the start state is the same
as the one of the normal transition. Afterwards, we
need a state representing the failure. Finally, we need
an observation transition that leads to a final state rep-
resenting a general failure of the system. The observ-
able transition is cased due to the fact that use a fault
model which is derived from the FMEA. Thus every
fault has an observable discrepancy to the real system.
Additionally it is important to notice that the state rep-
resenting the general failure is state where the system
can exhibit arbitrary behavior. Thus we can model the
lack of knowledge which impact the fault has on the
system. The transformed failure is is depicted in Fig-
ure 5 through the transitions from state 2 to 9.

4. Relations representing a failure of a system compo-
nent. The failure event is represented as a divergent
path from a normal transition. To determine all the
possible affected transitions, we must perform an infer-
ence of the effects each transition has. This inference is
based on common sense and domain knowledge. In our
running example, we can infer that lowering the barrier
causes the barrier to be finally down. A failure such
as barrier_stuck_up can prevent this transition, and so
they can share a common source state. Then, as before
we need an observation transition that leads to a final
state representing a general failure of the system. Such
a sequence is depicted in Figure 5 though the transi-
tions from state 1 to 9 through the states 7 and 8.

7 Conclusion and future work
In this paper we propose a framework to automatically gen-
erate formal models out of documents represented in semi-
structured form and natural language (requirements, domain
knowledge, architecture, failure modes, etc.). The parsed in-
formation is gathered together with domain knowledge in a
knowledge base. Accessing this common repository, a va-
riety of algorithms can generate different kinds of models
for different purposes. Our main target is to derive models
suitable for state-of-the-art MBD techniques applied to au-
tonomous systems. We plan to implement this framework
to assist us on creating the models required for MBD. Do-
ing so, we expect to improve the dependability in the indus-
trial application of a fleet of transport robots in a warehouse.
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Figure 5: Automaton generated from the running example.
Shaded states are reached through some fault. Double cir-
cled states represent final states. State number 9 is the gen-
eral failure state for readability the self loops with all possi-
ble labels are omitted.

Besides this immediate result, we expect that the proposed
framework will ease the creation of formal models for other
applications. Thus, we hope to contribute to the widespread
use of MBD techniques, with the consequent improve of au-
tonomous systems dependability.
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Abstract
This paper addresses Model Based Diagnosis for
the test of avionics systems that combines aero-
nautic computers with simulation software. Just
like the aircraft, those systems are complex since
additional tools, equipments and simulation soft-
ware are needed to be consistent with the test re-
quirements. We propose a structural diagnostic
framework based on the lattice concept to reduce
the time of unscheduled maintenance when the
tests cannot be performed. Here, we also describe
a diagnosis algorithm that is based on the formal
lattice description and designed for test systems.
The benefits is to capture the system structure and
communication specificities to diagnose the con-
figuration, the equipments, the connections, and
the simulation software.

1 Introduction
Avionics systems are complex since tens of subsystems and
components interact to achieve required functions. Exist-
ing devices for aircraft fault monitoring are based on ded-
icated avionics functions but the existing solutions are in-
sufficiently flexible for test systems and can be improved.
In [1], the framework of an health management algorithms
for maintenance is described and implemented on an air-
craft. In [2], the diagnostic of avionics equipments is per-
formed through dynamic fault trees. To prevent important
failures on the aircraft, avionics systems are checked on rigs
called Avionics Test Bench (ATB) composed of the avionics
equipments and flight simulation software.
The environment of the ATB needs to be compliant with the
configuration of the avionics equipments. Faults of the ATB
can concern the avionics equipments, their configurations,
or the ATB itself i.e the movable connections and the simu-
lation software. Since it does not exist monitoring functions
of the ATB itself, a new method needs to be applied to pre-
vent long periods of unavailability. In fact, during the devel-
opment of embedded softwares, its architecture and the test
environment surrounding the ATB are redesigned by adapt-
ing the test means to the specification’s requirements. Since
the ATB is a test system, and the main knowledge are based
on its embedded systems, we need a new approach to deal
with the ATB issues. As the embedded systems are already
tested on the ATB, and the test results are used to focus on
the ATB issues thanks to a new representation based on the
model of the test system, the diagnosis of the ATB is what

we call a meta-diagnosis.
Many diagnosis approaches have been proposed to deal with
specific avionics problems. Two different classes of repre-
sentation are applied: data-based diagnosis or model-based
diagnosis. The first one, as studied by Berdjag et al. [3] is
used to recognize faulty behaviors of an Inertial Reference
System (IRS) thanks to normal or faulty categories of in-
put/output data. In this work, data fusion of outputs sensors
is computed to eliminate faulty sources. In [2], the time
dependency is introduced in data of failure messages to im-
prove problems detection.
In Model Based Diagnosis (MBD), Kuntz et al. [4] have
studied an avionics system using minimal cuts notions. Be-
lard et al. have defined a new approach based on the MBD
hypotheses called Meta-Diagnosis in [5] dealing with mod-
els issues. Berdjag et al. [6] present an algebraic decompo-
sition of the model to reduce the complexity of the required
model-based diagnosers. Giap [7] has proposed a formalism
of an iterative process to give a solution when models are not
complete but it lacks of applications on more complex in-
dustrial systems. Nevertheless, it gives clues for an iterative
diagnosis. Another diagnostic software has been developed
by Pulido et al. in [8] to perform consistency-based diagno-
sis of dynamic system simulating diagnosis scenarios. The
architecture is quite novel and is applied to the three-tank
system.
Structural approaches as graph theory are also popular
for MBD to describe the structure of the system as with
Bayesian Networks in [9]. They enable us to incorporate
the system complexity as with the lattice concept to inte-
grate the sub-models dependencies. For example, in [10],
the lattice model represents fault modes to compute testable
subsystems from redundancy equations. We want to get the
main ideas that will serve our proposal. To our knowledge,
there is no method for the diagnostic of test systems based
on embedded softwares behaviour. Moreover, our proposi-
tion has been adapted from embedded systems to the ATB
behaviour. Its complexity is relevant to the objectives of
the avionics embedded systems certification, as for exam-
ple high levels of safety requirements, or the simulation of
specific test conditions. In our model, we must consider the
fact that our representation must put forward the ATB be-
haviour in case of failures concerning embedded systems,
connections, communications, simulation softwares and all
settings to configure the test. Considering those features, the
high number of needed ATB reconfigurations, it is proposed
a structural representation associated with hierarchical ver-
ifications that reduce the faulty candidates. The motiva-
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tion of the proposed meta-diagnosis approach was presented
in [11]. Here, we propose an extended diagnosis methodol-
ogy originally defined by De Kleer, Williams [12], [13] and
Davis [14] and we present a software implementation run-
ning on a real ATB. It differs from the Belard et al.’s meta-
diagnosis definition because the ATB is still defined as the
main system under study. Here, we extend the diagnostic-
world tools for a specific system and due to the lack of
knowledge and data in case of issues, our proposal is based
on a MBD representation with a structural and functional
decomposition without fault models.
First, we describe the diagnostic framework, the lattice-
based representation used to model the ATB system and the
diagnostic algorithm. In the third section, we provide a de-
scription of the ATB and the application of the lattice con-
cept. In the fourth section, we illustrate the approach with a
case study of the ATB. In the final section, we describe the
development of a software application to perform automati-
cally the ATB diagnosis.

2 Diagnostic framework

2.1 System representation

The system is composed of several subsystems that inter-
act together to achieve a global function. The decomposi-
tions into subsystems is guided by the communication be-
tween components to fulfill this goal. Partitions are used
to decompose the system into functional and communica-
tions categories. So, there are two classes of partitions: the
partitions that represent the structure and the connections of
the system; and the partitions that represent the functions of
the system. As an example, P1 is associated with a func-
tionality of the system P1 = {σ1;σ2}, σ1 = {C1} and
σ2 = {C2, C3}. If a problem appears, i.e the functionality
is not performed, then a fault is detected for this partition P
and symptoms are seen and linked to subsystems σ.
In the following paragraphs, we use the following notation:
P for a partition, σ for a subsystem and ci for a compo-
nent. S = {ci, i ∈ [1, n]} is the set of all the n components
of a system. We note Σ the set of all subsystems, i.e the
power set of components. A partition P is a set of np sub-
systems σi ∈ Σ: P = {σi, i ∈ [1, np]|∀i 6= j;σi ∩ σj =

∅, and
np⋃
i=1

σi = S}. We note P the set of all partitions.

We recall the definition 1 of inclusion relation between par-
titions and the definition 2 of multiplication.

Definition 1. Two partitions P1 and P1 are said to be in
inclusion relation P1 ⊆ P2 if and only if every subsystems
of P1 is contained in a subsystem of P2. The relation ⊆
means that P1 is a sub-partition of P2.

Definition 2. The subsystems σk of the multiplication of two
partitions P = {σi, i ∈ [1, np]} and Q = {σj , i ∈ [1, nq]}
are defined by: ∀σk ∈ P × Q,∃σi ∈ P,∃σj ∈ Q, σk =
σi ∩ σj .

This operation is used to order subsystems with respect to
the proposed diagnostic algorithm. The inclusion relation⊆
is used to organize the components with the lattice concept
L (Σ,⊆) with a partial ordering relation. It is different from
the concept of partially ordered set (poset) because the ar-
rangement of elements is not based on sets but on partitions.

2.2 Diagnostic function
A basic diagnostic function is defined to help the diagno-
sis: the check function. Depending on the granularity, the
check function is applied on a component, a subsystem or
a partition. First, the checkC function is used to deter-
mine if a component is faulty or not. However, we do not
know precisely how a unique component behaves regarding
a fault. So we need to define the checkS function of a sub-
system. The behaviour of a faulty subsystem may also not
be sufficient to explain a fault. In fact, subsystems are inter-
connected making the system structure and the partitioning
concept allows us to focus on different levels of abstrac-
tion that we call granularities. In our study, we only focus
on faults with observable and measurable symptoms. These
faults can only be localized by testing a functionality on a
specific architecture. That is why, functional and structural
partitions are used to decompose the system into testable
partitions.

Definition 3. The checkC function of a component ci is
defined by:
checkC : COMPS → {0, 1,−1} s.a checkC(c) = 0 if
the component c is faulty, checkC(c) = 1 if the component
c is unfaulty and checkC(c) = −1 if the component state is
unknown.

Definition 4. The checkP function of a partition P is de-
fined by:
checkP : P → {0, 1,−1} s.a checkP (P ) = 1 ⇔
∀σi ∈ P, checkS(σi) = 1, checkP (P ) = 0 ⇔ ∃σi ∈
P, checkS(σi) = 0, and checkP (P ) = −1 ⇔ the checked
value is unknown.
Some partitions cannot be checked. The set of pos-
sible checked partitions is Cons. It defined a con-
straint. A constraint Cons is a subset of P s.a: ∀P ∈
Cons, checkP (P ) 6= −1.

Once the checkP value of a partition is known, we have
to define the checkS function of subsystems that are not sin-
gletons σi 6= {ci}. If the partition is faulty, either it exists
a component ci ∈ σi such as checkC(ci) = 0, or the com-
munication between the components in σi is faulty. This
is modeled by checkCom(σi) = 0. If the partition is un-
faulty, then all communications between the components in
σi 6= {ci} are unfaulty and all singletons σi = {ci} are
unfaulty.

Definition 5. The checkCom function of a subsystem σi ⊆
COMPS is defined by:
checkCom : Σ→ {0, 1,−1} s.a checkCom(σi) = 1⇔
the communication between components in σi is unfaulty;
checkCom(σi) = 0⇔
the communications between components in σi is faulty.

To help the diagnosis of the system, we decompose it
into subsystems and we introduce the checkS function of a
subsystem σi ⊆ COMPS defined by:

Definition 6. checkS : Σ → {0, 1,−1} s.a checkS(σi) =
1 ⇔ ∀ci ∈ σi, checkC(ci) = 1 ∧ checkCom(σi) =
1 ; checkS(σi) = 0 ⇔ ∃ci ∈ σi, checkC(ci) = 0 ∨
checkCom(σi) = 0 and checkS(σi) = −1 ⇔ ∃ci ∈
σi, checkC(ci) = −1 ∧ checkCom(σi) = −1.

With the above definitions, it is now time to define the
diagnosis problem. Given a system representation with the
lattice concept L (Σ,⊆) and the set of constraints Cons =
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{P ∈ P, checkP (P ) 6= −1}, the problem is defined by
the consistency between L (Σ,⊆) that contains the system
representation, and Cons that describes system issues.
Definition 7. The problem formulation is to find the faulty
components whose current state may explain the con-
straints. It is defined as a function DIAG(L (Σ,⊆)) under
the constraints Cons.

There are two kinds of faults: the fault of a component
Ci modeled with checkC(Ci) = 0, and the communica-
tion fault of a subsystem σi = {Ci, Cj , ...} modeled with
checkCom(σi) = 0. With the P1 partition, suppose that C2

and C3 are linked with an ARINC 429 link that is not work-
ing. The constraint is checkP (P1) = 0 because the global
function is broken. The reason is that checkCom(σ2) = 0.
Knowing that checkCom(σ2) = 0 for the P1 functionality
is giving the information to fix the system.

2.3 Diagnostic algorithm
It is now necessary to introduce a diagnostic method whose
aim is to solve the above problem. The algorithm is based on
the following proposition that extends the verification from
the multiplication of partitions to partitions, see Proposi-
tion 1. Then, a functional verification is propagated from
partitions to subsystems, and from subsystems to compo-
nents.
Proposition 1. ∀P,Q ∈ P2, checkP (P × Q) = 0 ⇒
checkP (P ) = 0 ∧ checkP (Q) = 0.

In order to increase the readability of the algorithm, it has
been split into three: DIAG(L (Σ,⊆)) is the main algo-
rithm, it initializes the framework with the partitions of the
system {pi, i ∈ [1, n]} and the constraints Cons = {P ∈
P, checkP (P ) 6= x}.
FindFaultyElements checks the partitions that are de-
fined as a constraint. If the checked value of a partition
pmult is faulty (resp. unfaulty), we add it to the faulty (resp.
unfaulty) partitions set P− (resp. P+), and every subsystem
σi of the partition is possibly faulty (resp. unfaulty), we add
it in Σ+, (resp. Σ−). If another partition pmult can help to
get more faulty or unfaulty components, a new constraint is
proposed and added to NCons.
V erification is used to check the possible components that
may be faulty, i.e include in Fc with the checkC function,
and the communication of the subsystems in Σ− with the
checkCom function.

Two functions have been introduced: the checkP (pi)
value of a partition pi and the CheckCom(σi) of a subsys-
tem. Their values can be automatically computed thanks to a
program developed on the system to automate the diagnosis.
This is performed by the GET function whose purpose is to
model the computation of checkP (pi) or CheckCom(σi).

2.4 Formal example
In order to illustrate the problem formulation and the diag-
nostic algorithm, a formal example is provided. It is com-
posed of eight components {Ci, i ∈ [1, 8]} organized into
three partitions:
P1 = { {C1,C2, C3,C4}, {C5,C6, C7,C8}},
P2 = { {C1,C2}, {C3,C4,C5,C6,C7,C8}},
P3 ={{C1}, {C2,C4,C6,C8}, {C3,C5,C7}}.
P3 describes the topology of the system. P1 and P2 describe
functionalities. We set theC2 component as faulty. The idea
is to combine the topology of the system with its function-
alities to find the faulty component or subsystem. A choice

Algorithm 1: DIAG(L (Σ,⊆))

Input: d = {pi, i ∈ [1, n]}, Cons = {consi}
Output: ∆(Diagnosis)
Global variables: End
Fc(faulty components), Uc(unfaulty components),
Σ−(faulty subsystems),Σ+(unfaulty subsystems),
P−(faulty partitions), P+(unfaulty partitions)
∆, Fc, Uc, P

+, P−,Σ−,Σ+ ← {}; End← false;
NCons← {};
while ¬End do

FindFaultySubsystems(d,Cons);
V erification(Fc,Σ

−);
if ¬End then

foreach pi ∈ NCons do
GET checkP (pi)
Cons← Cons ∪ {pi}

Algorithm 2: FindFaultyElements
Input: d = {pi}, Cons = {consi}
Outputs: Fc, P−, Σ−, Σ+

foreach (pj , pk) ∈ P 2 : pi 6= pj do
pmult ← pj × pk
if pmult ∈ Cons then

if checkP (pmult) = 0 then
P− ← P− ∪ {pi}
foreach σi ∈ pi do

foreach ck ∈ Uc do
σi ← σi \ {ck}

if σi = {ci} then
Fc ← Fc ∪ σi

else if σi /∈ Σ+ then
Σ− ← Σ− ∪ {σi}

if checkP (pmult) = 1 then
P+ ← P+ ∪ {pi}
foreach σi ∈ pi do

if σi = {ci} then
Uc ← Uc ∪ σi

else
Σ+ ← Σ+ ∪ {σi}

if pmult /∈ Cons then
if ∃{ci} ∈ pmult then

if ¬(ci ∈ Uc ∪ Fc) then
NCons← NCons ∪ {pmult}

function is introduced to choose the next topology and the
next functionality to be tested. It is guided by the minimum
of tests to perform in order to fix the system. For a set of
partitions P , we define Choose : {P} →P ×P .
As the two functionalities are modeled by P1 and P2, and
the the topology is modeled by P3, we have two possi-
bilities. We assume that P2 is prior to P1, the first itera-
tion is defined with Choose(P)=(P1, P3). We begin with
checkP (P1×P3) = 0, s.a P1 × P3 = { { C1 }, {C2,C4},
{C3}, {C6,C8}, {C5,C7}}. The possible faulty component
are C1 and C3. We check the C1 and C3 components and
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Algorithm 3: V erification
Inputs: Fc

Outputs: ∆ Fc, Uc, End
Initialization: σ+, σ− ← I;
foreach ci ∈ Fc do

if checkC(ci) = 0 then
∆← ∆ ∪ {ci}
End← true

else
Fc ← Fc \ {ci}
Uc ← Uc ∪ {ci}

foreach Σi ∈ Σ− do
GET checkCom(Σi)
if checkCom(Σi) = 0 then

∆← ∆ ∪ {Σi}
End← true

else
Σ− ← Σ− \ {Σi}
Σ+ ← Σ+ ∪ {Σi}

find them as unfaulty, see Tables 1. The possible faulty sub-
systems are {C2, C4}, {C6, C8} and {C5, C7} and they are
unfaulty. The diagnosis is not sufficient, we must relax the
constraint P2 × P3.
The second iteration is defined with Choose(P)=(P2, P3),
s.a P2 × P3 = {{C1}, {C2}, {C4,C6,C8}, {C3,C5,C7}}.
We get checkP (P2 × P3) = 0, the possible faulty compo-
nents are C1 and C2 but C1 has already been checked in the
previous iteration. So, the possible faulty subsystems are
{C3,C5,C7} and {C4,C6,C8}. We check the C2 component
and find it as faulty. For this example, the computed faulty
or unfaulty components is, see Table 2, C2 in P2 × P3.
If no components has been found faulty, the upper topo-
logical level is treated i.e subsystems: {C2,C4}, {C6,C8},
{C5,C7}, {C4,C6,C8} and {C3,C5,C7}}. Here, they are
unfaulty.

Components CheckC
C1 1
C2 −1
C3 1
C4 −1
C5 −1
C6 −1
C7 −1
C8 −1

Table 1: Diagnostic results for components in P1 × P3

The method has permitted to detect quickly the faulty
component using functional partition and a structural par-
titioning. Thanks to this result, possible faults regarding ei-
ther the topology or the functionality are checked.

3 The Automatic Test Benchmark
3.1 Avionics system
The avionics system of the NH90 helicopter is designed
to support multiple hardware and software platforms from

Components CheckC
C1 1
C2 0
C3 1
C4 −1
C5 −1
C6 −1
C7 −1
C8 −1

Table 2: Diagnostic results for components in P2 × P3

more than twelve national customers in over twenty dif-
ferent basic helicopter configurations. The NH90 Avionics
System consists of two major subsystems: the CORE Sys-
tem and the MISSION System. A computer is the bus con-
troller and manages each subsystem communications: the
Core Management Computer (CMC) for the CORE Sys-
tem and the Mission Tactical Computer (MTC) for the MIS-
SION System. Each computer is connected to one or both
subsystems via a multiplex data bus (MIL-STD-1553), point
to point connections (ARINC429) and serial RS-485 lines.
Additional redundant computers are used as backup. One
of the two CMC is the Bus Controller (BC) of the CORE
multiplex data bus. The avionics system of the ATB is
composed of fourteen computers and the above connec-
tions: two CMC: c1 = CMC1 and c2 = CMC2; two
Plant Management Computer (PMC): c3 = PMC1 and
c4 = PMC2; five Multifunction Display (MFD): c5 =
MFD1, c6 = MFD2, c7 = MFD3, c8 = MFD4,
c9 = MFD5; two Display and Keyboard Unit (DKU):
c10 = DKU1, c11 = DKU2; two IRS: c12 = IRS1,
c13 = IRS2; one Radio Altimeter (RA): c14 = RA. For-
mally, COMPSATB = {ci, i ∈ [1, 14]}.
The avionics system under test COMPSSUT is a sub-
system of COMPSATB . It is described Figure 1.
COMPSSUT = {c1, c2, c3, c4, c5, c10, c12, c14}. For the
rest of the article, COMPSSUT will be the primary system
under study.

Figure 1: Architecture of the avionics subsystem

From To Messages Subsystems
DKU1 CMC1 Mode on σSerial1

CMC1 IRS1 Mode on σMIL

IRS1 RA Mode on σNAV ;σARINC

RA IRS1 Alert σNAV ;σARINC

IRS1 CMC1 Alert σMIL;σNAV

CMC1 DKU1 Alert σSerial1;σNAV

Table 3: Messages
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The PMC is used to monitor the status of all the avion-
ics computers. It displays the alert informations on the
MFD. We define the performances partition pPERF =
{σPERF ,σ¬PERF } with:
σPERF = {PMC1,PMC2,RA,IRS1,MFD1}
σ¬PERF = {CMC1,CMC2,DKU1} and the navigation
partition pNAV = {σNAV ,σ¬NAV } with:
σNAV = { RA,IRS1,MFD1}
σ¬NAV = {CMC1,CMC2,DKU1,PMC1,PMC2}.
The test consists in the simulation of a high roll. Normally
the RA should be deactivated above the value of forty de-
grees. The procedure contains the following actions: en-
gage the RA with the DKU1; simulating a roll of 50 de-
grees; check that the RA functionality is deactivated on the
DKU1. Several messages are sent to achieve this func-
tionality, see Table 3, defining a data-flow for two mes-
sages : "Mode on" and "Alert" messages: from DKU1
to CMC1 via serial communication to activate the radioal-
timeter’s specific mode ("Mode on" message); fromCMC1
to IRS1 via MIL-STD-1553 communication to relay the
activation information; from IRS1 to RA via ARINC com-
munication to send a request to the RA to get the roll angle;
from RA to IRS1 via ARINC communication to send the
response to the IRS that compute the angle; from IRS1 to
CMC1 via ARINC communication, from CMC to DKU
via serial communication to display the alert and disable the
functionality ("Alert" message).

3.2 System Under Test (SUT) decomposition
The ATB is used to perform the realization of the avionics
functions with the necessary equipments and a simulated en-
vironment needed to check the system specification.

The ATB is described as a structural decomposition with
components subsets. These sets provide partitions of the
whole system. We define subsystems σi and the partitions
pi with regards to the connections of the avionics system of
Figure 1, the serial communication:
σSerial1 = {CMC1, CMC2, DKU1}
σSerial2 = {PMC1, PMC2}
σ¬Serial = {MFD1, IRS1, RA}
pSerial = {σSerial1;σSerial2;σ¬Serial}

the ARINC communications:
σARINC = {CMC1,CMC2,PMC1,PMC2,

MFD1,IRS1,RA}
σ¬ARINC = {DKU1}
pARINC = {σARINC ; σ¬ARINC}

the MIL-STD-1553 communications:
σMIL = {CMC1, CMC2, PMC1, PMC2, IRS1}
σ¬MIL = {MFD1, DKU1, RA}
pMIL = {σMIL; σ¬MIL}

The above partitions describe the topology of the problem.
We classify the partitions into two categories: functional
partitions and communication partitions. The functional
partitions contain the subsystems that compute and send
the informations. The communication partitions contain the
subsystems that relay these informations. In our example,
the navigation functionality is tested. Functional partition
are: {pNAV ,pPERF }, connection partitions are: {pMIL,
pSerial, pARINC}. We need to define additional partitions
that can be checked with the check function on the system
thanks to this representation:
pNAV.MIL = pNAV × pMIL = {{MFD1,RA};{IRS1};
{CMC1,CMC2,PMC1,PMC2};{DKU1}};
pNAV.Serial = pNAV × pSerial = {{CMC1, CMC2,

Figure 2: Navigation func-
tion decomposition with
dprotocol

Figure 3: Performance
function decomposition
with dprotocol

DKU1}; {PMC1, PMC2}; {MFD1, IRS1, RA}};
pNAV.ARINC = pNAV × pARINC = {{MFD1, IRS1,
RA}; {CMC1, CMC2, PMC1, PMC2}; {DKU1}}.

The performance function can give insights about the
fault. We compute the partitions with this functionality:
pPERF.MIL = pPERF×pMIL = { {MFD1,RA};
{DKU1}; {CMC1,CMC2}; {PMC1,PMC2,IRS1} }
pPERF.Serial=pPERF×pSerial = { {CMC1,CMC2,
DKU1}; {PMC1,PMC2}; {MFD1,IRS1,RA} }
pPERF.ARINC = pPERF×pARINC = { { PMC1, PMC2,
MFD1, IRS1, RA};{CMC1, CMC2}; {DKU1} }.

Those partitions will serve to improve the diagnosis.

3.3 Outlooks about the decompositions
We describe an iterative method to update the diagnostic re-
sult by providing new topologies of the system. We need to
get precise observations to find the faulty components. The
subsystems are computed with the framework of the previ-
ous section.
Given the components, the messages sent between them,
and the protocol of these messages, we can obtain an
overview of the system decomposition: pSUT can be
decomposed into dprotocol = {pSUT × pMIL; pSUT ×
pSerial; pSUT × pARINC}. This hierarchical structure is
provided with a dependency graph, see Figures 2 and 3.

The following partitions are used:
σcom1

= {{DKU1, CMC1, IRS1, RA}};
σ¬com1

= {{MFD1, CMC2, PMC1, PMC2}};
pcom1 = {σcom1 , σ¬com1}.

The path of the informations "RA mode on" and "RA
alert" on copilot side defines another decomposition: σcom2

= {{CMC2, IRS1, RA, DKU1}}; σ¬com2
= {{MFD1,

CMC1, PMC1, PMC2}}; pcom2
= {σcom2

, σ¬com2
}.

We describe the decomposition dcom = {pcom1, pcom2}
on Figures 4 and 5. We compute partitions with the
navigability functionality and this structural decomposition:
pNAV.com1 = pNAV × pcom1 = {{RA, IRS1}; {MFD1};
{CMC1, DKU1}; {CMC2, PMC1, PMC2}};
pNAV.com2 = pNAV × pcom2 = {{RA, IRS1}; {DKU1,
CMC2}; {MFD1}; {CMC1, PMC1, PMC2}};
pPERF.com1 = pPERF × pcom1 = {{RA, IRS1};
{CMC2}; {CMC1, DKU1}; {MFD1, PMC1,
PMC2}};
pPERF.com2 = pPERF × pcom2 = {{RA, IRS1}; {DKU1,
CMC2}; {CMC1}; {MFD1, PMC1, PMC2}}.

4 Illustration of the Meta-Diagnostic
Approach

4.1 Application of the meta-diagnosis approach
An iterative approach is very helpful in this case of dis-
tributed systems since diagnosis can use new subsys-
tems and partitions. The results of the diagnosis are
re-injected in the upper system to refine the results.
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Figure 4: Navigation func-
tion decomposition with
dcom

Figure 5: Performance
function decomposition
with dcom

The first symptom is the misbehavior of the navigation
functionality. We describe the iterations of the algo-
rithms with two topologies. We have launched the meta-
diagnostic algorithm with the topology: dNAV.protocol =
{pNAV.MIL,pNAV.ARINC ,pNAV.SERIAL} and dNAV.com

= {pNAV.com1, pNAV.com2}. The constraint is CONS =
{checkP (pi),∀pi ∈ dNAV.protocol ∪ dNAV.com}. The iter-
ations of the algorithms are described in Tables 4, and 5.

pi checkP (pi) Uc Fc

p
NAV.ARINC

0 ∅ {DKU1}
p

NAV.SERIAL
1 ∅ {DKU1}

p
NAV.MIL

0 ∅ {IRS1,
DKU1}

Table 4: Iterations of CheckMultiplicationPartition
with dprotocol

The third step gives a state of the components in Fc set
that can be faulty: DKU1 and IRS1 in Table 5. If the com-
ponents are faulty, this may explain the system behavior and
the algorithm ends. At the same time, the communications
of subsystems in Σ− can be faulty. They are checked in
Table 6.

ci checkC(ci) Fc Uc

DKU1 1 {IRS1} {DKU1}
IRS1 0 {IRS1} {DKU1}

Table 5: Iterations of the CheckComponents with
dprotocol

Subsystems checkCom Partition
{MFD1, RA} 1 pNAV.ARINC

{CMC1, CMC2, 1 pNAV.ARINC

PMC1, PMC2}

Table 6: Diagnostic results for subsystems

The IRS1 is not faulty, the algorithm is relaunched
with Uc = {DKU1, IRS1} and the other decomposition
dcom = {pNAV.com1, pNAV.com2}. The algorithm itera-
tions are described in Tables 7 and 8.

Once checkP (pNAV.com2) = 1, we deduce that MFD1
is not faulty, see Table 7. At this step, the unfaulty com-
ponents are {DKU1, IRS1,MFD1}, and the diagnosis is
{RA}.

Here the RA is faulty with pNAV.com1, and the algorithm
ends. The solution is RA for pNAV.com1. The data flow
of the messages are checked as the impacted connections,
wiring and, routing. The system specificities of the com-
munication modeled with com1 five clues of the possible

pi checkP (pi) Uc Fc

p
NAV.com1

0 {DKU1, {RA,
IRS1} MFD1}

p
NAV.com2

1 {DKU1, {RA}
IRS1,
MFD1}

Table 7: Iterations of CheckMultiplicationPartition
with dcom

Subsystems checkCom Partition
{RA, IRS1} 1 pNAV.com1

{CMC1, DKU1} 1 pNAV.com1

{CMC2, PMC1, PMC2} 1 pNAV.com1

Table 8: Diagnostic results of subsystems with pNAV.com1

faults. Thanks to the impacted functionality, we know that
only messages concerning the IRS roll are concerned. At
this stage, the simulation of the message or the bad connec-
tion of the IRS are the two main solutions.

4.2 Application with updated constraints
We describe a new problem: the navigation func-
tionality and the performance function do not be-
have normally. The new constraint is CONS =
{checkP (pi), ∀ pi ∈ dNAV.protocol ∪ dNAV.com ∪
dPERF.protocol ∪ dPERF.com}. The algorithm is loaded
from CheckMultiplicationPartition with the decompo-
sition dcom. The algorithm iterations are described in Ta-
ble 9. Once checkP (pPERF.com2) = 1, we deduce that
CMC1 is not faulty.We continue with dprotocol knowing
the CMC1 is not faulty in Table 10. We deduce that we
have to check DKU1 and CMC2.

pi checkP (pi) Uc Fc

pPERF.com1 0 ∅ {CMC2}
pPERF.com2 1 {CMC1} {CMC2}

Table 9: Algorithm 2’s iterations with dcom

pi checkP (pi) Uc Fc

pPERF.ARINC 0 {CMC1} {DKU1,
CMC2}

pPERF.SERIAL 1 {CMC1} {DKU1
CMC2}

pPERF.MIL 0 {CMC1} {DKU1,
CMC2}

Table 10: Iterations of CheckMultiplicationPartition
with dprotocol

At this state, we check the components on the system.
Since the reparation of CMC2 has fixed the problem, we
conclude that CMC2 has been faulty. We also check the
DKU1 configuration, and find nothing. The diagnosis is
∆ = {CMC2}.

The evolution of the number of faulty and unfaulty com-
ponents is reviewed on figure 6. As expected, the number of
unfaulty components is increasing with new tests, i.e tests
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Figure 6: Evolution of the number of faulty and unfaulty
components

of partitions. It reveals that the algorithm is converging to a
solution because the number of components is limited.

5 Software implementation
5.1 Diagnostic software architecture
The algorithms are implemented in a spy software of AR-
INC and MIL-STD-1553 buses, see Figure 7. They are de-
veloped using C++ for effective diagnosis, and to be im-
plemented in the AIRBUS software. The user interfaces are
developed with Java 1.7 and the Swing Graphical User Inter-
face (GUI) widget toolkit. The architecture of the diagnostic

Figure 7: Data flow of the diagnosis software

framework has been adapted to the ATB specificities as de-
scribed with the Model-View-Controller (MVC) paradigm
on Figure 8. Three main objects are defined for the Model:
the Component, the Set, and the Partition objects. Four main
objects are defined in the View to define specific panels: the
diagnosisPanel, the constraintsPanel, the initialStatePanel
and the resultsPanel objects. The model is implemented
with the ArrayList class. It is used to define the list of com-
ponents, the subsystems and the list of partitions. eXtensible
Markup Language (XML) files have been used to describe
the system structure. The Controller dispatches the user re-
quests and selects the panels for presentation. The diagnosis
algorithm is implemented in it. A GUI is provided for han-
dling user inputs such as partitions check values and com-
ponents observations values.

Figure 8: Architecture of the diagnosis software

5.2 User interfaces
The panels are displayed one after the others for each
step of the algorithm defined in the Controller. The

Figure 9: Initial state of the
diagnosis

Figure 10: State of the con-
straints

initialStatePanel panel, Figure 9 defines the status of
equipments before launching the diagnosis and a button the
run the algorithm. The check values computed by the al-
gorithm defined in the Controller are provided to the oper-
ator in Figure 11. The constraintsPanel panel lets to edit
and update constraints, see Figure 10. The result of the di-
agnostic algorithm is provided on Figures 11. It gives the
faulty components (observation equal to zero) and the im-
pacted functionality. If a component is suspected, the data

Figure 11: Diagnosis results

flow of the functional chain described by the partition must
be checked. As described in the case study, it gives insights
about the possible connections, wiring and, routing that can
be wrong.

We compute the results ∆ = { IRS1, DKU1, CMC2,
RA } and display them on Figure 11. If some components
are unfaulty, we can update their status in Figure 9. The al-
gorithm is relaunched using the "GO" button in Figure 9.
The good diagnosis rate is evaluated on Figure 12. It is de-
fined by the number of faulty components that the operator
has to fix over the number of proposed faulty components.

5.3 Discussion
We have proposed a solution for the diagnosis of a complex
system in aeronautics based on the MBD paradigm and the
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Figure 12: Good diagnosis rate

lattice concept. It is an other solution for the meta-diagnosis
problem as described in [5] since we consider the test sys-
tem environment as the main system. Belard has extended
the framework, here we use the original one with the lat-
tice concept to represent the system description. It is also
provided a diagnostic algorithm implemented on the system
to evaluate our method. Since hundreds of diagnosis are
possible on the ATB, since it is not possible to check all
those possibilities, we have introduced a methodology for
the ATB diagnosis that reduce the number of iterations to get
the diagnosis. We have upgraded the applications of MBD
for avionics systems evaluated in [4] and [2]. It is proposed
the integration and evaluation of a diagnostic algorithm for
an ATB, taking the test systems environment into account.
It differs from other applications of MBD like [8] because
the model decomposition is driven by the test systems speci-
ficities that are represented with the lattice concept.

6 Conclusion
This paper extends the MBD approach to propose a diagnos-
tic software that is developed for the diagnosis of test sys-
tems. The current framework is based on the lattice decom-
position and is used to model a test system. First, the lat-
tice decomposition has been used to decompose the system
into its functionalities and connections. The second contri-
bution consists in the proposal of an algorithm that reduce
the diagnostic ambiguity. The lattice description has been
implemented with JAVA native packages. The software ar-
chitecture and diagnostic iterations are provided for a formal
example and an industrial case study. The diagnostic algo-
rithm has shown to reduce the number of faulty candidates.
The results is either faulty equipment or a group of equip-
ments with the associated system functionality that is unable
to meet its goal. Together, they are sufficient to point out the
reparations that will fix the system. The tests on the Avion-
ics Test Systems in AIRBUS HELICOPTERS have shown
good results. The development of models may confront our
solution to many others real problems. In future works, al-
gorithms will be improved with adaptable decompositions
and automatic tests. Furthermore, as the method is generic,
we want to demonstrate the validity of our method for others
test systems used in AIRBUS HELICOPTERS.
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Abstract

Increasing complexity and magnitude of tech-
nical systems demand an accurate fault local-
ization in order to reduce maintenance costs
and system down times. Resting on solid
theoretical foundations, model-based diagno-
sis provides techniques for root cause identi-
fication by reasoning on a description of the
system to be diagnosed. Practical implemen-
tations in industries, however, are sparse due
to the initial modeling effort and the compu-
tational complexity. In this paper, we utilize
a mapping function automating the modeling
process by converting fault information avail-
able in practice into propositional Horn logic
sentences to be used in abductive model-based
diagnosis. Furthermore, the continuing per-
formance improvements of SAT solvers moti-
vated us to investigate a SAT-based approach
to abductive diagnosis. While an empirical
evaluation did not indicate a computational
benefit over an ATMS-based algorithm, the
potential to diagnose more expressive models
than Horn theories encourages future research
in this area.

1 Introduction

Fault identification of technical systems is becoming in-
creasingly difficult due to their rising complexity and
scale. Economic and safety considerations have put ac-
curate diagnosis not only into research focus but has
led to a growing interest in practice as well.

Model-based diagnosis has been presented as a
method to derive root causes for observable anoma-
lies utilizing a description of the system to be diag-
nosed [1, 2]. Reiter [1] proposed a component-oriented
model encompassing the correct system behavior and
structure. Discrepancies, i.e. conflicts, arise when
the observed and expected system performance diverge.
Based on the minimal conflict sets, root causes for the
inconsistencies are obtained by hitting set computation.
Hence, fault diagnosis is a two step process, where first
contradicting assumptions on component health, given
a set of symptoms and the model, are identified. Then
the sets intersecting all conflict sets are computed which

∗Authors are listed in alphabetical order.

constitute the diagnoses. At the same time [2] presents
the General Diagnosis Engine (GDE) for multiple fault
identification, drawing on the connection between in-
consistencies and causes as well. Their approach em-
ploys an assumption-based truth maintenance system
(ATMS) to detect conflicts and thereon compute diag-
noses. Over the years much work has concentrated on
model-based diagnosis applications in various domains,
such as space probes [3] or the automotive industry [4].

Besides the consistency-based approach, a second
method emerged within the field of model-based diag-
nosis, which exploits the concept of entailment to infer
explanations for given observables. While related to
the more traditional technique based on consistency,
abductive model-based diagnosis requires a system for-
malization representing faults and their manifestations
[5].

Even though based on a well-defined theory, a
widespread acceptance of model-based diagnosis among
industries has not been accounted for yet. Two main
contributing factors can be identified: the initial model
development and the computational complexity of di-
agnosis [6]. In order to diminish the modeling effort,
[7] formulates a conversion of failure assessments avail-
able in practice into a propositional logic representation
suitable for abductive diagnosis. Failure mode and ef-
fect analysis (FMEA) is an established reliability eval-
uation method utilized in various industrial fields. It
considers possible component faults as well as their im-
plications on the system’s behavior [8]. Whereas there
has been extensive research on the automatic genera-
tion of FMEAs from system models [9], we argue in
favor of the inverse process. As these assessments re-
port on failures and how they reveal themselves in the
artifact’s behavior, they provide knowledge requisite for
abductive reasoning. In this paper, we present a com-
pilation of FMEAs to models which can be used in ab-
ductive diagnosis.

Apart from discovering inconsistencies, an ATMS is
capable of inferring abductive diagnoses. However, it
may face computational challenges and is restricted to
operate on propositional Horn clauses. In the case of
the models we are extracting from the FMEAs, this is
not a limitation so far. Nevertheless, as we anticipate
to exploit more expressive representations, a different
approach is required.

The performance of Boolean satisfiability (SAT)
solvers has improved immensely over the last years and
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several applications of SAT solvers in practice have
proven successful. Furthermore, we are able to encode
a greater variety of models in SAT. Thus, we propose a
SAT-based approach to abductive diagnosis and empir-
ically compare its performance to a procedure depen-
dent on an ATMS.

The remainder of this paper is structured as follows.
After formally providing the theoretical background on
abductive diagnosis as well as relevant definitions in
the context of SAT, we formulate the modeling process
based on FMEAs and give information on the prop-
erties of the obtained system descriptions. In Section
5 we describe our SAT-based approach to abductive
diagnosis and present an algorithm computing expla-
nations for a given abduction problem. An empirical
evaluation comparing our method to an ATMS-based
diagnosis engine follows in Section 6. Subsequently, we
provide some concluding remarks and give an outlook
on future research possibilities.

2 Related Work
Mechanizing logic-based abduction has been an active
research field for several decades with different ap-
proaches for generating explanations emerging, such as
proof tree completion [10] and consequence finding [11].
While the former exploits a refutation proof involving
hypotheses, the latter computes causes as logical conse-
quences of the theory. As resolution is not consequence
finding complete, [12] devised a procedure based on lin-
ear resolution which is sound and complete for conse-
quence finding for propositional as well as first order
logic.

While the number of practical applications in the
context of abductive model-based diagnosis is rather
small, in [13] the authors describe abductive reasoning
in environmental decision support systems.

Most recently [14] present a SAT encoding for
consistency-based diagnosis. The system description
is compiled into a Boolean formula, such that the for-
mula’s satisfying assignments correspond to the solu-
tions of the diagnosis problem. Based on the encoding,
a SAT solver directly computes the diagnoses. In or-
der to improve the solver’s performance, the authors
utilize several preprocessing techniques. An empirical
comparison of their approach to other model-based di-
agnosis algorithms indicates that their SAT encoding
yields performance benefits. Contrasting these results,
[15] propose a translation to Max-SAT which could not
outperform the stochastic model-based diagnosis algo-
rithm SAFARI [16].

In [17] the authors present an algorithm which ties
constraint solving to diagnosis, thus renders the detec-
tion of inconsistencies and subsequent hitting set com-
putation unnecessary. Another direct approach by [18]
computes minimal diagnoses for over-constrained prob-
lems by finding the sets of constraints to be relaxed
in order to restore consistency. For Boolean formu-
las, those relaxations correspond to Minimal Correc-
tion Subsets (MCSes). Their hitting set dual, mini-
mal unsatisfiable subsets (MUSes), constitute the set
of subformulas explaining the unsatisfiability, i.e. refer
to conflicts. While there are several algorithms for ef-
ficiently computing MCSes, most recently [19] develop
three techniques for reducing the number of SAT solver

calls for existing methods as well as a novel algorithm
for MCSes computation.

As stated by [20] the complexity of abduction sus-
pends of a polynomial-time transformation to SAT.
Thus, in their work the authors present a fixed-
parameter tractable transformation from propositional
abduction to SAT exploiting backdoors and describe
how to use their transformations to enumerate all solu-
tions for a given abduction instance.

3 Preliminaries
This section provides a brief introduction to abduc-
tive model-based diagnosis. In particular, we describe
the propositional Horn clause abduction problem (PH-
CAP) which provides the basis for our research. Note
that throughout the paper we consider the closed-world
assumption. In addition to the background on abduc-
tive model-based diagnosis, we formally define MUSes
and MCSes.

3.1 Abductive Diagnosis
In contrast to the traditional consistency-based ap-
proach, abductive model-based diagnosis depends on a
stronger relation between faults and observable symp-
toms, namely entailment. Hence, whereas consistency-
based diagnosis reasons on the description of the cor-
rect system operation, abductive reasoning requires the
model to capture the behavior in presence of a fault.
By exploiting the notion of entailment and the causal
links between defects and their corresponding effects,
we can reason about explanations for observed anoma-
lies. In general, abductive diagnosis is an NP-hard
problem. However, there are certain subsets of logic,
such as propositional definite Horn theory, which are
tractable [21]. On these grounds we consider the PH-
CAP as defined in [22], which represents the connec-
tions between causes and effects as propositional Horn
sentences. Similar to [22], we define a knowledge base
as a set of Horn clauses over a finite set of propositional
variables.

Definition 1 (Knowledge base (KB)). A knowledge
base (KB) is a tuple (A,Hyp,Th) where A denotes the
set of propositional variables, Hyp ⊆ A the set of hy-
potheses, and Th the set of Horn clause sentences over
A.

The set of hypotheses contains the propositions,
which can be assumed to either be true or false and
refer to possible causes. In order to form an abduction
problem, a set of observations has to be considered for
which explanations are to be computed.

Definition 2. (Propositional Horn Clause Abdu-
ction Problem (PHCAP)) Given a knowledge base
(A,Hyp,Th) and a set of observations Obs ⊆ A then
the tuple (A,Hyp,Th,Obs) forms a Propositional Horn
Clause Abduction Problem (PHCAP).

Definition 3 (Diagnosis; Solution of a PHCAP).
Given a PHCAP (A,Hyp,Th,Obs). A set ∆ ⊆ Hyp is
a solution if and only if ∆ ∪ Th |= Obs and ∆ ∪ Th
6|= ⊥. A solution ∆ is parsimonious or minimal if and
only if no set ∆′ ⊂ ∆ is a solution.

A solution to a PHCAP is equivalent to an abduc-
tive diagnosis, as it comprises the set of hypotheses
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explaining the observations. Even though Definition 3
does not impose the constraint of minimality on a solu-
tion, in practice only parsimonious explanations are of
interest. Hence, we refer to minimal diagnoses simply
as diagnoses. Notice that finding solutions for a given
PHCAP is NP-complete [22].

As aforementioned an ATMS derives abductive ex-
planations for propositional Horn theories, thus it can
be utilized to find solutions to a PHCAP. Based on
a graph structure where hypotheses, observations, and
contradiction are represented as nodes, the Horn clause
sentences defined in Th determine the directed edges in
the graph. Each node is assigned a label containing the
set of hypotheses said node can be inferred from. By
updating the labels, the ATMS maintains consistency.

Algorithm abductiveExplanations exploits an
ATMS and returns consistent abductive explanations
for a set of observations [23]. In case the observa-
tion consists of a single effect, the label of the corre-
sponding proposition already contains the abductive
diagnoses. To account for multiple observables, i.e.
Obs = {o1, o2, . . . , on}, an individual implication is
added, such that o1 ∧ o2 . . . ∧ on → obs, where obs is
a new proposition not yet considered in A. Every set
contained in the label of obs constitutes a solution to
the particular PHCAP.

Algorithm 1 abductiveExplanations [23]

procedure abductiveExplanations
(A,Hyp, Th,Obs)

Add Th to ATMS
Add

(∧
o∈Obs o→ obs

)
to ATMS . obs /∈ A

return the label of obs
end procedure

3.2 Minimal Unsatisfiable Subset and
Minimal Correction Subset

We assume standard definitions for propositional logic
[24]. A propositional formula φ in CNF, defined over
a set of Boolean variables X = {x1, x2, . . . xn}, is a
conjunction of m clauses (C1, C2, . . . , Cm). A clause
Ci = (l1, l2, . . . , lk) is a disjunction of literals, where
each literal l is either a Boolean variable or its comple-
ment. A truth assignment is a mapping µ : X ⇒ {0, 1}
and a satisfying assignment for φ is a truth assignment
µ such that φ evaluates to 1 under µ. Given a formula φ,
the decision problem SAT consists of deciding whether
there is a satisfying assignment for the formula.

In case φ is unsatisfiable there are subsets of φ, which
are of special interest in the diagnosis context, namely
the MUSes and MCSes. A Minimal Unsatisfiable Sub-
set (MUS) comprises a subset of clauses which cannot
be satisfied simultaneously. Notice that every proper
subset of MUS is satisfiable. A Minimal Correction
Subset (MCS) is the set of clauses which corrects the
unsatisfiable formula, i.e. by removing any MCS the
formula becomes satisfiable.

Given an unsatisfiable formula φ, an MUS and MCS
are defined as follows [25]:

Definition 4. (Minimal Unsatisfiable Subset
(MUS)) A subset U ⊆ φ is an MUS if U is unsatisfi-
able and ∀Ci ∈ U,U \ ({Ci}) is satisfiable.

Definition 5. (Minimal Correction Subset
(MCS)) A subset M ⊆ φ is an MCS if φ \M is satis-
fiable and ∀Ci ∈M,φ \ (M \ {Ci}) is unsatisfiable.

Since an MCS is a set of clauses correcting the un-
satisfiable formula when removed, a single clause of an
MUS is an MCS for this MUS. Note that the hitting
set duality of MUSes and MCSes has been established
[26].

Example. Consider the unsatisfiable formula φ in
CNF.

φ =

C1︷ ︸︸ ︷
(¬a ∨ ¬b ∨ c)∧

C2︷ ︸︸ ︷
(¬c ∨ d)∧

C3︷︸︸︷
(c) ∧

C4︷︸︸︷
(¬d)

It is apparent that the combination of clauses C2, C3

and C4 results in φ being unsatisfiable, hence

MUSes(φ) = {{C2, C3, C4}}.
By hitting set computation we arrive at the following
set of MCSes:

MCSes(φ) = {{C2}, {C3}, {C4}}.
Removing any MCS of φ results in the formula being
satisfiable.

It is worth noticing that utilizing subsets of un-
satisfiable formulas has been proposed in regard to
consistency-based diagnosis. In this context, a diagno-
sis is defined as the set of components which assumed
faulty retains the consistency of the system. Thus, a
consistency-based diagnosis corresponds to an MCS.
For instance, [18] presents a direct diagnosis method
computing MCSes for over-constrained systems. In
conflict-directed algorithms, as proposed by Reiter [1],
the minimal conflicts, arising from the deviations of
the modeled to the experienced behavior, equate to the
MUSes. In Section 5 we discuss our abductive diagnosis
approach based on MUSes and MCSes.

4 Modeling Methodology
As mentioned before model-based diagnosis depends on
a formal description of the system to be examined. The
generation of appropriate models, however, is still an
issue preventing a wide industrial adoption, since the
modeling process is time-consuming and typically de-
manding for system engineers.

Therefore, we present a modeling methodology rely-
ing on FMEAs available in practice. An FMEA com-
prises a systematic component-oriented analysis of pos-
sible faults and the way they manifest themselves in
the artifact’s behavior and functionality [8]. This type
of assessment is gaining importance and has become a
mandatory task in certain industries, especially for sys-
tems that require a detailed safety analysis. Due to the
knowledge capturing the causal dependencies between
specific fault modes and symptoms, an FMEA provides
information suitable for abductive reasoning [7].

Definition 6 (FMEA). An FMEA is a set of tuples
(C,M,E) where C ∈ COMP is a component, M ∈
MODES is a fault mode, and E ⊆ PROPS is a set of
effects.

Running Example. In order to illustrate our mod-
eling process, we use the converter of an industrial
wind turbine as our running example [27]. Table 1
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illustrates a simplified FMEA neglecting all parts af-
filiated with reliability analysis, such as severity rat-
ings. Each row specifies a particular failure mode, (i.e.
Corrosion, Thermo-mechanical fatigue (TMF) or High-
cycle fatigue (HCF)) of a subsystem and determines its
corresponding symptoms, such as P turbine referring
to a deviation between expected and measured turbine
power output.

Component Fault Mode Effect

Fan Corrosion T cabinet, P turbine
Fan TMF T cabinet, P turbine

IGBT HCF T inverter cabinet,
T nacelle, P turbine

Table 1: Excerpt of the FMEA of the converter

Consider the FMEA of the converter in Table 1. We
can map the columns to their corresponding represen-
tations from Definition 6. The entries in the column
Component constitute the elements of COMP , the en-
tries in Fault Mode of MODES and PROPS subsumes
the entries of Effect.

COMP = { Fan, IGBT }
MODES = { Corrosion, TMF,HCF }

PROPS =

{
T cabinet, P turbine,

T inverter cabinet, T nacelle

}

Through Definition 6 we obtain FMEAConverter =




(Fan,Corrosion, {T cabinet, P turbine}),
(Fan, TMF, {T cabinet, P turbine}),

(IGBT,HCF, {T inverter cabinet, T nacelle,
P turbine})





Since the FMEA already represents the relation be-
tween defects and their manifestations the conversion to
a suitable abductive KB is straightforward. It is worth
noting that FMEAs usually consider single faults; thus,
the resulting diagnostic system holds the single fault as-
sumption. LetHC be the set of horn clauses. We define
a mapping function M : 2FMEA 7→ HC generating a
corresponding propositional Horn clause for each entry
of the FMEA [7].

Definition 7 (Mapping function M). Given an
FMEA, the function M is defined as follows:

M(FMEA) =def

⋃

t∈FMEA

M(t)

where M(C,M,E) =def {mode(C,M)→ e |e ∈ E } .
We utilize the proposition mode(C,M) to denote that
component C experiences fault mode M . Thus, the
set of component-fault mode couples forms the set of
hypotheses.

Hyp =def

⋃

(C,M,E)∈FMEA

{mode(C,M)}.

In regard to the running example the following elements
compose the set Hyp:

Hyp =

{
mode(Fan,Corrosion),
mode(Fan, TMF ),
mode(IGBT,HCF )

}

The set of propositional variables A is defined as the
union of all effects stored in the FMEA as well as all
hypotheses, that is the set of component-fault mode
pairs, i.e.:

A =def

⋃

(C,M,E)∈FMEA

E ∪ {mode(C,M)}

Continuing our converter example:

A =





T cabinet, P turbine,
T inverter cabinet, T nacelle,

mode(Fan,Corrosion),
mode(Fan, TMF ),
mode(IGBT,HCF )





Applying M results in the following set of proposi-
tional Horn clauses representing Th and thus complet-
ing KBConverter:

Th =





mode(Fan,Corrosion)→ T cabinet,
mode(Fan,Corrosion)→ P turbine,
mode(Fan, TMF )→ T cabinet,
mode(Fan, TMF )→ P turbine,

mode(IGBT,HCF )→ T inverter cabinet,
mode(IGBT,HCF )→ T nacelle,
mode(IGBT,HCF )→ P turbine





On account of the mapping function M and the un-
derlying structure of the FMEAs, the compiled models
feature a certain topology. First, the set of hypotheses
and symptoms are disjoint sets. Second, since there is
a causal link from faults to effects but not vice versa,
the descriptions exhibit a forward and acyclic structure.
Specifically, each implication connects one hypothesis
to one effect, thus are bijunctive clauses. In order to
account for impossible observations, we append addi-
tional implications to KB stating that an effect and its
negation cannot occur simultaneously, i.e. e∧¬e |= ⊥.

The question remains whether the generated models
are suitable for the diagnostic task. Abductive expla-
nations are consistent by definition and complete given
an exhaustive search. Thus, the appropriateness of the
system description is determined by whether a single
fault diagnosis can be obtained given all necessary in-
formation is available.

Definition 8. (One Single Fault Diagnosis
Property (OSFDP)) Given a KB (A,Hyp, Th). KB
fulfills the OSFDP if the following hold:

∀m ∈ Hyp : ∃Obs ⊆ A : {m} is a diagnosis of (A,Hyp,
Th,Obs) and ¬∃m′ ∈ Hyp : m′ 6= m such that {m’} is
a diagnosis for the same PHCAP.

The property ensures that under the assumption
enough knowledge is available all single fault diagnoses
can be distinguished and subsequently unnecessary re-
placement activities are avoided. To verify whether the
OSFDP holds or not, we compute the set of proposi-
tions δ(h) implied by each hypothesis h and the theory.
It is not fulfilled if we can record for two or more hy-
potheses the same δ(h). [7] describes a polynomial al-
gorithm testing for the property. Note that the OSFDP
check can be done on side of the FMEA before compil-
ing the model. This is advantageous as the absence of
the property indicates that internal variables or obser-
vations have not been considered in the FMEA.

Proceedings of the 26th International Workshop on Principles of Diagnosis

170



Assume the set of hypotheses {h1, h2, . . . , hn} share
the same δ(h). We cannot distinguish h1, h2, . . . , hn
from one another and thus all corresponding compo-
nents have to be repaired or replaced in case they are
part of the diagnosis. Therefore, we can treat them
as a unit by replacing h1, h2, . . . , hn with a new hy-
pothesis h′. Once all indistinguishable hypotheses have
been removed, the KB satisfies the OSFDP. Regarding
the hypotheses, which cannot be differentiated, as one
cause during diagnosis has an effect on the computa-
tional effort as fewer hypotheses are to be considered.

Algorithm distinguishHypotheses replaces all in-
distinguishable causes and ensures that after termi-
nation the given KB satisfies the OSFDP. Evidently,
the algorithm’s complexity is determined by the three
nested loops, hence O(|Hyp|2|A − Hyp|). Since there
is a finite number of hypotheses and effects possibly
included in δ(h) the algorithm must terminate.

Algorithm 2 distinguishHypotheses

procedure distinguishHypotheses (A,Hyp, Th)
Ψ[|Hyp|]← Hyp
for all h1 ∈ Ψ do

for all h2 ∈ Ψ do
if h1 6= h2 then

if δ(h1) = δ(h2) and δ(h1) 6= ∅ then
Create new hypothesis h′ . h′ /∈ Hyp
Add h′ to Ψ
Add h′ to A
for all e ∈ δ(h1) do

Add (h′ → e) to Th
Remove (h1 → e) from Th
Remove (h2 → e) from Th

end for
Remove h1 ∧ h2 from Ψ
Remove h1 ∧ h2 from A

end if
end if

end for
end for
return KB(A,Ψ, Th)

end procedure

Our running example of the converter does not
fulfill the OSFDP, since mode(Fan,Corrosion) and
mode(Fan, TMF ) are not distinguishable. By re-
moving both hypotheses and introducing h′ =
mode((Fan,Corrosion), (Fan, TMF )) the property is
fulfilled.

Notice that abductive diagnosis is premised on the
assumption that the model is complete; thus, we pre-
sume that all significant fault modes for each con-
tributing part of the system have been contemplated
in the FMEA. Furthermore, we expect on the one hand
that the symptoms described within the FMEA are de-
tectable in order to constitute observations. On the
other hand, the automated mapping demands a consis-
tent effect denotation throughout the analysis.

5 Abductive Diagnosis via SAT
Although an ATMS derives abductive diagnoses, it is
limited to propositional Horn theories and subject to
performance issues. Both problems have been accom-
modated through ATMS extensions and focus strate-
gies. Nevertheless, the advances in the development

of SAT solvers and their application to a vast number
of different AI problems and industrial domains have
motivated us to consider a SAT-based approach for ab-
ductive diagnosis.

Recall Definition 3 of a diagnosis: ∆ is an abduc-
tive explanation if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|= ⊥.
Through logical equivalence we recast the first condi-
tion to ∆ ∪ Th ∪ {¬Obs} |= ⊥, where {¬Obs} denotes
the set containing the complement of each observation
inObs, i.e. ∀o ∈ Obs : ¬o ∈ {¬Obs} [10]. In general, we
can state the relation as follows: given the theory and
assuming the hypotheses to be true whereas stating the
absence of a set of observations, results in an inconsis-
tency due to the fact that the causes entail the effects,
i.e. Hyp ∪ Th ∪ {¬Obs} |= ⊥. Thus, we draw on this
relationship and reformulate the problem of generating
minimal abductive explanations for a set of observa-
tions to computing minimal unsatisfiable subformulas.

Since MUSes contain several unsatisfiable subsets
irrelevant for the diagnostic task, we define the set
MUSesHyp, which only contains subset minimal MUS
comprising clauses referring to hypotheses:

Definition 9. (MUSesHyp) Let MUSes be the set of
MUSes of Hyp∪Th∪{¬Obs}, then ∀M ∈MUSesHyp :
∃U ∈ MUSes : M = U ∩ Hyp and ¬∃M ′ ∈
MUSesHyp : M ′ ⊂M.

Corollary 1. Given a PHCAP (A,Hyp, Th,Obs), let
MUSesHyp be the set of interesting MUSes. A set
∆ ⊆ Hyp is a minimal abductive diagnosis if ∃M ∈
MUSesHyp : ∆ = M and ∆ ∪ Th 6|= ⊥.

Proof. We can restate the problem of computing in-
consistencies to finding the set of prime implicates of
Th∧Hyp∧{¬Obs}. By definition, the prime implicates
are equivalent to the MUSes of said formula.

Deriving a minimal abductive explanation corre-
sponds to computing a minimal subset of the hypothe-
ses, which cannot be simultaneously satisfied with the
theory and the negation of observations.

We devised the algorithm satAB, which computes the
set of abductive diagnoses for a given PHCAP based on
MUS enumeration. First, in order to take advantage of
the MUSes, which correspond to the solutions of the
PHCAP, we create an unsatisfiable CNF encoding of
the problem. Since the Th consists of Horn clauses
a conversion into CNF is straightforward. Note that
we are, however, not limited to Horn clause models, as
we can create a CNF representation based on Tseitin
transformation [28]. We refer to the set of clauses as-
sociated with the theory as T . For each h ∈ Hyp we
create a single clause assuming h to be true. Addition-
ally, we generate a disjunction containing the negated
observations. The resulting unsatisfiable formula is re-
ferred to as φ. ∆−Set is the set of diagnoses obtained
from the PHCAP.

The diagnostic task consists in computing the sets of
hypotheses which are responsible for the unsatisfiabil-
ity of φ, i.e. MUSesHyp(φ). Since finding satisfiable
subsets is an NP-hard problem whereas UNSAT resides
in Co-NP, we employ an MCSes enumeration algorithm
on the unsatisfiable formula and then derive the diag-
noses via hitting set computation [25]. As we are only
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Figure 1: SAT encoding of the running example

Algorithm 3 satAB

procedure satAB (A,Hyp, Th,Obs)
MCSes← ∅
MCSesHyp ← ∅
T ← CNF(Th) . CNF representation of Th
φ← T ∪Hyp ∪∨o∈Obs ¬o
MCSes← MCSes(φ) . MCS enumeration algorithm
for all m ∈MCSes do

if m ⊆ Hyp and m ∪ Th is consistent then
MCSesHyp ← m ∪MCSesHyp

end if
end for
∆− Set← MHS(MCSesHyp) . Minimal hitting set

algorithm
return ∆− Set

end procedure

interested in the conflicts stemming from the assump-
tions that all hypotheses are true, we select each MCS
only containing clauses referring to explanations. For
this reason, we create the set MCSesHyp such that
∀m ∈ MCSesHyp : m ⊆ Hyp. This has one prac-
tical rational: it diminishes the number of sets to be
considered by the hitting set algorithm. The corre-
sponding MUSes derived via hitting set computation
of MCSesHyp already constitute the abductive diag-
noses.

Consider again our running example of the converter.
We already obtained the KB via the mapping function
M. Let us assume that the condition monitoring sys-
tem of the wind turbine encountered that the turbine’s
power output is lower than expected (P turbine) and
that the cabinet temperature exceeds a certain thresh-
old (T cabinet), i.e. Obs = {P turbine, T cabinet}. In
Figure 1 we depict the CNF representation φ of the ab-
duction problem. Clauses C1 to C7 refer to T , C8 to
C10 to the set Hyp and clause C11 contains the negation
of the set of observations.

Computing the MCSes of φ we obtain: MCSes =
{ {C11} , {C1, C3} , {C1, C9} , {C3, C8} , {C9, C8} ,

{C4, C7, C2} , {C4, C10, C2} , {C4, C7, C8} ,
{C4, C10, C8} , {C2, C9, C7} , {C2, C9, C10}

}
.

Extracting the MCSes, which only contain clauses
from Hyp and are consistent with regard to the theory,
results in

MCSesHyp = {{C9, C8}}.
By computing the hitting set of MCSesHyp, we obtain
the set of MUSes solely referring to explanations, which
is in fact the set of diagnoses:

∆− Set = {{C9} , {C8}}.

Hence the abductive diagnoses are
∆1 = {mode(Fan,Corrosion)} and ∆2 =
{mode(Fan, TMF )}.
6 Empirical Evaluation

To determine whether computing abductive diagnoses
via SAT yields any computational advantages in the
case of our models, we conducted an empirical eval-
uation, comparing abductiveExplanations to satAB
on several instances of FMEAs. In case of the former
we employed a Java implementation of an unfocused
ATMS. The algorithm satAB exploits on the one hand
an MCS enumeration procedure and on the other hand
an implementation of a hitting set algorithm. We uti-
lized the MCSLS tool by [19] to compute the MCSes.
MCSLS is written in C++, employs Minsat 2.2 as the
SAT solver, and provides the possibility to apply sev-
eral MCS enumeration algorithms. We decided for the
CLD approach of MCSLS, which takes advantage of
disjoint unsatisfiable cores and showed the best over-
all performance in a preliminary experimental set-up.
Regarding the hitting set computation, we engaged a
Java implementation of the Binary Hitting Set Tree al-
gorithm [29] which performed well in a comparison of
minimal hitting set algorithms [30]. All the numbers
presented in this section were obtained from a Lenovo
ThinkPad T540p Intel Core i7-4700MQ processor (2.60
GHz) with 8 GB RAM running Ubunutu 14.04 (64-bit).

Several publicly available as well as project internal
FMEAs provide the basis for our evaluation. They
cover various technical systems and subsystems with
different underlying structures. In particular they de-
scribe faults in electrical circuits, a connector system by
Ford (FCS), the Focal Plane Unit (FPU) of the Hetero-
dyne Instrument for the Far Infrared (HIFI) built for
the Herschel Space Observatory, printed circuit boards
(PCB), the Anticoincidence Detector (ACD) mounted
on the Large Area Telescope of the Fermi Gamma-ray
Space Telescope, the Maritim ITStandard (MiTS), and
rectifier, inverter, transformer, backup components, as
well as main bearing of an industrial wind turbine. By
applying the mapping function M, we generated the
corresponding abductive knowledge bases KB for each
FMEA. Table 2 provides an overview of the FMEAs’
structure and the evaluation results. It is worth noting
that the FMEAs vary in the number of hypotheses, i.e.
component-fault mode couples, the number of effects,
and the number of rules, i.e. the links between faults
and symptoms. Due to Th of an abductive KB com-
prising Horn clauses, a conversion into a CNF represen-
tation, suitable for the MCSLS tool, is straightforward.
We do not address the model compilation times, since
the system description would be compiled offline and

Proceedings of the 26th International Workshop on Principles of Diagnosis

172



Figure 2: Cumulative runtimes of abductiveExplana-
tions and satAB for the FMEA instances

the mapping execution consumed less than one second
for the examples we utilized so far.

Table 2 shows that none, except of the model re-
sulting from the transformer’s FMEA, of the original
models satisfy the OSFDP. Therefore, we compiled a
second set of models fulfilling the property by exchang-
ing each set of indistinguishable hypotheses with a new
single hypothesis representing said set. For example,
Algorithm distinguishHyp ensures that the resulting
KB satisfies the OSFDP. In Table 2 the original models
are identified accordingly, and the adapted models are
provided with the label OSFDP. Note that the num-
ber of hypotheses and rules diminishes for the adapted
models.

In the experiments, we computed the abductive ex-
planations for |Obs| from one to the maximum number
of effects possible. The observations were generated
randomly; however, the same set was used for satAB
and abductiveExplanations on the original as well as
adapted model. The results reported in Table 2 have
been obtained from ten trials and both algorithms faced
a 200 seconds runtime limit. Whereas some of the small
runtimes are arguable due to the measurement in the
milliseconds range, Table 2 reveals that satAB (Mean
= 703.73 ms, SD = 8432.07 ms, Median = 0.59 ms,
Skewness = 18.61) does not outperform abductiveEx-
planations (Mean = 3.08 ms, SD = 16.38 ms, Median
= 1 ms, Skewness = 12.68) in general. From the statis-
tical data we can infer that the underlying distribution
of both algorithms is highly right skewed, thus the bulk
of values is located towards the lower runtimes. We can
even observe that for certain instances, the SAT-based
approach performs rather poorly. Amongst these are
the model of an inverter and a rectifier of an industrial
wind turbine. satAB exceeded the given timeout four
times for the former. Notice that in all these cases the
MCSes generation already reached the time threshold.
According to [19] CLD requires |φ| − p+ 1 SAT solver
calls, where p refers to the size of the smallest MCS
of φ. In our case p = 1, as the clause representing the
set of negated observations always constitutes an MCS.
Thus, |φ| SAT solver calls are necessary, where |φ| is de-
termined by |Th| + |Hyp| + 1, with 1 referring to the
clause containing the observations. Unsurprisingly, the
larger FMEAs are more computationally demanding.
It is worth mentioning that in the majority of cases

the hitting set computation accounted for a negligible
fraction of the total runtime.

Figure 2 illustrates the cumulative log runtimes for
satAB and abductiveExplanations on the FMEA
models generated. Although abductiveExplanations
performs on average better, the first model requires a
longer computation time for both algorithms. More-
over, the illustration reveals the high computational ef-
fort necessary for satAB to compute the diagnoses for
the model of the inverter. As expected we observe par-
ticularly high runtimes when the set of observations
contains effects corresponding to different hypotheses.
This has a greater impact on satAB than on the ATMS
implementation. For the section from the models FCS
to PCB in Figure 2, however, we can see that the cu-
mulative runtime for abductiveExplanations rises at
a steeper angle. Generally, the data gathered in the
experiment do not suggest a performance benefit of the
SAT-based approach over an ATMS implementation.

7 Conclusion and Future Work
In the course of the paper, we presented a mapping
from failure assessments available to propositional Horn
clause models. The modeling methodology relies on
FMEAs as they comprise information on faults and
their symptoms. Hence, they provide a suitable source
for model compilation. Although in our case an ATMS
can be used to compute abductive diagnoses, it is lim-
ited to propositional Horn theories. We proposed a
SAT-based approach to abductive model-based diagno-
sis which allows us to reason on more expressive repre-
sentations. Our method is based on computing conflict
sets, i.e. MUSes, resulting from a rewritten, unsatisfi-
able system description. Subsets of these unsatisfiable
cores constitute the minimal abductive explanations.
Since the computation of MUSes is computationally de-
manding our proposed algorithm exploits its hitting set
dual, MCSes, in order to derive minimal diagnoses.

We empirically compared an implementation of a di-
agnosis engine employing an ATMS to our SAT-based
algorithm. The results indicate that while for some of
the models, the algorithm performs well, in general we
could not observe a performance advantage. Particular
examples led to even longer computation times than the
ATMS-based implementation. Despite the fact that the
data provided no evidence of a computational benefit in
employing a SAT-based approach, we believe that the
possibility to utilize more expressive models provides
an interesting incentive for future research in this area.

Since the evaluation results, did not indicate a supe-
riority of the SAT-based approach on grounds of MC-
Ses enumeration, we currently investigate direct conflict
generation methods. Additionally, due to the model
structure and the experiment data we are planning on
employing compilation methods [31, 32], in order to
divert some of the computational inefficiency to the
model generation process.
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Model Structure #Diagnoses Runtime [in ms]
Component #Hyp #Effects #Rules MAX AVG SF DF TF Algorithm MIN MAX AVG

Electrical circuit

Original
32 17 52 792 197.15 11 11 66 abductive < 1 425 27.87

Explanations
satAB < 1 181.33 76.05

OSFDP
15 17 35 1 1 1 1 1 abductive < 1 8 0.33

Explanations
satAB < 1 1.91 0.16

FCS

Original
17 17 51 18 2.93 3 6 18 abductive < 1 1 0.42

Explanations
satAB < 1 6.41 1.28

OSFDP
15 17 49 18 2.75 3 6 18 abductive < 1 61 2.04

Explanations
satAB < 1 4.73 0.56

ACD

Original
13 16 41 15 2.89 5 15 15 abductive < 1 84 1.38

Explanations
satAB < 1 2.89 0.35

OSFDP
12 16 39 10 2.04 5 10 10 abductive < 1 1 0.29

Explanations
satAB < 1 2.435 0.28

Main bearing

Original
3 5 20 3 2.54 3 0 0 abductive < 1 1 0.16

Explanations
satAB < 1 1 0.09

OSFDP
2 5 15 2 1.54 2 0 0 abductive < 1 1 0.12

Explanations
satAB < 1 0.61 0.03

HIFI - FPU

Original
17 11 36 63 8.64 3 7 21 abductive < 1 86 2.54

Explanations
satAB < 1 8.33 3

OSFDP
9 11 27 6 1.55 2 2 3 abductive < 1 1 0.15

Explanations
satAB < 1 1 0.09

MiTS 1

Original
18 21 48 24 8.40 3 2 6 abductive < 1 94 3.40

Explanations
satAB < 1 3.02 0.39

OSFDP
13 21 43 1 1 1 1 1 abductive < 1 100 1.54

Explanations
satAB < 1 2.15 0.16

MiTS 2

Original
22 15 48 288 39.98 4 8 18 abductive < 1 109 4.49

Explanations
satAB < 1 15.16 3.43

OSFDP
14 15 37 5 2.02 1 5 2 abductive < 1 1 0.33

Explanations
satAB < 1 1.68 0.20

PCB

Original
10 11 24 2 1.49 2 2 2 abductive < 1 1 0.21

Explanations
satAB < 1 1.49 0.1

OSFDP
9 11 23 1 1 1 1 1 abductive < 1 1 0.11

Explanations
satAB < 1 1 0.1

Inverter

Original
30 38 144 450 23.73 19 5 50 abductive < 1 107 6.15

Explanations
satAB < 1 166593 5007.37

OSFDP
23 38 124 66 5.89 14 3 6 abductive < 1 94 1.67

Explanations
satAB < 1 1110.82 38.23

Rectifier

Original
20 17 93 88 10.83 8 24 32 abductive < 1 6 1.07

Explanations
satAB < 1 24236.9 1070.88

OSFDP
14 17 66 22 3.06 5 18 8 abductive < 1 1 0.63

Explanations
satAB < 1 44.74 4.88

Transformer

Original
5 8 22 2 1.06 2 2 1 abductive < 1 1 0.16

Explanations
satAB < 1 1.69 0.06

OSFDP
5 8 22 2 1.06 2 2 1 abductive < 1 1 0.13

Explanations
satAB < 1 1.91 0.08

Backup
components

Original
25 30 114 252 23.06 8 12 21 abductive < 1 138 5.24

Explanations
satAB < 1 41.98 12.89

OSFDP
19 30 95 48 3.29 7 7 10 abductive < 1 4 0.79

Explanations
satAB < 1 10.06 3.09

Table 2: Features of the FMEAs and experimental results. For each component we conducted the experiment
using an implementation of abductiveExplanations and satAB. The columns SF, DF, TF display the maximum
number of single faults, double faults, and triple faults, respectively.
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Figure 1. 4-Wheel Skid Steering Mobile Robot. 

Abstract 
This paper studies a fault tolerant control strategy 
for a four wheel skid steering mobile robot 
(SSMR). Through this work the fault diagnosis 
procedure is accomplished using structural analy-
sis technique while fault accommodation is based 
on a Recursive Least Squares (RLS) approxima-
tion. The goal is to detect faults as early as possi-
ble and recalculate command inputs in order to 
achieve fault tolerance, which means that despites 
the faults occurrences the system is able to recov-
er its original task with the same or degraded per-
formance. Fault tolerance can be considered that 
it is constituted by two basic tasks, fault diagnosis 
and control redesign. In our research using the di-
agnosis approach presented in our previous work 
we addressed mainly to the second task proposing 
a framework for fault tolerant control, which al-
lows retaining acceptable performance under sys-
tems faults. In order to prove the efficacy of the 
proposed method, an experimental procedure was 
carried out using a Pioneer 3-AT mobile robot. 

1 Introduction 
The higher demands to achieve more reliable performance 
in modern robotic systems have necessitated the develop-
ment of appropriate fault diagnosis methods. The appear-
ance of faults is inevitable in all systems, such as wheeled 
robots, either because their elements are worn out or be-
cause the environment in which they operate, presents un-
anticipated situations [4]. 
In a large number of applications, as for example search 
and rescue, planetary exploration, nuclear waste cleanup or 
mine decommissioning, the wheeled robots operate in en-
vironments where human intervention can be very costly, 
slow or even impossible. They can move freely in such 
dynamic environments. It is therefore essential for the ro-
bots to monitor their behavior so that faults may be ad-
dressed before they result in catastrophic failures. 
A wheeled mobile robot is usually an embedded control 
platform, which consists of an on-board computer, power, 
motor control system, communications, sonars, cameras, 
laser radar system and sensors such as gyroscope, encod-
ers, accelerometers etc, Fig. 1. 

Fault diagnosis and accommodation for wheeled mobile 
robots is a complex problem due to the large number of 
faults that can be present such as faults of sensors and ac-
tuators [10] - [20]. 
Model based fault detection and isolation is a method to 
perform fault diagnosis using a certain model of the sys-
tem. The goal is to detect faults as early as possible in or-
der to provide a timely warning [8]. The aim of timely 
handling the fault occurrence is to accommodate their con-
sequences so that the system remains functional. This can 
be achieved with fault tolerance. 
In cases where fault could not be tolerated, it is necessary 
to use redundant hardware. In practice there exist two dif-
ferent approaches for fault tolerance control, static redun-
dancy and dynamic redundancy [8]. 
In [10] and [16], the research is focused only on the prob-
lem of fault detection and identification in a mobile robot 
and different approaches related to state estimation were 
introduced. In [9] and [15], the research interest is focused 
only on the problem of fault detection which is a sepa-
rate problem in the fault diagnosis domain. The research 
efforts in [7] and [12] – [14] are primarily intended to de-
tect faults in the sensors of a wheeled robot. Concerning 
the research area of  detection and accommodation on 
wheeled robots there is also a small number of efforts [18] 
with different approaches and methodologies. 
As a fault, it can be considered any unpermitted deviation 
from the normal behavior of a system. Fault diagnosis is 
the procedure of determination of the component which is 
faulty. Consequently, the aim of fault diagnosis is to pro-
duce the suitable fault statement regarding the malfunction 
of a wheeled robot. 
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Fault diagnosis includes fault detection, which is the indi-
cation that something is going wrong in the system and 
fault isolation, which is the determination of the magnitude 
of the fault, by evaluating symptoms. Follows fault detec-
tion. Fault detection and isolation tasks together are re-
ferred to as fault diagnosis (FDI - Fault Detection and Iso-
lation). 
Among the various methods in the design of a residual 
generator, only few deal with nonlinear systems. Structural 
analysis is a technique that provides feasible solutions to 
the residual generation of nonlinear systems 
Structural analysis methods are used in research publica-
tions [2] and [6]. Paper [3] presents a structural analysis 
for complex systems such as a ship propulsion benchmark. 
In [13] and [14] the authors discusses how structural anal-
ysis technique is applied to an unmanned ground vehicle 
for residual generation. 
In this research, a model based fault diagnosis for a four 
wheel skid steering mobile robot (SSMR) is presented. 
The basic idea is to use structural analysis based technique 
in order to generate residuals. For this purpose we use the 
kinematic model of the mobile robot that serves to the de-
sign of the structural model of the system. This technique 
provides the parity equations which can be used as residual 
generators. The advantage of the proposed method is that 
offers feasible solution to the residual generation of non-
linear systems. Additionally, we a propose a fault accom-
modation technique based on RLS approximation in order 
to provide recalculated control inputs in the case that the 
left or right set of the robot tires becomes flat. 
The mobile robot is supposed to be equipped with two 
high resolution optical quadrature shaft encoders mounted 
on reversible-DC motors which provide rotational speeds 
of the left and right wheels Lω  and Rω  respectively and 
an inertial measurement unit (IMU) which provides the 
forward linear acceleration and the angular velocity well as 
the angle θ  between the mobile robot axle and the x axis 
of the mobile robot. The absolute pose (horizontal position 
and orientation) of the robot is available via a camera sys-
tem mounted on the workspace of the robot. A distinctive 
marker is place at the top side of the robot.  
The paper is organized as follows. We start by presenting 
the mathematical model of a Pioneer 3-AT mobile robot in 
section 2. Section 3 describes the fault diagnosis proce-
dure. Section 4 describes the methodology of fault ac-
commodation. In section 5 we present the application re-
sults of the proposed method to the robotic platform. Con-
clusions and directions for future work are presented in 
Section 6. 

2 Mathematical Model of Pioneer 3-AT Mo-
bile Robot 

In this work, the mobile robot Pioneer 3-AT was used as a 
robotic platform. This robot is a four wheel skid – steering 
vehicle actuated by two motors, one for the left sided 
wheels and the other for the right sided wheels. The wheels 
on the same side are mechanically coupled and thus have 
the same velocity. Also, they are equipped with encoders 
and the angular readings are available through routine 
calls. 

The kinematic model describes the motion constrains of 
the system, as well as the relationship of the sensors meas-
urements with the system states and it is crucial for the 
fault diagnosis procedure. 

2.1 Kinematic Model 
The geometry of the robot is presented in Fig.2. To con-
sider the model of the four wheel skid steering mobile ro-
bot (SSMR) it is assumed that the robot is placed on a 
plane surface where ( ),Ι ΙΧ Υ  is the inertial reference 
frame and ( ),Χ Υ  is a local coordinate frame fixed on the 
robot at its center of mass (COM).  The position of the 
COM is ( )x, y  with respect to the inertial frame and ϑ  is 
the orientation of the local coordinate frame with respect to 
the inertial frame. 
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Figure 2. Mobile Robot Geometry. 

As depicted in Fig. 2, a is the distance between the center 
of mass and the front wheels axle along X, b is the distance 
between the center of mass and the rear wheels axle along 
X, c is half distance between wheels along Y and LR , RR  
are the radii of left and right wheels respectively. The co-
ordinates of the instantaneous center of rotation (ICR) are 
( )ICR ICRx ,y . 
Assuming that the robot moves on a horizontal plane the 
linear velocity with respect to the local frame is given by 

 
0

x

y

υ
υ

 
 =  
  

υ  (1) 

and its angular velocity is given by 

 

0
0
ω

 
 =  
  

ω  (2) 

The state vector with respect to the inertial frame is 

 q
x
y
ϑ

 
 =  
  

 (3) 
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The time derivatives of (3) denotes the robot’s velocity 
vector and is given by 

 

cos sin 0
sin cos 0

0 0 1
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y
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y

ϑ ϑ υ
ϑ ϑ υ

ϑ ω
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          







 (4) 

Assuming that longitudinal slip between the wheels and 
the surface can be neglected we have the following equa-
tion, 

 ix i iRυ ω=  (5) 

where ixυ is the longitudinal component of the total veloci-
ty vector iυ  of the i-th wheel expressed with respect to the 
local frame and iR  is the rolling radius of that wheel. 
If we take into account all wheels (Fig. 2), the following 
relationships between the wheels can be obtained [11],  

 

1 2

3 4

1 4

2 3

L x x

R x x

F y y

B y y

υ υ υ
υ υ υ
υ υ υ
υ υ υ

= =
= =
= =
= =

 (6) 

where Lυ  refers to the longitudinal coordinates of the left 
wheels velocities, Rυ  refers to the longitudinal coordinates 
of the right wheels velocities, Fυ  refers to the lateral coor-
dinates of the front wheels velocities and Bυ  refers to the 
lateral coordinates of the rear wheels velocities. 
Unlike other mobile robots, lateral velocities of the four 
wheel skid steering mobile robot are generally nonzero 
since from its mechanical structure the lateral skidding is 
necessary if the robot changes its orientation. Therefore, in 
order to complete the kinematic model, the following non-
holonomic constrain in Pfaffian form is introduced 

 [ ] ( )sin cos 0A q qICR

x
x yϑ ϑ

ϑ

 
 − − = = 
  







 (7) 

Then we have 

 ( )q qS= η  (8) 

where  

 ( )
cos sin
sin cos

0 1
S q

ICR

ICR

x
x

ϑ ϑ
ϑ ϑ

 
 = − 
  

 (9) 

 xυ
ω

 
=  

 
η  (10) 

( )S q  is a full rank matrix, whose columns are in the null 
space of ( )A q ,  

 ( ) ( ) 0q qT TS A =  (11) 

It is noted that since ( ) ( )dim 2 dim 3= < =η q , equation 
(8) describes the kinematic of a sub-actuated robot with the 
nonholonomic constraint given by (7). 

We suppose that the mobile robot localization is calculated 
via the following measurement devices: 

• two high resolution optical quadrature shaft encod-
er mounted on reversible-DC motors which provide 
rotational speeds of the left and right wheels Lω  
and Rω  respectively, 

• an Inertial Measurement Unit (IMU) which pro-
vides the forward linear acceleration and the angu-
lar velocity as well as the angle ϑ  between the 
mobile robot axle and the x axis of the mobile ro-
bot. 

• A camera system, which calculates the pose of the 
robot, by tracking a marker placed at the top side of 
it. 

In this work we are only interested in abrupt faults which 
occur in the actuators of the mobile robot and as conse-
quence, we make the following assumptions. 

• Assumption 1: When the mobile robot starts func-
tioning all its components are in normal mode. 

• Assumption 2: The magnitude of the noise is as-
sumed to be significantly smaller than the magni-
tude of the faults. 

• Assumption 3: Regarding the wheel radius the fol-
lowing inequalities are satisfied: 

 0 & 0R R L LR R R Rδ δ+ > + >   

According to this assumption, faults that result in the com-
plete loss of the wheel are not considered. 

3 Fault Detection and Isolation 
Between several techniques for generating residuals, lim-
ited number of them concerns nonlinear systems. Such one 
is structural analysis. Using this method we can extract 
information about system components that we are not able 
to measure. Also we can take the parity equations that al-
low generating residuals. 
The structure of the mobile robot is described using the 
following sets of constrains C and variables V 

 { }1 2 9, ,...,C c c c=  (12) 

 V X K= ∪  (13) 

X is a subset of the unknown ones and K is a subset of 
known that are measurements and inputs. 
The above subsets are 

 { }, , , ,x yX x y ϑ υ υ= 

   (14) 

 { }, , , , , , ,L RK x y x yϑ ω ω ω=    (15) 

The constrain set of the mobile robot is 

 1 : cos sinx yc x ϑυ ϑυ= −  (16) 

 2 : sin cosx yc y ϑυ ϑυ= +  (17) 

 3 :c ϑ ω=  (18) 

 4 : dxc x
dt

=


  (19) 
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 5 : dyc y
dt

=


  (20) 

 6
0

:
t

c dϑ ω t= ∫  (21) 

 ( )7 :
2x R L
rc υ ω ω= +  (22) 

 8 : dxc x
dt

=  (23) 

 9 : dyc y
dt

=  (24) 

Through the above technique we create the following inci-
dence matrix that describes the robot structure, Table 1. 

Table 1. Incidence Matrix 
 KNOWN UNKNOWN 

 x  y  θ  x  y  ω  Lω  Rω  x  y  ϑ  xυ  yυ  

1c    1      1   1 1 

2c
 

  1       1  1 1 

3c
 

     1     1   

4c
 

   1     1     

5c
 

    1     1    

6c
 

  1        1   

7c
 

      1 1    1  

8c  1        1     

9c   1        1    

 
Applying matching algorithm [1] to the incidence matrix, 
we take out the following matched M and unmatched U 
constrains 

 { }1 2 3 4 7, , , ,M c c c c c=  (25) 

 { }5 6 8 9, , ,U c c c c=  (26) 

In order to have residual generators we use the following 
parity equations 

 ( )5 , 0c y y =   (27) 

 ( )6 , 0c ϑ ϑ =  (28) 

 ( )8 , 0c x x =  (29) 

 ( )9 , 0c y y =  (30) 

By starting from the unknown variables through backtrack-
ing to known variables, the residuals are: 
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1 sin
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cos
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R L

R L

d rr y
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 2
0

t

r dϑ ω t= − ∫  (32) 

 
3

dxr xd
dt

t= −∫   (33) 

 4
dyr yd
dt

t= −∫   (34) 

4 Fault Accommodation 
Fault accommodation is the phase that follows the fault 
diagnosis. One of the most important issues to consider for 
the design of fault tolerant control is relative to the per-
formance and functionality of the system under considera-
tion. More specific it should take into consideration, the 
degree of performance degradation that is acceptable. 
There are two aspects of system performance, dynamic and 
steady state. In our approach we take into account the sec-
ond one. We also use the aforementioned fault diagnosis 
method to monitor the system. The goal is to have the nec-
essary information about the fault occurrence for timely 
counteraction. Figure 3 shows the overall structure of the 
proposed fault tolerant mechanism. It consists of two parts: 
i) the fault detection module which accepts as inputs the 
measurement of the linear and angular velocity of the 
SSMR and decides about the type of fault according to the 
method described in Section 3, and ii) the fault accommo-
dation module which accepts as inputs the type of fault as 
well as the measurement of the linear and angular velocity 
and recalculates accordingly the command inputs in order 
to compensate for the fault. 

 
Figure 3. Fault Tolerance System Architecture. 

 
When a fault occurs the appropriate action is undertaken 
(e.g. maintenance, repair, reconfiguration, stop operation) 
in such a way to prevent system failures. In that level the 
performance degradation that is acceptable is relative to 
the minimum requirements that ensure the system func-
tionality. There is always the case that the malfunction 
may cause hazard for the process or the environment, and a 
decision for stopping the operation is unavoidable.  
In this work, we propose a fault accommodation technique 
which is employed when either the left or the right set of 
tires becomes flat during the operation of a SSMR. It is 
obvious that when a flat tire fault occurs, the total nominal 
radius NOMR  (rim and tire) of the fault wheel changes to 

FR , where F NOMR R< . The proposed fault accommoda-
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tion strategy relays on the online estimation of the new 
radius FR , in order to correct the commanded rotational 
speeds of the faulty wheel and compensate for the fault 
which otherwise will inevitable lead the vehicle to diverge 
from its nominal course. 
As explained in [11], the kinematic model of the SSMR 
can be consider equivalent with the unicycle differential 
drive one, mainly due to the existence of a single motor 
drive and a transmission belt for each set of wheels (left 
and right),  which impose the same rotational speed for 
each set of wheels. According to this assumption we can 
safely assume that: 

 

1
1 12

Lx

R

u c c
c

u
uω

    
=     −     

 (35) 

where ,L L L R R RR Rυ ω υ ω= =  are the equivalent linear 
velocities of the left and right wheels respectively in rela-
tion to the rotational speeds and radii.  If we consider that 
the fault will occur only at the one set of the wheels (left or 
right), we may consider only the angular velocity equation 
for the accommodation. Thus, only the angular velocity 
measurement is needed. The fault accommodation is based 
on the online estimation of the new radius FR  employing a 
Recursive Least Squares algorithm. More specific, we may 
consider the following linear equation for the measurement 
of the mobile’s robot body angular velocity, in case a left 
side fault occurs: 
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while in the case of a right side fault: 
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Having defined the measurement model of the robot angu-
lar velocity in the body frame, we proceed to the on line 
estimation of the fault wheel radius employing the follow-
ing Recursive Least Squares approximation algorithm: 
 

1. Initialize the estimator: 
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where |L RR  is the nominal radius of the left or right 
wheel set.  
 

2. Obtain a new measurement kω , assuming that it is 
given by the equation (36), or (37). 

3. Update the estimate ˆ
kFR  and the covariance kP of the 

estimation error sequentially according to: 
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 (39) 

where kω  is the actual measurement of the body an-
gular velocity as delivered by the IMU sensor. 

4. Using the estimated wheel radius ˆ
kFR  we correct the 

commanded wheel angular velocity as follows: 
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in case there is a left or a right wheel fault respectively. 

5 Application Results 
The proposed method has been implemented and tested 
experimentally on Pioneer 3-AT mobile robot. All experi-
ments have been performed indoors. We consider a faulty 
situation where the right wheel set is flat (forward and 
backward wheels). We apply a command of 

5 /L R rad sω ω= =   for both set of wheels. In the nominal 
situation (no faults) the robot should move (almost) 
straight forwards without any deviation. The robot starts 
from the origin of the inertial frame and moves for 2.5m. 
The time interval dt  between successive IMU measure-
ments is 2.5 secm . The nominal radius of the wheels 
(proper inflation) is 0.115L RR R m= = . 
In the first experiment (Fig. 4), the fault accommodation 
algorithm is not enabled and as we can observe from the 
trajectory of the vehicle, the SSMR significantly diverges 
from its nominal course to the right. 

Figure 4. Robot’s position while the right wheel set is flat. 

 
The fault detection algorithm is enabled, and as we can see 
from Fig. 5 the fault was successfully detected by the pro-
posed structural analysis algorithm. 
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Figure 5. Fault signal as the right wheel set is flat. 

In the second experiment we impose the same control in-
puts to the SSMR , but this time not 
only the fault detection but also the proposed fault accom-
modation algorithm is enabled. As we can see in Fig. 6 the 
on line estimation algorithm quickly converge to the new 
radius of the faulty wheel set and consequently the fault 
accommodation algorithm provides modified inputs to the 
right wheel set (Fig. 7). 
 

 
Figure 6. On line estimation of faulty radius. 

Figure 7. Recalculated input from the fault accommodation 
algorithm. 

As we can observe from Fig. 8 the trajectory of the SSMR 
was successfully detained in an almost straight line form. 

 
Figure 8. SSMR Corrected Planar Trajectory. 

6 Conclusion 
The notion of fault tolerant control for a 4-wheel skid 
steering mobile robot is an important problem to deal with, 
since faults appearance is inevitable in such systems. The 
most significant challenge arises from the complexity of 
the system. In this paper we have introduced the underly-
ing concepts for our approach to fault tolerant control for 
mobile robots focusing our attention mainly to control re-
configuration. As concerning the issue of fault diagnosis 
the structural analysis based technique is used in order to 
generate residuals. We use the kinematic model of the mo-
bile robot that serves to the development of the structural 
model of the system. The above technique provides the 
parity equations which can be used as residual generators 
since model based fault diagnosis approach is based on 
residuals. The advantage of the above method is that it can 
offer a feasible solution to the residual generation of non-
linear systems. The fault accommodation procedure targets 
in the case where one of the two wheel tire sets becomes 
flat. The proposed accommodation method is based on a 
RLS approximation of the new faulty wheel radius and via 
this information a new control input is calculated in order 
to compensate for the fault. 
The efficacy of the proposed method is demonstrated 
through an extensive experimental procedure using a mo-
bile robot Pioneer 3-AT. 
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Abstract
The majority of projects dealing with monitoring
and diagnosis of Cyber Physical Systems (CPSs)
relies on models created by human experts. But
these models are rarely available, are hard to ver-
ify and to maintain and are often incomplete.
Data-driven approaches are a promising alterna-
tive: They leverage on the large amount of data
which is collected nowadays in CPSs, this data is
then used to learn the necessary models automati-
cally. For this, several challenges have to be tack-
led, such as real-time data acquisition and storage
solutions, data analysis and machine learning al-
gorithms, task specific human-machine-interfaces
(HMI) and feedback/control mechanisms. In this
paper, we propose a cognitive reference architec-
ture which addresses these challenges. This ref-
erence architecture should both ease the reuse of
algorithms and support scientific discussions by
providing a comparison schema. Use cases from
different industries are outlined and support the
correctness of the architecture.

1 Motivation
The increasing complexity and the distributed nature of
technical systems (e.g. power generation plants, manufac-
turing processes, aircraft and automobiles) have provided
traction for important research agendas, such as Cyber Phys-
ical Systems (CPSs) [1; 2], the US initiative on the “Indus-
trial Internet” [3] and its German counterpart “Industrie 4.0”
[4]. In these agendas, a major focus is on self-monitoring,
self-diagnosis and adaptivity to maintain both operability
and safety, while also taking into account humans-in-the-
loop for system operation and decision making. Typical
goals of such self-diagnosis approaches are the detection
and isolation of faults and anomalies, identifying and an-
alyzing the effects of degradation and wear, providing fault-
adaptive control, and optimizing energy consumption [5;
6].

So far, the majority of projects and papers for analy-
sis and diagnosis has relied on manually-created diagno-
sis models of the system’s physics and operations [6; 7;
8]: If a drive is used, this drive is modeled, if a reactor is in-
stalled, the associated chemical and physical processes are

modeled. However, the last 20 years have clearly shown that
such models are rarely available for complex CPSs; when
they do exist, they are often incomplete and sometimes in-
accurate, and it is hard to maintain the effectiveness of these
models during a system’s life-cycle.

A promising alternative is the use of data-driven ap-
proaches, where monitoring and diagnosis knowledge can
be learned by observing and analyzing system behavior.
Such approaches have only recently become possible: CPSs
now collect and communicate large amounts of data (see Big
Data [9]) via standardized interfaces, giving rise to what is
now called the Internet of Things [10]. This large amount
of data can be exploited for the purpose of detecting and an-
alyzing anomalous situations and faults in these large sys-
tems: The vision is developing CPSs that can observe their
own behavior, recognize unusual situations during opera-
tions, inform experts, who can then update operations proce-
dures, and also inform operators, who use this information
to modify operations or plan for repair and maintenance.

In this paper, we take on the challenges of proposing
a common data-driven framework to support monitoring,
anomaly detection, prognosis (degradation modeling), diag-
nosis, and control. We discuss the challenges for developing
such a framework, and then discuss case studies that demon-
strate some initial steps toward data-driven CPSs.

2 Challenges
In order to implement data-driven solutions for the moni-
toring, diagnosis, and control of CPSs, a variety of chal-
lenges must be overcome to enable the learning pathways
illustrated in Figure 1:
Data Acquisition: All data collected from distributed
CPSs, e.g. sensors, actuators, software logs, and business
data, must meet real-time requirements, as well as includ-
ing time synchronization and spatial labeling when relevant.
Often sensors and actuators operate at different rates, so data
alignment, especially for high-velocity data, becomes an is-
sue. Furthermore, data must be annotated semantically to
allow for a later data analysis.
Data Storage, Curation, and Preprocessing: Data will be
stored and preprocessed in a distributed way. Environmen-
tal factors and the actual system configuration (e.g., for the
current product in a production system) must also be stored.
Depending on the applications, a relational database format,
or increasingly distributed noSQL technologies [11], may
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Figure 1: Challenges for the analysis of CPSs.

need to be adopted, so that the right subsets of data may be
retrieved for different analyses. Real-world data can also be
noisy, partially corrupted, and have missing values. All of
these need to be accommodated in the curation, storage, and
pre-processing applications.
Data Analysis and Machine Learning: Data must be ana-
lyzed to derive patterns and abstract the data into condensed
usable knowledge. For example, machine learning algo-
rithms can generate models of normal system behavior in
order to detect anomalous patterns in the data [12]. Other
algorithms can be employed to identify root causes of ob-
served problems or anomalies. The choice and design of
appropriate analyses and algorithms must consider factors
like the ability to handle large volumes and sometimes high
velocities of heterogeneous data. At a minimum, this gener-
ally requires machine learning, data mining, and other anal-
ysis algorithms that can be executed in parallel, e.g., using
the Spark [13], Hadoop [14], and MapReduce [15] architec-
tures. In some cases, this may be essential to meet real-time
analysis requirements.
Task-specific Human-Machine-Interfaces: Tasks such as
condition monitoring, energy management, predictive main-
tenance or diagnosis require specific user interfaces [16].
One set of interfaces may be more tailored for offline analy-
sis to allow experts to interact with the system. For example,
experts may employ information from data mining and ana-
lytics to derive new knowledge that is beneficial to the future
operations of the system. Another set of interfaces would be
appropriate for system operators and maintenance person-
nel. For example, appropriate operator interfaces would be
tailored to provide analysis results in interpretable and ac-
tionable forms, so that the operators can use them to drive
decisions when managing a current mission or task, as well
as to determine future maintenance and repair.
Feedback Mechanisms and Control: As a reaction to rec-
ognized patterns in the data or to identified problems, the
user may initiate actions such as a reconfiguration of the
plant or an interruption of the production for the purpose of
maintenance. In some cases, the system may react without
user interactions; in this case, the user is only informed.

3 Solutions
As Section 4 will show, the challenges from Section 2 reap-
pear in the majority of CPS examples. While details, such
as the machine learning algorithms employed or the nature
of data and data storage formats can vary, the primary steps
are about the same. Most CPS solutions re-implement all of
these steps and even employ different solution strategies—

raising the overall efforts, preventing any reuse of hard-
ware/software and impeding a comparison between solu-
tions.

To achieve better standardization, efficiency, and repeata-
bility, we suggest a generic cognitive reference architecture
for the analysis of CPSs. Please note that this architecture is
a pure reference architecture which does not constraint later
implementations and introduction of application-specific
methods.

Figure 2 shows its main components:
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Figure 2: A cognitive architecture as a solution for the anal-
ysis of CPSs.

Big Data Platform (I/F 1 & 2): This layer receives all rel-
evant system data, e.g., configuration information as well
as raw data from sensors and actuators. This is done by
means of domain-dependent, often proprietary interfaces,
here called interface 1 (I/F 1). This layer then integrates,
often in real-time, all of the data, time-synchronizes them
and annotates them with meta-data that will support later
analysis and interpretation. For example, sensor meta-data
may consist of the sensor type, its position in the system and
its precision. This data is provided via I/F 2, which, there-
fore, must comprise the data itself and also the meta-data
(i.e., the semantics). A possible implementation approach
for I/F 2 may be the mapping into and use of existing of Big
Data platforms, such as Sparks or Hadoop, for storing the
data and the Data Distribution Service (DDS) for acquiring
the data (and meta-data).
Learning Algorithms (I/F 2 & 3): This layer receives all
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data via I/F 2. Since I/F 2 also comprises meta-data, the ma-
chine learning and diagnosis algorithms need not be imple-
mented specifically for a domain but may adapt themselves
to the data provided. In this layer, unusual patterns in the
data (used for anomaly detection), degradation effects (used
for condition monitoring) and system predictions (used for
predictive maintenance) are computed and provided via I/F
3. Given the rapid changes in data analysis needs and capa-
bilities, this layer may be a toolbox of algorithms where new
algorithms can be added by means of plug-and-play mecha-
nisms. I/F 3 might again be implemented using DDS.
Conceptual Layer (I/F 3 & 4): The information provided
by I/F 3 must be interpreted according to the current task
at hand, e.g. computing the health state of the system.
Therefore, the provided information about unusual patterns,
degradation effects and predictions are combined with do-
main knowledge to identify faults, their causes and rate them
according to the urgency of repair. A semantic notation will
be added to the information, e.g. the time for next main-
tenance or a repair instruction, which will be provided at
I/F 4 in a human understandable manner. From a computer
science perspective, this layer provides reasoning capabili-
ties on a symbolic or conceptual level and adds a semantic
context to the results.
Task-Specific HMI (I/F 4 & 5): The user is in the center
of the architecture presented here, and, therefore, requires
task-, context- and role-specific Human-Machine-Interfaces
(HMIs). This HMI uses I/F 4 to get all needed analysis
results and presents them to the user. Adaptive interfaces,
rather than always showing the results of the same set of
analyses, could allow a wider range of information to be
provided, while maintaining efficiency and preventing in-
formation overload. Beyond obvious dynamic capabilities
like alerts for detected problems or anomalies, the interfaces
could further adapt the information displayed to be more
relevant to the current user context (e.g. the user’s loca-
tion within a production plant, recognition of tasks the user
may be engaged in, observed patterns of the user’s previous
information-seeking behavior, and knowledge of the user’s
technical background). If the user decides to influence the
system (e.g. shutdown of a subsystem or adaptation of the
system behavior), I/F 5 is used to communicate this deci-
sion to the conceptual layer. Again, I/F 4 and I/F 5 might be
implemented using DDS.
Conceptual Layer (I/F 5 & 6): The user decisions will be
received via I/F 5. The conceptual layer will use the knowl-
edge to identify actions which are needed to carry out the
users’ decisions. For example, a decision to decrease the
machine’s cycle time by 10 % could lead to actions such as
decreasing the robot speed by 10 % and the conveyor speed
by 5 % or the decision to shutdown a subsystem. These ac-
tions are communicated via I/F 6 to the adaption layer.
Adaption (I/F 6 & 7): This layer receives system adaption
commands on the conceptual level via I/F 6—which again
might be based on DDS. Examples are the decrease of robot
speed by 10 % or a shutdown of a subsystem. The adap-
tion layer takes these commands on the conceptual level
and computes, in real-time, the corresponding changes to
the control system. For example, a subsystem shutdown
might require a specific network signal or a machine’s tim-
ing is changed by adapting parameters of the control algo-
rithms, again by means of network signals. I/F 7 therefore
uses domain-dependent interfaces.

4 Case Studies
We present a set of case studies that cover the manufacturing
and process industries, as well as complex CPS systems,
such as aircraft.

4.1 Manufacturing Industry
The modeling and learning of discrete timing behavior for
manufacturing industry (e.g., automative industry) is a new
field of research. Due to the intuitive interpretation, Timed
Automata are well-suited to model the timing behavior of
these systems. Several algorithms have been introduced to
learn such Timed Automata, e.g. RTI+ [17] and BUTLA
[18]. Please note that the expert still has to provide struc-
tural information about the system (e.g. asynchronous sub-
systems) and that only the temporal behavior is learned.
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Figure 3: Learned Timed Automata for a manufacturing plant.

The data acquisition for this solution (I/F 1 in Figure 2)
has been implemented using a direct capturing of Profinet
signals including an IEEE 1588 time-synchronization. The
data is offered via OPC UA (I/F 2). On the learning layer,
timed automata are learned from historical data and com-
pared to the observed behavior. Also, the sequential behav-
ior of the observed events as well as the timing behavior
is checked, anomalies are signaled via I/F 3. On the con-
ceptual layer it is decided whether an anomaly is relevant.
Finally, a graphical user interface is connected to the con-
ceptual layer via OPC UA (I/F 4).

Figure 3 shows learned automata for a manufacturing
plant: The models correspond to modules of the plants, tran-
sitions are triggered by a control signals and are annotated
with a learned timing interval.

4.2 Energy Analysis In Process Industry
Analyzing the energy consumption in production plants has
some special challenges: Unlike the discrete systems de-
scribed in Section 4.1, also continuous signals such as the
energy consumption must be learned and analyzed. But also
the discrete signals must be taken into consideration because
continuous signals can only be interpreted with respect to
the current system’s status, e.g. it is crucial to know whether
a valve is open or whether a robot is turned on. And the
system’s status is usually defined by the history of discrete
control signals.
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Figure 4: A learned hybrid automaton modeling a pump.

In [19], an energy anomaly detection system is de-
scribed which analyzes three production plants. Ethercat
and Profinet is used for I/F 1 and OPC UA for I/F 2. The col-
lected data is then condensed on the learning layer into hy-
brid timed automata. Also on this layer, the current energy
consumption is compared to the energy prediction. Anoma-
lies in the continuous variables are signaled to the user via
mobile platforms using web services (I/F 3 and 4).

In Figure 4, a pump is modeled by means of such au-
tomata using the flow rate and switching signals. The three
states S0 to S2 are separating the continuous function into
three linear pieces which can then be learned automatically.

Figure 5 shows a typical learned energy consumption
(here for bulk good production).

Figure 5: A measured (black line) and a learned power consump-
tion (red line).

4.3 Big Data Analysis in Manufacturing Systems
Analyzing historical process data during the whole produc-
tion cycle requires new architectures and platforms for han-
dling the enormous volume, variety and velocity of the data.
Data analysis pushes the classical data acquisition and stor-
age up to its limits, i.e. big data platforms are need.

In the assembling line of the SmartFactoryOWL, a small
factory used for production and research, a big data platform
is established to acquire, store and visualize the data from

the production cycles. In Figure 6 the architecture of the big
data platform is depicted.

Cyber-Physical System Hadoop Ecosystem Grafana Webvisualisation

Hadoop Distributed 

Filesystem (HDFS)

OpenTSDB

HBaseController Controller

Network

Figure 6: Data Analysis Plattform in Manufacturing

The CPS is connected through OPC UA (I/F 1 in Figure 2)
with an Hadoop ecosystem. Hadoop itself is an software
framework for scalable distributed computing. The process
data is stored in an non-relational database (HBase) which is
based on a distributed file-system (HDFS). On top of HBase,
a time-series database OpenTSDB is used as an interface
to explore and analyze the data (I/F 2 in Figure 2). Through
this database it is possible to do simple statistics such as
mean-values, sums or differences, which is usually not pos-
sible within the non relational data stores.

Using the interfaces of OpenTSDB or Hadoop, it be-
comes possible to analyze the data directly on the storage
system. Hence, the volume of a historical dataset need not
be loaded into a single computer system, instead the algo-
rithms can work distributively on the data. A web interface
can be used to visualize the data as well as the computed re-
sults. In Figure 6, grafana is used for data visualization. In
the SmartFactoryOWL this big data platform is currently be-
ing connected to the application scenarios from Sections 4.1
and 4.2.

4.4 Anomaly Detection in Aircraft Flight Data
Fault detection and isolation schemes are designed to detect
the onset of adverse events during operations of complex
systems, such as aircraft and industrial processes. In other
work, we have discussed approaches using machine learn-
ing classifier techniques to improve the diagnostic accuracy
of the online reasoner on board of the aircraft [20]. In this
paper, we discuss an anomaly detection method to find pre-
viously undetected faults in aircraft system [21].

The flight data used for improving detection of existing
faults and discovering new faults was provided by Honey-
well Aerospace and recorded from a former regional airline
that operated a fleet of 4-engine aircraft, primarily in the
Midwest region of the United States. Each plane in the fleet
flew approximately 5 flights a day and data from about 37
aircraft was collected over a five year period. This produced
over 60,000 flights. Since the airline was a regional carrier,
most flight durations were between 30 and 90 minutes. For
each flight, 182 features were recorded at sample rates that
varied from 1Hz to 16Hz. Overall this produced about 0.7
TB of data.

Situations may occur during flight operations, where the
aircraft operates in previously unknown modes that could be
attributed to the equipment, the human operators, or envi-
ronmental conditions (e.g., the weather). In such situations,
data-driven anomaly detection methods [12], i.e., finding
patterns in the operations data of the system that were not
expected before can be applied. Sometimes, anomalies
may represent truly aberrant, undesirable and faulty behav-
ior; however, in other situations they may represent behav-
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iors that are just unexpected. We have developed unsuper-
vised learning or clustering methods for off-line detection
of anomalous situations. Once detected and analyzed, rele-
vant information is presented to human experts and mission
controllers to interpret and classify the anomalies.

Figure 7 illustrates our approach. We started with cu-
rated raw flight data (layer ”Big Data Platform” in Figure
2), transforming the time series data associated with the dif-
ferent flight parameters to a compressed vector form using
wavelet transforms. The next step included building a dis-
similarity matrix of pairwise flight segments using the Eu-
clidean distance measure, followed by a subsequent step
where the pairwise between flight distances was used to
run a ‘complete link’ hierarchical clustering algorithm [22]
(layer ”Learning” in Figure 2). Run on the flight data, the
algorithm produced a number of large clusters that we con-
sidered to represent nominal flights, and a number of smaller
clusters and outlier flights that we initially labeled as anoma-
lous. By studying the feature value differences between the
larger nominal and smaller anomalous clusters with the help
of domain experts, we were able to interpret and explain the
anomalous nature (”Conceptual Layer” in Figure 2).

These anomalies or faults represented situations that the
experts had not considered before; therefore, this unsuper-
vised or semi-supervised data driven approach provided a
mechanism for learning new knowledge about unanticipated
system behaviors. For example, when analyzing the aircraft
data, we found a number of anomalous clusters. One of
them turned out to be situations where one of the four en-
gines of the aircraft was inoperative. On further study of ad-
ditional features, the experts concluded that these were test
flights conducted to test aspects of the aircraft, and, there-
fore, they repesented known situations, and, therefore, not
an interesting anomaly. A second group of flights were in-
terpreted to be take offs, where the engine power was set
much higher than most flights in the same take off condition.
Further analysis of environmental features related to these
set of take-off’s revealed that these were take-offs from a
high altitude airport at 7900 feet above sea level.

A third cluster provided a more interesting situation. The
experts when checking on the features that had significantly
different values from the nominal flights realized that the
auto throttle disengaged in the middle of the aircraft’s climb
trajectory. The automatic throttle is designed to maintain
either constant speed during takeoff or constant thrust for
other modes of flight. This was an unusual situation where
the auto thruster switched from maintaining speed for a
takeoff to a setting that applied constant thrust, implying
that the aircraft was on the verge of a stall. This situation
was verified by the flight path acceleration sensor shown in
Figure 7. By further analysis, the experts determined that in
such situations the automatic throttle would switch to a pos-
sibly lower thrust setting to level the aircraft and compensate
for the loss in velocity. By examining the engine parame-
ters, the expert verified that all the engines responded in an
appropriate fashion to this throttle command. Whereas this
analysis did not lead to a definitive conclusion other than the
fact the auto throttle, and therefore, the aircraft equipment,
responded correctly, the expert determined that further anal-
ysis was required to answer the question “why did the air-
craft accelerate in such a fashion and come so close to a
stall condition?”. One initial hypothesis to explain these
situations was pilot error.

4.5 Reliability and Fault Tolerant Control
Most complex CPSs are safety-critical systems that operate
with humans-in-the-loop. In addition to equipment degrada-
tion and faults, humans can also introduce erroneous deci-
sions, which becomes a new source of failure in the system.
Figure 8 represents possible faults and cyber-attacks that can
occur in a CPS.

There are several model-based fault tolerant control
strategies for dynamic systems in the literature (see for ex-
ample [23] and [24]). Research has also been conducted to
address network security and robust network control prob-
lems (see for example [25] and [26]). However, these meth-
ods need mathematical models of the system, which may
not exist for large scale complex systems. Therefore, data
driven control [27] and data driven fault tolerant control [28]
have become an important research topic in recent years.
For CPSs, there are more aspects of the problem that need
to be considered. As it is shown in Figure 8, there are many
sources of failure in these systems.

We propose a hybrid approach that uses an abstract model
of the complex system and utilizes the data to ensure the
compatibility between model and the complex system. Data
abstraction and machine learning techniques are employed
to extract patterns between different control configurations
and system outputs unit by computing the correlation be-
tween control signals and the physical subsystems outputs.
The highly correlated subsystems (layer ”Learning” in Fig-
ure 2) become candidates for further study of the effects of
failure and degradation at the boundary of these interacting
subsystems. For complex systems, all possible inteeractions
and their consequences are hard to pre-determine, and data-
driven approaches help fill this gap in knowledge to support
more informed decision-making and control. A case-based
reasoning module can be designed to provide input on past
successes and failed opportunities, which can then be trans-
lated by human experts into operational monitoring, fault di-
agnosis, and control situations (’Conceptual Layer” in Fig-
ure 2). Some of the control paradigms that govern appro-
priate control configurations, such as modifying sequence
of mission tasks and switching between different objectives
or changing the controller parameters (layer Adaptation in
Figure 2) are being studied in a number of labs including
ours [29].

Example Fault Tolerant Control of Fuel Transfer Sys-
tem The fuel system supplies fuel to the aircraft engines.
Each individual mission will have its own set of require-
ments. However, common requirements such as saving the
aircraft Center of Gravity (CG), safety, and system relia-
bility are always critical. A set of sensors included in the
system to measure different system variables such as the
fuel quantity contained in each tank, engines fuel flow rates,
boost pump pressures, position of the valves and etc.

There are several failure modes such as the total loss or
degradation in the electrical pumps or a leakage in the tanks
or connecting pipes in the system. Using the data and the ab-
stract model we can detect and isolate the fault and estimate
its parameters. Then based on the type fault and its severity
the system reconfiguration unit chooses the proper control
scenario form the control library. For example in normal sit-
uation the transfer pumps and valves are controlled to main-
tain a transfer sequence to keep the aircraft center of gravity
within limits. This control includes maintaining a balance
between the left and right sides of the aircraft. When there
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is a small leak, normally the system can tolerate it depend-
ing on where the leak is, but the leak usually grows over
time. Therefore we need to estimate the leakage rate and re-
configure the system to move the fuel from the tank or close
the pipe before critical situation.

5 Conclusions
Data-driven approaches to the analysis and diagnosis of
Cyber-Physical Systems (CPSs) are always inferior to clas-
sical model-based approaches, where models are created
manually by experts: Experts have background knowledge
which can not be learned from models and experts automat-
ically think about a larger set of system scenarios than can
be observed during a system’s normal lifetime.

So the question is not whether data-driven or expert-
driven approaches are superior. The question is rather
which kind of models can we realistically expect to ex-
ist in real-world applications—and which kind of models
must therefore be learned automatically. This becomes es-
pecially important in the context of CPSs since these sys-
tems adapt themselves to their environment and show there-
fore a changing behavior, i.e. models would also have be

adapted frequently.
In Sections 4.1 and 4.2, structural information about the

plant is imported from the engineering chain and the tempo-
ral behavior is learned in form of timed automata. In Section
4.5, an abstract system model describing the input/output
structure and the main failure types is provided and again the
behavior is learned. These approaches are typical because in
most applications structural information can be gained from
earlier engineer phases while behavior models hardly exist
and are almost never validated with the real system.

Looking at the learning phase, the first thing to notice
is that all described approaches work and deliver good re-
sults: For CPSs, data-driven approaches have moved into
the focus of research and industry. And they are well suited
for CPSs: They adjust automatically to new system config-
urations, they do not need manual engineering efforts and
they make usage of the now available large number of data
signals—connectivity being a typical feature of CPSs.

Another common denominator of the described appli-
cation examples is that the focus is on anomaly detec-
tion rather than on root cause analysis: for data-driven ap-
proaches it is easier to learn a model of the normal behav-
ior than learning erroneous behavior. And it is also typi-
cal that the only root cause analysis uses a case-based ap-
proach (Section 4.5), case-based approaches being suitable
for data-driven solutions to diagnosis.

Finally, the examples show that the proposed cognitive
architecture (Figure 2) matches the given examples:
Big Data Platform: Only a few examples (e.g. Section 4.3)
make usage of explicit big data platforms, so-far solutions
often use proprietary solutions. But with the growing size of
the data involved, new platforms for storing and processing
the data are needed.
Learning: All examples employ machine learning
technologies—with a clear focus on unsupervised learning
techniques which require no a-priori knowledge such as
clustering (Section 4.4) or automata identification (Sections
4.1, 4.2).
Conceptual Layer: In all examples, the learned models are
evaluated on a conceptual or symbolic level: In Section 4.4,
clusters are compared to new observations and data-cluster
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distances are used for decision making. In Sections 4.1 and
4.2, model predictions are compared to observations. And
again, derivations are decided on by a conceptual layer.
Task-Specific HMI: None of the given examples works com-
pletely automatically, in all cases the user is involved in the
decision making.
Adaption: In most cases, reactions to detected problems
are up to the expert. The use case from Section 4.5 is an
example for an automatic reaction and the usage of analysis
results for the control mechanism.

Using such a cognitive architecture would bring several
benefits to the community: First of all, algorithms and
technologies in the different layers can be changed quickly
and can be re-used. E.g. learning algorithms from one
application field can be put on top of different big data
platforms. Furthermore, currently most existing approaches
mix the different layers, making the comparison of ap-
proaches to the analysis of CPSs difficult. Finally, such an
architecture helps to clearly identify open issues for the
development of smart monitoring systems.
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Abstract
When a computer system is hacked, analyz-
ing the root-cause (for example entry-point
of penetration) is a diagnostic process. An
audit trail, as defined in the National Infor-
mation Assurance Glossary, is a security-
relevant chronological (set of) record(s),
and/or destination and source of records that
provide evidence of the sequence of activi-
ties that have affected, at any time, a specific
operation, procedure, or event. After detect-
ing an intrusion, system administrators man-
ually analyze audit trails to both isolate the
root-cause and perform damage impact as-
sessment of the attack. Due to the sheer vol-
ume of information and low-level activities
in the audit trails, this task is rather cum-
bersome and time intensive. In this posi-
tion paper, we discuss our ideas to automate
the analysis of audit trails using machine
learning and model-based reasoning tech-
niques. Our approach classifies audit trails
into the high-level activities they represent,
and then reasons about those activities and
their threat potential in real-time and foren-
sically. We argue that, by using the outcome
of this reasoning to explain complex evi-
dence of malicious behavior, we are equip-
ping system administrators with the proper
tools to promptly react to, stop, and mitigate
attacks.

1 Introduction
Today, enterprise system and network behaviors are
typically “opaque”: stakeholders lack the ability to as-
sert causal linkages in running code, except in very
simple cases. At best, event logs and audit trails can
offer some partial information on temporally and spa-
tially localized events as seen from the viewpoint of

individual applications. Thus current techniques give
operators little system-wide situational awareness, nor
any viewpoint informed by a long-term perspective.
Adversaries have taken advantage of this opacity by
adopting a strategy of persistent, low-observability
operation from inside the system, hiding effectively
through the use of long causal chains of system and
application code. We call such adversaries advanced
persistent threats, or APTs.

To address current limitations, this position pa-
per discusses a technique that aims to track causal-
ity across the enterprise and over extended periods of
time, identify subtle causal chains that represent ma-
licious behavior, localize the code at the roots of such
behavior, trace the effects of other malicious actions
descended from those roots, and make recommenda-
tions on how to mitigate those effects. By doing so,
the proposed approach aims to enable stakeholders to
understand and manage the activities going on in their
networks. The technique exploits both current and
novel forms of local causality to construct higher-level
observations, long-term causality in system informa-
tion flow. We propose to use a machine learning ap-
proach to classify segments of low-level events by the
activities they represent, and reasons over these ac-
tivities, prioritizing candidate activities for investiga-
tion. The diagnostic engine investigates these candi-
dates looking for patterns that may represent the pres-
ence of APTs. Using pre-defined security policies and
related mitigations, the approach explains discovered
APTs and recommends appropriate mitigations to op-
erators. We plan to leverage models of APT and nor-
mal business logic behavior to diagnose such threats.
Note that the technique is not constrained by availabil-
ity of human analysts, but can benefit by human-on-
the-loop assistance.

The approach discussed in the paper will offer un-
precedented capability for observation of long-term,
subtle system-wide activity by automatically con-
structing such global, long-term causality observa-
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tions. The ability to automatically classify causal
chains of events in terms of abstractions such as ac-
tivities, will provide operators with a unique capabil-
ity to orient to long-term, system-wide evidence of
possible threats. The diagnostic engine will provide
a unique capability to identify whether groups of such
activities likely represent active threats, making it eas-
ier for operators to decide whether long-term threats
are active, and where they originate, even before those
threats are identified by other means. Thus, the ap-
proach will pave the way for the first automated, long-
horizon, continuously operating system-wide support
for an effective defender Observe, Orient, Decide, and
Act (OODA) loop.

2 Running Example
The methods proposed in this article are illustrated on
a realistic running example. The attackers in this ex-
ample use sophisticated and recently discovered ex-
ploits to gain access to the victim’s resources. The at-
tack is remote and does not require social engineering
or opening a malicious email attachment. The meth-
ods that we propose, however, are not limited to this
class of attacks.

victim’s local network

system
administrator

data storage
back end

web server
front-end

router

Internet
hacker

Figure 1: Network topology for the attack

The network topology used for our running example
is shown in figure 1. The attack is executed over sev-
eral days. It starts by (1) compromising the web server
front-end, followed by (2) a reconnaissance phase and
(3) compromising the data storage back end and ulti-
mately extracting and modifying sensitive information
belonging to the victim.

Both the front-end and the back end in this example
run unpatched UBUNTU 13.1 LINUX OS on an IN-
TEL R© SANDY BRIDGETM architecture.

What follows is a detailed chronology of the events:

1. The attacker uses the APACHE httpd server, a
cgi-bin script, and the SHELLSHOCK vulnera-
bility (GNU bash exploit registered in the Com-
mon Vulnerabilities and Exposures database as
CVE 2014-6271 (see https://nvd.nist.
gov/) to gain remote shell access to the victim’s
front-end. It is now possible for the attacker to

execute processes on the front-end as the non-
privileged user www-data.

2. The attacker notices that the front-end is run-
ning an unpatched UBUNTU LINUX OS version
13.1. The attacker uses the nc Linux utility to
copy an exploit for obtaining root privileges. The
particular exploit that the attacker uses utilizes
the x32 recvmmsg() kernel vulnerability reg-
istered in the Common Vulnerabilities and Expo-
sures (CVE) database as CVE 2014-0038. After
running the copied binary for a few minutes the
attacker gains root access to the front-end host.

3. The attacker installs a root-kit utility that inter-
cepts all input to ssh;

4. A system administrator uses the compromised
ssh to connect to the back-end revealing his back-
end password to the attacker;

5. The attacker uses the compromised front-end to
bypass firewalls and uses the newly acquired
back-end administrator’s password to access the
back-end;

6. The attacker uses a file-tree traversing utility on
the back-end that collects sensitive data and con-
solidates it in an archive file;

7. The attacker sends the archive file to a third-party
hijacked computer for analysis.

3 Auditing and Instrumentation
Almost all computing systems of sufficiently high-
level (with the exception of some embedded systems)
leave detailed logs of all system and application activ-
ities. Many UNIX variants such as LINUX log via the
syslog daemon, while WINDOWSTM uses the event
log service. In addition to the usual logging mecha-
nisms, there is a multitude of projects related to se-
cure and detailed auditing. An audit log is more de-
tailed trail of any security or computation-related ac-
tivity such as file or RAM access, system calls, etc.

Depending on the level of security we would like
to provide, there are several methods for collecting in-
put security-related information. On one extreme, it is
possible to use the existing log files. On the other ex-
treme there are applications for collecting detailed in-
formation about the application execution. One such
approach [1] runs the processes of interest through a
debugger and logs every memory read and write ac-
cess.

It is also possible to automatically inject logging
calls in the source files before compiling them, allow-
ing us to have static or dynamic logging or a combi-
nation of the two. Log and audit information can be
signed, encrypted and sent in real-time to a remote
server to make system tampering and activity-hiding
more difficult. All these configuration decisions im-
pose different trade-offs in security versus computa-
tional and RAM load [2] and depend on the organiza-
tional context.

2
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...

front_end.secure_access_log:11.239.64.213 - [22/Apr/2014
06:30:24 +0200] "GET /cgi-bin/test.cgi HTTP/1.1" 401 381

...

front_end.rsyslogd.log:recvmsg(3, msg_name(0) =
NULL, msg_iov(1) = ["29/Apr/2014 22:15:49 ...", 8096],
msg_controllen = 0, msg_flags = MSG_CTRUNC,
MSG_DONTWAIT) = 29

...

back_end:auditctl:type = SYSCALL msg = au-
dit(1310392408.506:36): arch = c000003e syscall = 2
success = yes exit = 3 a0 = 7fff2ce9471d a1 = 0 a2 = 61f768
a3 = 7fff2ce92a20 items = 1 ppid = 20478 pid = 21013 auid
= 1000 uid = 0 gid = 0 euid = 0 suid = 0 fsuid = 0 egid = 0
sgid = 0 fsgid = 0 ses = 1 comm = "grep" exe = "/bin/grep"

...

Figure 2: Part of log files related to the attack from the
running example

Figure 2 shows part of the logs collected for our run-
ning example. The first entry is when the attacker ex-
ploits the SHELLSHOCK vulnerability through a CGI
script of the web server. The second entry shows sys-
log strace-like message resulting from the kernel
escalation. Finally, the attacker uses the grep com-
mand on the back-end server to search for sensitive
information and the call is recorded by the audit sys-
tem.

It is often the case that the raw system and secu-
rity log files are preprocessed and initial causal links
are computed. If we trace the exec, fork, and
join POSIX system calls, for example, it is possi-
ble to add graph-like structure to the log files comput-
ing provenance graphs. Another method for comput-
ing local causal links is to consider shared resources,
e.g., two threads reading and writing the same memory
address [1].

4 Activity Classification
The Activity Classifier continuously annotates audit
trails with semantic tags describing the higher-order
activity they represent. For example, ‘remote shell ac-
cess’, ‘remote file overwrite’, and ‘intra-network data
query’ are possible activity tags. These tags are used
by the APT Diagnostics Engine to enable higher-order
reasoning about related activities, and to prioritize ac-
tivities for possible investigation.

4.1 Hierarchical semantic annotation of
audit trails

A key challenge in abstracting low-level events into
higher-order activity patterns that can be reasoned
about efficiently is that such patterns can be described
at multiple levels of semantic abstraction, all of which
may be useful in threat analysis. Indeed, higher-order

abstractions may be composed of lower-order abstrac-
tions that are in turn abstractions of low-level events.
For example, a sequential set of logged events such as
‘browser forking bash’, ‘bash initiating Netcat’, and
‘Netcat listening to new port’, might be abstracted as
the activity ‘remote shell access’. The set of activities,
‘remote shell access’, and ‘escalation of privilege’ can
be abstracted as the activity ‘remote root shell access’.

We approach activity annotation as a supervised
learning problem that uses classification techniques to
generate activity tags for audit trails. Table 1 shows
multiple levels of activity classifications for the above
APT example.

Table 1 represents one possible classification-
enriched audit trail for such an APT. There can be
many relatively small variations. For example, ob-
scuring the password file could be done using other
programs. A single classifier only allows for a single
level of abstraction, and a single leap from low-level
events to very abstract activities (for example, from
‘bash execute perl’ level to ‘extracting modified file’
level) will have higher error caused by these additional
variations.

To obtain several layers of abstraction for reason-
ing over, and thus reduce overall error in classifica-
tion, we use a multi-level learning strategy that models
information at multiple levels of semantic abstraction
using multiple classifiers. Each classifier solves the
problem at one abstraction level, by mapping from a
lower-level (fine) feature space to the next higher-level
conceptual (coarse) feature space.

The activity classifier rely on both a vocabulary of
activities and a library of patterns describing these ac-
tivities that will be initially defined manually. This vo-
cabulary and pattern set reside in a Knowledge Base.

In our training approach, results from training lower
level classifiers are used as training data for higher
level classifiers. In this way, we coherently train all
classifiers by preventing higher-level classifiers from
being trained with patterns that will never be gener-
ated by their lower-level precursors. We use an ensem-
ble learning approach to achieve accurate classifica-
tion. This involves stacking together both bagged and
boosted models to reduce both variance and bias er-
ror components [3]. The classification algorithm will
be trained using an online-learning technique and in-
tegrated within an Active Learning Framework to im-
prove classification of atypical behaviors.

Generating Training Data for Classification To
build the initial classifier, training data is generated
using two methods. First, an actual deployed sys-
tem is used to collect normal behavior data, and a
Subject Matter Expert manually labels it. Second,
a testing platform is used to generate data in a con-
trolled environment, particularly platform dependent
vulnerability-related behavior. In addition, to gener-
ate new training data of previously unknown behavior,
we use an Active Learning framework as described in
Section 5.

3
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Table 1: Sample classification problem for running example
Activity 1 Activity 2 Activity 3

Remote Shell Access Remote File Overwrite Modified File Download
Shell Shock Trojan Installation Password Exfiltration

Browser (Port 80) fork bash Netcat listen to Port 8443 Netcat listen to Port 8443
bash fork Netcat Port 8443 receive binary file Port 8443 fork bash

Netcat listen to port 8080 binary file overwrites libns.so bash execute perl
Perl overwrite /tmp/stolen_pw
Port 8443 send /tmp/stolen_pw

5 Prioritizer
As the Activity Classifier annotates audit trails with
activity descriptors, the two (parallel) next steps in our
workflow are to 1) prioritize potential threats to be re-
ferred to the Diagnostic Engine (see Section 6) for in-
vestigation, and 2) prioritize emergent activities that
(after suitable review and labeling) are added to the ac-
tivity classifier training data. This module prioritizes
activities by threat severity and confidence level. This
prioritization process presents three key challenges.

5.1 Threat-based rank-annotation of
activities

One challenge in ranking activities according to their
threat potential is the complex (and dynamic) notion of
what constitutes a threat. Rankings based on matching
to known prior threats is necessary, but not sufficient.
An ideal ranking approach should take known threats
into account, while also proactively considering the
unknown threat potential of new kinds of activities.
Another such challenge is that risk may be assessed
at various levels of activity abstraction, requiring that
overall ranking must be computed by aggregating risk
assessments at multiple abstraction levels.

We implement two ranking approaches: a super-
vised ranker based on previously known threats and an
unsupervised ranker that considers unknown potential
threats.

Supervised ranking using APT classification to
catch known threats. The goal of APT classifica-
tion is to provide the diagnostic engine with critical
APT related information such as APT Phase, severity
of attack, and confidence level associated with APT
tagging for threat prioritization. Since the audit trails
are annotated hierarchically into different granularity
of actions, multiple classifiers will be built to consider
each hierarchical level separately. APT classifiers are
used to identify entities that are likely to be instances
of known threats or phases of an APT attack. Two
types of classifiers are used. The first classifier is
hand-coded and the second classifier is learned from
training data.

The hand-coded classifier is designed to have high
precision, using hand-coded rules, mirroring SIEM
and IDS systems. Entities tagged by this classifier are
given the highest priority for investigation. The second
classifier, which is learned from training data, will pro-
vide higher recall at the cost of precision. Activities

are ranked according to their threat level by aggregat-
ing a severity measure (determined by classified threat
type) and a confidence measure. We complement the
initial set of training data to calibrate our classifiers by
using an Active Learning Framework, which focuses
on improving the classification algorithm through oc-
casional manual labeling of the most critical activities
in the audit trails.

Unsupervised ranking using normalcy charac-
terization to catch unknown threats. The second
component of the prioritizer is a set of unsupervised
normalcy rankers, which rank entities based on their
statistical “normalcy". Activities identified as un-
usual will be fed to the Active Learning framework
to check if any of them are “unknown” APT activities.
This provides a mechanism for detecting “unknown”
threats while also providing feedback to improve the
APT classifier.

5.2 Combining Multiple Rankings
One of the key issues with combining the outputs of
multiple risk ranking is dealing with two-dimensional
risk (severity, confidence) scores that may be on very
different scales. A diverse set of score normalization
techniques have been proposed [4; 5; 6] to deal with
this issue, but no single technique has been found to
be superior over all the others. An alternative to com-
bining scores is to combine rankings [7]. Although
converting scores to rankings does lose information, it
remains an open question if the loss in information is
compensated for by the convenience of working with
the common scale of rankings.

We will develop combination techniques for
weighted risk rankings based on probabilistic rank ag-
gregation methods. This approach builds on our own
work [8] that shows the robustness of the weighted
ranking approach. We also build on principled meth-
ods for combining ranking data found in the statistics
and information retrieval literature.

Traditionally, the goal of rank aggregation [9; 10]
is to combine a set of rankings of the same candi-
dates into a single consensus ranking that is “better”
than the individual rankings. We extend the tradi-
tional approach to accommodate the specific context
of weighted risk ranking. First, unreliable rankers will
be identified and either ignored or down-weighted,
lest their rankings decrease the quality of the over-
all consensus [7; 10]. Second, we will discount ex-
cessive correlation among rankers, so that a set of
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highly redundant rankers do not completely outweigh
the contribution of other alternative rankings. To ad-
dress these two issues, we will associate a probabilis-
tic latent variable Zi with the i’th entity of interest,
which indicates whether the entity is anomalous or
normal. Then, we will build a probabilistic model
that allows us to infer the posterior distribution over
the Zi based on the observed rankings produced by
each of the input weighted risk rankings. This poste-
rior probability of Zi being normal will then be used
as the weighted risk rank. Our model will make the
following assumptions to account for both unreliable
and correlated rankers: 1) Anomalies are ranked lower
than all normal instances and these ranks tend to be
concentrated near the lower rankings of the provided
weighted risk rankings, and 2) Normal data instances
tend to be uniformly distributed near the higher rank-
ings of the weighted risk rankings.

There are various ways to build a probabilistic
model that reflects the above assumptions and al-
lows for the inference of the Zi variables through
Expectation-Maximization [11]. In addition to these
assumptions, we will explore allowing other factors to
influence the latent Zi variables, such as features of
the entities as well as feedback provided by an expert
analysts.

6 Diagnosis
We view the problem of detecting, isolating, and ex-
plaining complex APT campaigns behavior from rich
activity data is a diagnostic problem. We will use
an AI-based diagnostic reasoning to guide the global
search for possible vulnerabilities that enabled the
breach. Model-based diagnosis (MBD) [12] is a par-
ticularly compelling approach as it supports reasoning
over complex causal networks (for example, having
multiple conjunctions, disjunctions, and negations)
and identifies often subtle combinations of root causes
of the symptoms (the breach).

6.1 An MBD approach for APT detection
and isolation: Motivation

Attack detection and isolation are two distinct chal-
lenges. Often diagnostic approaches use separate
models for detection and isolation [13]. MBD how-
ever uses a single model, to combine these two rea-
sonings. The security model contains both part of
the security policy (that communicating with certain
blacklisted hosts may indicate an information leak)
and information about the possible locations and con-
sequence of a vulnerability (a privilege escalation may
lead to an information leak). The security model also
contains abstract security constraints such as if a pro-
cess requires authentication, a password must be read
and compared against.

The diagnostic approach takes into consideration
the bootstrapping of an APT which we consider the
root-cause of the attack. What enables a successful
APT is either a combination of software component

vulnerabilities or the combined use of social engineer-
ing and insufficiency of the organizational security
policies. We use MBD for computing the set of si-
multaneously exploited vulnerabilities that allowed the
deployment of the APT. Computing such explanations
is possible because MBD reasons in terms of multiple-
faults [14]. In our running example this set would in-
clude both the fact the the web server has been ex-
ploited due to the Shellshock vulnerability and that a
the attacker gained privileged access on the front-end
due to the use of the X64_32 escalation vulnerability.

The abstract security model is used to gather infor-
mation about types of attacks the system is vulnerable
to, and to aid deciding the set of actions required to
stop an APT campaign (policy enforcement). Various
heuristics exist to find the set of meaningful diagnosis
candidates. As an example, one might be interested
in the minimal set of actions to stop the attack [15;
16] or select those candidates that capture significant
probability mass [17]. In the rest of this section, for
illustration purposes, we use minimality as the heuris-
tic of interest. MBD is the right tool for dealing with
computation of diagnosis candidates as it offers sev-
eral ways to address the modeling and computational
complexity [18; 19].

6.2 Detection and Isolation of Attacks from
Abstract Security Model and Sensor
Data

The abstract security model provides an abstraction
mechanism that is originally missing in the audit trails.
More precisely what is not in the audit trails and what
is in the security model is how to connect (possibly
disconnected) activities for the purpose of global rea-
soning. The abstract security model and the sensor
data collected from the audit trails are provided as in-
puts to an MBD algorithms that performs the high-
level reasoning about possible vulnerabilities and at-
tacks similar to what a human security officer would
do.

The information in the “raw” audit trails is of too
high fidelity [2] and low abstraction to be used by a
“crude” security model. That is the reason the diag-
nostic engine needs the machine learning module to
temporally and spatially group nodes in the audit trails
and to provide semantically rich variable/value sensor
data about actions, suitable for MBD. Notice that in
this process, the audit trail structure is translated to se-
mantic categories, i.e., the diagnostic engine receives
as observations time-series of sensed actions.

The listing that follows next shows an abstract se-
curity model for the running example in the LYDIA
language [20]. This bears some resemblance to PRO-
LOG, except that LYDIA is a language for model-
based diagnosis of logical circuits while PROLOG is
for Horn-style reasoning. The use of LYDIA is for
illustration purposes only, in reality computer sys-
tems can be much more easily modeled as state ma-
chines. There is a significant body of literature deal-
ing with diagnosis of discrete-event systems [21; 22;
23], to name just a few.
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1 system front_end (bool know_root_password)
2 {
3 bool httpd_shell_vuln ; // vulnerability
4 bool buffer_overflow_vuln ; // vulnerability
5 bool escalation_vuln ; // vulnerability
6
7 bool httpd_shell ;
8 bool root_shell ;
9 bool leak_passwd;

10
11 // weak−fault models
12 if (! httpd_shell_vuln ) { // if healthy
13 ! httpd_shell ; // forbid shells via httpd
14 }
15
16 if (! escalation_vuln ) { // if healthy
17 ! root_shell ; // no root shell is possible
18 }
19
20 if (! buffer_overflow_vuln ) { // if healthy
21 !leak_passwd; // passwords don’t leak
22 }
23
24 bool access_passwd;
25 attribute observable (access_passwd) = true ;
26
27 !access_passwd => !leak_passwd;
28
29 /∗∗
30 ∗ Knowing the root password can be explained
31 ∗ by a root shell ( for example there is a
32 ∗ password sniffer ).
33 ∗/
34 know_root_password =>
35 (( httpd_shell || leak_passwd) && root_shell );
36 }
37
38 system back_end(bool know_root_password)
39 {
40 bool comm;
41 attribute observable (comm) = true;
42
43 /∗∗
44 ∗ Normal users can only communicate with a
45 ∗ list of permitted hosts .
46 ∗/
47 if (!know_root_password) {
48 comm == true;
49 }
50 }
51
52 system main()
53 {
54 bool know_root_password;
55
56 system front_end fe (know_root_password);
57 system back_end be(know_root_password);
58 }

LYDIA translates the model to an internal proposi-
tional logic formula. Part of this internal representa-
tion is shown in figure 3, which uses the standard VLSI
[24] notation to denote AND-gates, OR-gates, and
NOT-gates. Wires are labeled with variable names.
Boolean circuits (matching propositional logic), how-
ever, have limited expressiveness and modeling secu-

>

Legend:

know root password

root shell

httpd shell

1assumable variable

2p

2r

2q

leak pw1

buffer overflow vuln1

2internal variable

Figure 3: Part of the abstract security model for the
running example

rity constraints in it is notoriously difficult, hence we
plan to create or use specialized modal logic similar to
the one proposed in [25].

Notice that the format of the Boolean circuit shown
in figure 3 is very close to the one used in Truth Main-
tenance System (TMS) [26]. The only assumable vari-
able in figure 3 is buffer_overflow_vuln and its
default value is false (i.e., there is no buffer overflow
vulnerability in the web server process).

We next show how a reasoning engine can discover
a conflict through forward and backward propagation.
Looking at figure 3, it is clear that r must be true be-
cause it is an input to an AND-gate whose output is set
to true. Therefore either p or q (or both) must be true.
This means that either buffer_overflow_vuln or
leak_pw must be false. If we say that leak_pw is
assumed to be true (measured or otherwise inferred),
then leak_pw and buffer_overflow_vuln are to-
gether part of a conflict. It means that the reasoning
engine has to change one of them to resolve the con-
tradiction.

Based on the observation from our running exam-
ple and a TMS constructed from the security model
shown in figure 3, the hitting set algorithm computes
two possible diagnostic hypotheses: (1) the attacker
gained a shell access through a web-server vulnerabil-
ity and the attacker performed privilege escalation or
(2) the attacker injected binary code through a buffer
overflow and the attacker performed privilege escala-
tion.

If we use LYDIA to compute the set of diagnoses for
the running example, we get the following two (am-
biguous) diagnoses for the root-cause of the penetra-
tion:

$ lydia example.lm example.obs
d1 = { fe.escalation_vuln,

fe.httpd_shell_vuln }
d2 = { fe.buffer_overflow_vuln,

fe.escalation_vuln }

MBD uses probabilities to computes a sequence of
possible diagnoses ordered by likelihood. This proba-
bility can be used for many purposes: decide which di-
agnosis is more likely to be the true fault explanation,
whether there is the need for consider further evidence
from the logs or limit the number of diagnoses that
need to be identified. Many policies exist to compute
these probabilities [27; 28].

For illustration purposes we consider that the diag-
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noses for the running example are ambiguous. Before
we discuss methods for dealing with this ambiguity,
we address the major research challenge of model gen-
eration.

6.3 Model Generation
The abstract vulnerability model can either be con-
structed manually or semi-automatically. The chal-
lenge with modeling is that an APT campaign gener-
ally exploits unknown vulnerabilities. Therefore, our
approach to address this issue is to construct the model
which captures expected behavior (known goods) of
the system. Starting from generic parameterized vul-
nerability models and security objectives, the abstract
vulnerability model can be extended with information
related to known vulnerabilities (known bads).

Generating the model can be done either manu-
ally or semi-automatically. We will explore venues to
generate this model manually, which requires signif-
icant knowledge about potential security vulnerabili-
ties, while being error prone and not detailed enough.
Amongst company specific requirements, we envisage
the abstract vulnerability model to capture the most
common attacks that target software systems, as de-
scribed in the Common Attack Pattern Enumeration
and Classification (CAPEC1). The comprehensive list
of known attacks has been designed to better under-
stand the perspective of an attacker exploiting the vul-
nerabilities and, from this knowledge, devise appro-
priate defenses.

As modeling is challenging, we propose to explore
semi-automatic approaches to construct models. The
semi-automatic method is suitable to addressing the
modeling because in security, similarly to diagno-
sis, there is (1) component models and (2) structure.
While it is difficult to automate the building of com-
ponent models (this may even require natural language
parsing of databases such as CAPEC), it is feasible to
capture diagnosis-oriented information from structure
(physical networking or network communication).

Yet another approach to semi-automatically gener-
ate the model is to learn it from executions of the
system (e.g., during regression testing, just before
deployment). This approach to system modeling is
inspired by the work in automatic software debug-
ging work [29], where modeling of program behav-
ior is done in terms of abstraction of program traces
– known as spectra [30], abstracting from modeling
specific components and data dependencies

The outlined approaches to construct the abstract
vulnerability model entail different costs and diagnos-
tic accuracies. As expected, manually building the
model is the most expensive one. Note that build-
ing the model is a time-consuming and error-prone
task. The two semi-automatic ways also entail differ-
ent costs: one exploits the available, static informa-
tion and the other requires the system to be executed
to compute a meaningful set of executions. We will in-
vestigate the trade-offs between modeling approaches

1http://capec.mitre.org/

and their diagnostic accuracy in the context of trans-
parent computing.

7 Conclusions
Identifying the root-cause and perform damage im-
pact assessment of advanced persistent threats can be
framed as a diagnostic problem. In this paper, we dis-
cuss an approach that leverages machine learning and
model-based diagnosis techniques to reason about po-
tential attacks.

Our approach classifies audit trails into high-level
activities, and then reasons about those activities and
their threat potential in real-time and forensically. By
using the outcome of this reasoning to explain com-
plex evi- dence of malicious behavior, the system
administrators is provided with the proper tools to
promptly react to, stop, and mitigate attacks.
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Abstract
Nowadays, a large number of practical systems in
aerospace and industrial environments are best rep-
resented as hybrid systems that consist of discrete
modes of behavior, each defined by a set of contin-
uous dynamics. These hybrid dynamics make the
on-line fault diagnosis task very challenging. In
this work, we present a new modeling and diagno-
sis framework for hybrid systems. Models are com-
posed from sets of user-defined components using
a compositional modeling approach. Submodels
for residual generation are then generated for a
given mode, and reconfigured efficiently when the
mode changes. Efficient reconfiguration is estab-
lished by exploiting causality information within
the hybrid system models. The submodels can then
be used for fault diagnosis based on residual gen-
eration and analysis. We demonstrate the efficient
causality reassignment, submodel reconfiguration,
and residual generation for fault diagnosis using
an electrical circuit case study.

1 Introduction
Robust and efficient fault diagnosis plays an important role in
ensuring the safe, correct, and efficient operation of complex
engineering systems. Many engineering systems are modeled
as hybrid systems that have both continuous and discrete-
event dynamics, and for such systems, the complexity of
fault diagnosis methodologies increases significantly. In this
paper, we develop a new modeling framework and structural
model decomposition approach that enable efficient online
fault diagnosis of hybrid systems.

During the last few years, different proposals have been
made for hybrid systems diagnosis, focusing on either hy-
brid modeling, such as hybrid automata [1–3], hybrid state
estimation [4], or a combination of on-line state tracking and
residual evaluation [5]. However, in all these cases, the pro-
posed solutions involve modeling and pre-enumeration of the
set of all possible system-level discrete modes, which grows
exponentially with the number of switching components.
Both steps are computationally very expensive or unfeasible
for hybrid systems with complex interacting subsystems.

One solution to the mode pre-enumeration problem is to
build hybrid system models in a compositional way, where
discrete modes are defined at a local level (e.g., at the com-
ponent level), in which the system-level mode is defined
implicitly by the local component-level modes. Since this

allows the modeler to focus on the discrete behavior only at
the component level, the pre-enumeration of all the system-
level modes can be avoided [6, 7]. Additionally, building
models in a compositional way facilitates reusability and
maintenance, and allows the validation of the components
individually before they are composed to create the global
hybrid system model.

In a system model, the effects of mode changes in individ-
ual components may force other components to reconfigure
their computational structures, or causality, during the sim-
ulation process, which requires developing efficient online
causality reassignment procedures. As an example of this
kind of approach, Hybrid Bond Graphs (HBGs) [8] have
been used by different authors [9, 10], and efficient causality
reassignment has been developed previously for such mod-
els [11]. However, the main limitation of HBGs is that the
set of possible components is restricted (e.g., resistors, ca-
pacitors, 0-junctions, etc.), with each component having to
conform to a certain set of mathematical constraints, and
modelers do not have the liberty to define and use their own
components. Another example is that of [7], which uses a
more general modeling framework, and tackles the causality
reassignment problem from a graph-theoretic perspective.

In this work, we propose a compositional modeling ap-
proach for hybrid systems, where models are made up of
sets of user-defined components. Here, a component is con-
structed by defining a set of discrete modes, with a different
set of mathematical constraints describing the continuous
dynamics in each mode. Then, we borrow ideas for efficient
causality reassignment in HBGs [11], and propose algorithms
for efficient causality assignment in our component-based
models, extending and generalizing those from HBGs. We
then apply structural model-decomposition [12] to compute
minimal submodels for the initial mode of the system. These
submodels are used for fault diagnosis based on residual gen-
eration and analysis. Based on efficient causality reassign-
ment, submodels can be reconfigured upon mode changes
efficiently. Using an electrical circuit as a case study, we
demonstrate efficient causality reassignment and submodel
reconfiguration and show that these submodels can correctly
compute system outputs for residual generation in the pres-
ence of known mode changes.

The paper is organized as follows. Section 2 presents the
modeling approach and introduces the case study. Section 3
presents the overall approach for hybrid systems fault diag-
nosis based on structural model decomposition. Section 4
develops the causality analysis and assignment algorithms.
Section 5 presents the structural model decomposition ap-
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Figure 1: Electrical circuit running example.

proach. Section 6 describes efficient causality reassignment.
Section 7 demonstrates the approach for the electrical case
study. Section 8 reviews the related work and current ap-
proaches for hybrid systems fault diagnosis. Finally, Sec-
tion 9 concludes the paper.

2 Compositional Hybrid Systems Modeling
We define hybrid system dynamics in a general composi-
tional way, where the system is made up of a set of com-
ponents. Each component is defined by a set of discrete
modes, with a different set of constraints describing the con-
tinuous dynamics of the component in each mode. Here,
system-level modes are defined implicitly through the com-
position of the component-level modes. Because the number
of system-level modes is exponential in the number of switch-
ing components, we want to avoid generating and reasoning
over the system-level hybrid model, instead working directly
with the component models.

To illustrate our proposal, throughout the paper we will
use a circuit example, shown in Fig. 1. The components of
the circuit are a voltage source, V, two capacitors, C1 and C2,
two inductors, L1 and L2, two resistors, R1 and R2, and two
switches, Sw1 and Sw2, as well as components for series and
parallel connections. Sensors measure the current or voltage
in different locations (i3, v8, and i11, as indicated in Fig. 1).
Because each switch has two modes (on and off), there are
four total modes in the system.

In the following, we present the main details of our hy-
brid system modeling framework, which may be viewed as
an extension of our modeling approach described in [12],
extended with the notion of components, and with hybrid
system dynamics.

2.1 System Modeling
At the basic level, the continuous dynamics of a component
in each mode are modeled using a set of variables and a set
of constraints. A constraint is defined as follows:

Definition 1 (Constraint). A constraint c is a tuple (εc, Vc),
where εc is an equation involving variables Vc.

A component is defined by a set of constraints over a set
of variables. The constraints are partitioned into different
sets, one for each component mode. A component is then
defined as follows:

Definition 2 (Component). A component δ with n discrete
modes is a tuple δ = (Vδ, Cδ), where Vδ is a set of variables
and Cδ is a set of constraints sets, where Cδ is defined as
Cδ = {C1

δ , C
2
δ , . . . , C

n
δ }, with a constraint set, Cmδ , defined

for each mode m = {1, . . . , n}.
The components of the circuit are defined in Table 1 (first

three columns).

Example 1. Consider the component R1 (δ6). It has only
a single mode with a single constraint v5 = i5 ∗ R1 over
variables {v5, i5, R1}.
Example 2. Consider the component Sw2 (δ10). It has two
modes: on and off. In the off mode, it has three constraints
setting each of its currents (i9, i10, i11) to 0. In the on mode,
it has also three constraints, setting the three currents equal
to each other and establishing that the voltages sum up (it
acts like a series connection when in the on mode).

We can define a system model by composing components:

Definition 3 (Model). A modelM = {δ1, δ2, . . . , δd} is a
finite set of d components for d ∈ N.

Example 3. The model of the electrical system is made up
of the components detailed in Table 1, i.e.,M = {δ1, δ2, . . . ,
δ15}. For each component, the variables and constraints are
defined for each component mode (third column).

Note that the set of variables for a model does not change
with the mode, hence we need only a variable set in a com-
ponent and not a set of variable sets as with constraints.
The set of variables for a model, VM, is simply the union
of all the component variable sets, i.e., for d components,
VM = Vδ1 ∪ Vδ2 ∪ . . . ∪ Vδd . The interconnection struc-
ture of the model is captured using shared variables between
components, i.e., we say that two components are connected
if they share a variable, i.e., components δi and δj are con-
nected if Vδi ∩ Vδj 6= ∅. VM consists of five disjoint sets,
namely, the set of state variables, XM; the set of parame-
ters, ΘM; the set of inputs (variables not computed by any
constraint), UM; the set of outputs (variables not used to
compute any other variables), YM; and the set of auxiliary
variables, AM. Parameters, ΘM, include explicit model pa-
rameters that are used in the model constraints (e.g., fault
parameters). Auxiliary variables, AM, are additional vari-
ables that are algebraically related to the state, parameter,
and input variables, and are used to simplify the structure of
the equations.

Example 4. In the circuit model, we have XM =
{i3, v6, i8, v11}, ΘM = {L1, R1, C1, L2, R2, C2}, UM =
{uv}, and YM = {i∗3, i∗11, v

∗
8}. Remaining variables belong

to AM. Here, the ∗ superscript is used to denote a measured
value of a physical variable, e.g., i3 ∈ XM is the current
and i∗3 ∈ YM is the measured current. Since i3 is used to
compute other variables, like i2, it cannot belong to YM and
a separation of the variables is required. Connected com-
ponents are known by shared variables, e.g., R1 and Series
Connection1 are connected because they share i5 and v5.

The model constraints, CM, are a union of the component
constraints over all modes, i.e., CM = Cδ1 ∪ Cδ2 ∪ . . .∪ Cδd ,
where Cδi = C1

δi
∪C2

δi
∪ . . .∪Cnδi for n modes. Constraints

are exclusive to components, that is, a constraint c ∈ CM
belongs to exactly one Cδ for δ ∈M.

To refer to a particular mode of a model we use the con-
cept of a mode vector. A mode vector m specifies the current
mode of each of the components of a model. So, the con-
straints for a mode m are denoted as Cm

M.

Example 5. Consider a model with five components, then
if m = [1, 1, 3, 2, 1], it indicates that components δ1, δ2,
and δ5 use constraints of their mode 1, component δ3 use
constraints of its mode 3, and component δ4 use constraints
of its mode 2.
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Table 1: Components of the electrical circuit.
Component Mode Constraints A[1 2] A[1 2]

i∗3
A[1 2]

v∗8
A[1 2]

i∗11
A[2 1] A[2 1]

i∗3
A[2 1]

v∗8
A[2 1]

i∗11
δ1: V 1 v1=uv v1 v1 v1 v1 v1
δ2: Sw1 1 i1=0 i1

i2=0 i2 i2 i2 i2
2 i1=i2 i1

v1=v2 v2 v2 v2
δ3: Parallel Connection1 1 v2=v3 v3 v3 v3 v3

v2=v4 v2 v2 v4 v4
i2=i3 + i4 i4 i4 i4 i4 i2

δ4: L1 1 i̇3=v3/L1 i̇3 i̇3 i̇3 i̇3
i3=

∫ t

t0
i̇3 i3 i3 i3 i3

δ5: Series Connection1 1 i4=i5 i5 i5 i5 i5
i4=i6 i6 i6 i6 i6
i4=i7 i7 i7 i7 i4 i4
v4=v5 + v6 + v7 v4 v4 v7 v7

δ6: R1 1 v5=i5 ∗R1 v5 v5 v5 v5
δ7: C1 1 v̇6=i6/C1 v̇6 v̇6 v̇6 v̇6

v6=
∫ t

t0
v̇6 v6 v6 v6 v6

δ8: Parallel Connection2 1 v7=v8 v8 v7 v8 v8 v8
v7=v9 v7 v7 v9
i7=i8 + i9 i9 i9 i9 i7 i7

δ9: L2 1 i̇8=v8/L2 i̇8 i̇8 i̇8 i̇8 i̇8
i8=

∫ t

t0
i̇8 i8 i8 i8 i8 i8

δ10: Sw2 1 i9=0 i9 i9
i10=0 i10
i11=0 i11 i11

2 i9=i10 i10 i10
i9=i11 i11 i11
v9=v10 + v11 v9 v9

δ11: R2 1 v10=i10 ∗R2 v10 v10 v10
δ12: C2 1 v̇11=i11/C1 v̇11 v̇11 v̇11

v11=
∫ t

t0
v̇11 v11 v11 v11

δ13: Current Sensor11 1 i∗11=i11 i∗11 i11 i∗11 i∗11 i∗11
δ14: Voltage Sensor8 1 v∗8=v8 v∗8 v8 v∗8 v8 v∗8 v∗8
δ15: Current Sensor3 1 i∗3=i3 i∗3 i∗3 i3 i3 i∗3 i∗3

For shorthand, we will refer to the modes only of the
components with multiple modes. So, for the circuit, we will
refer only to components δ2 and δ10, and we will have four
possible mode vectors, [1 1], [1 2], [2 1], and [2 2].

The switching behavior of each component can be de-
fined using a finite state machine or a similar type of control
specification. The state transitions may be attributed to con-
trolled or autonomous events. However, for the purposes of
this paper, we view the switching behavior as a black box
where the mode change event is given, and refer the reader
to many of the approaches already proposed in the literature
for modeling the switching behavior [1, 8].

2.2 Causality
Given a constraint c, which belongs to a specific mode of a
specific component, the notion of a causal assignment is used
to specify a possible computational direction, or causality,
for the constraint c. This is done by defining which v ∈ Vc
is the dependent variable in equation εc.
Definition 4 (Causal Assignment). A causal assignment αc
to a constraint c = (εc, Vc) is a tuple αc = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in εc. We
use V inc to denote the independent variables in the constraint,
where V inc = Vc − {voutc }.

In general, the set of possible causal assignments for a
constraint c is as big as Vc, because each variable in Vc can

act as voutc . However, in some cases some causal assign-
ments may not be possible, e.g., if we have noninvertible
nonlinear constraints. Also, if we assume integral causality,
then state variables must always be computed via integration,
and so the derivative causality is not allowed. Further, when
placed in the context of a model, additional causalities may
not be applicable, because the causal assignments of other
constraints may limit the potential causal assignments. To de-
note this concept, we use Ac to refer to the set of permissible
causal assignments of a constraint c.

For a given mode, we have the set of (specific) causal
assignments over the entire model in its mode, denoted using
Am. So, some α ∈ Am would refer to the causal assignment
of some constraint in some component of the model in its
correct mode. The consistency of the causal assignments
Am is defined as follows,

Definition 5 (Consistent Causal Assignments). Given a
mode m, we say that a set of causal assignments Am, for
a modelM is consistent if (i) for all v ∈ UM ∪ ΘM, Am

does not contain any α such that α = (c, v), i.e., input or
parameter variables cannot be the dependent variables in
the causal assignment; (ii) for all v ∈ YM, Am does not
contain any α = (c, voutc ) where v ∈ V inc , i.e., an output
variable can only be used as the dependent variable; and
(iii) for all v ∈ VM − UM − ΘM, Am contains exactly
one α = (c, v), i.e., every variable that is not an input or
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parameter is computed by only one (causal) constraint.
With causality information, we can efficiently derive a set

of submodels for residual generation [12].

3 Hybrid Systems Diagnosis Approach
We propose a hybrid systems diagnosis approach based on
structural model decomposition. In this approach, we gener-
ate submodels for the purpose of computing residuals. Resid-
uals can then be used for diagnosis.

For hybrid systems, however, the problem is that these sub-
models may change as the result of a mode change. That is,
we may obtain two different submodels when decomposing
the model in two different modes. There are two approaches
to this problem. One is to find a set of submodels that work
for all modes, and can be easily reconfigured by executing
only local mode changes within the submodels [10]. This
approach requires the least online effort, with some offline
effort in finding these submodels, which exist only in limited
cases. The other approach is to generate submodels for the
current mode, and when a mode change occurs, reconfigure
the submodels to be consistent with the new system mode.
This is the approach we develop in this paper.

In order to execute this type of approach, however, we
must be able to efficiently reconfigure submodels online. In
order to do this, we take advantage of causality in two ways.
First, we perform an offline model analysis to determine
which causalities of the hybrid system model are not per-
missible, i.e., they will never be used in any mode of the
system (determine AM for a model). Second, we use an effi-
cient causality reassignment algorithm, so that the causality
of a hybrid systems model is updated incrementally when
a mode changes (given A for the previous mode, compute
it for the new mode). Since causal changes usually only
propagate in a local area in the model, causality does not
need to be reassigned at the global model level. Together,
these algorithms reduce the number of potential causalities to
search within the model decomposition algorithm and allow
efficient submodel reconfiguration.

4 Causality Assignment
In order to compute minimal submodels for residual genera-
tion, we need a modelMwith a valid causal assignmentAm.
As described in Section 2, causality assignment can only be
defined for a given mode. However, there are some causal
assignments that are independent of the system mode, i.e.,
they are valid for all system modes. We capture this through
the notion of permissible causal assignments, introduced as
AM in Section 2.

Given a model with a number of modes, some constraints
will always have the same causal assignment in all modes,
and we say these constraints are in fixed causality.
Definition 6 (Fixed Causality). A constraint cδ is in fixed
causality if (i) component δ has only a single mode, i.e.,
|Cδ| = 1, and (ii) for cδ in the single C ∈ Cδ, it always has
the same causal assignment in all system modes.

If a constraint is in fixed causality, then |Ac| = 1, i.e.,
there is only one permissible causal assignment. For ex-
ample, if we make the integral causality assumption, then
constraints computing state variables will always be in the
integral causality, and thus they are in fixed causality.

Additionally, when the constraint is viewed in the context
of the model, the concept of fixed causality can be propagated

from one constraint to the related constraints (those sharing
a variable with the fixed causality constraint). This will help
to reduce the number of permissible causal assignments. For
example, if we again assume integral causality, then any
constraint involving a state variable cannot be in a causal
assignment where the state variable is the dependent/output
variable, because the integration constraint is the one that
must compute it. For such a constraint, 1 < |Ac| < |Vc|.

Given a system model and a set of outputs, Algorithm 1
searches over the model constraints to reduce the set of per-
missible causal constraints based on system-level informa-
tion.1 First, it determines which constraints are mode-variant,
i.e, they can appear/disappear from the model depending on
the mode (so belong to components with multiple modes),
and which are mode-invariant, i.e., they are present in all
system modes (so belong to components with a single mode).
It is only the mode-invariant constraints for which causal
assignments can be removed. We then construct a queue
of variables from which to propagate. This queue contains
the inputs and parameters (which must always be indepen-
dent/input variables in constraints), and the outputs (which
must always be dependent/output variables in constraints).
We create a variable set V that refers to the variables that are
resolved, i.e., either they are inputs/parameters or there is a
constraint with a single causal assignment that will compute
the variable. So, V is initially set to include UM and ΘM.
Further, for any mode-invariant constraints that only has a
single causal assignment, the output variable is added to V ,
and all variables of the constraint added to the queue.

The main idea is to analyze the causality restrictions im-
posed by variables in the queue, which will be propagated
throughout the model. While the queue is nonempty, we pop
a variable v off the queue. We then count the number of con-
straints involving v that have no set causal assignment yet,
including constraints that are both mode-variant and mode-
invariant. We then go through all mode-invariant constraints
involving v, and remove causal assignments that will never
be possible. There are three conditions in which this holds:
a causal assignment is not possible in any system mode if (i)
the output variable is already computed by another constraint,
or is an input/parameter (i.e., in V ), (ii) any of the input vari-
ables are in the model outputs (i.e., in Y ), or (iii) v is not yet
computed by any constraint (i.e., not in V ), there is only one
noncausal constraint involving v remaining, and v is not the
output in this causality (in this case, v needs to be computed
by some constraint and there is only one option left, so this
constraint must only be in the causality computing v). These
causal assignments are removed. If only one is left, then
we add the output for that causal assignment to V , and add
the constraint’s variables to the queue. The algorithm stops
when causalities can no longer be removed, i.e., there are
not enough restrictions imposed by the current permissible
causalities to reduce AM further.

Example 6. For the circuit, we assume integral causality, so
all constraints with the state variables are limited to causal
assignments in which the states are computed via integration.
Further, the constraint with uV is also fixed so that uV is the
independent variable. For any specified outputs, AM is also

1For structural model decomposition, some output variables may
become input variables and so the causal assignments permitting
that must be retained. Therefore, the algorithm only reduces the
permissible set of causal assignments for a given set of outputs
Y ⊆ YM.
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Algorithm 1 AM ← ReduceCausality(M,AM, Y )

1: Cinvariant ← ∅
2: Cvariant ← ∅
3: for all δ ∈ M do
4: if |Cδ| = 1 then
5: Cinvariant ← Cinvariant ∪ C1

δ

6: else

7: Cvariant ← Cvariant ∪


 ⋃

C∈Cδ

C




8: Q← UM ∪ΘM ∪ Y
9: V ← UM ∪ΘM

10: for all c ∈ Cinvariant do
11: if |Ac| = 1 then
12: (c, v)← Ac(1)
13: Q← Q ∪ Vc
14: V ← V ∪ v
15: while |Q| > 0 do
16: v ← pop(Q)
17: nnoncausal ← 0
18: for all c ∈ Cinvariant(v) do
19: if |Ac| > 1 or (|Ac| = 1 and vAc(1) /∈ V ) then
20: nnoncausal ← nnoncausal + 1
21: for all c ∈ Cvariant(v) do
22: nnoncausal ← nnoncausal + 1
23: for all c ∈ Cinvariant(v) do
24: if |Ac| > 1 or (|Ac| = 1 and vAc(1) /∈ V ) then
25: for all (c′, v′) ∈ Ac do
26: if v′ ∈ V then
27: Ac ← Ac − (c′, v′)
28: if (Vc − {v}) ∩ Y 6= ∅ then
29: Ac ← Ac − (c′, v′)
30: if nnoncausal = 1 and v′ /∈ V and v′ 6= v then
31: Ac ← Ac − (c′, v′)
32: if |Ac| = 1 then
33: (c′, v′)← Ac(1)
34: Q← Q ∪ (Vc′ − V )
35: V ← V ∪ {v′}

reduced so that they can appear only as dependent variables.

With AM defined, we can perform causality assignment
for a given mode, m. Because AM was reduced as much as
possible, causality assignment (and, later, reassignment) will
be more efficient than otherwise. Algorithm 2 describes the
causality assignment process for a model given a mode. Here,
the model is assumed to not have an initial causal assign-
ment. Causal assignment works by propagating causal re-
strictions throughout the model. The process starts at inputs,
which must always be independent variables in constraints;
outputs, which must always be the dependent variables in
constraints; and variables for involved in fixed causality con-
straints. From these variables, we should be able to propagate
throughout the model and compute a valid causal assignment
for the model in the given mode. For the purposes of this
paper, we assume integral causality and that the model pos-
sesses no algebraic loops.2 In this case, there is only one
valid causal assignment (this is a familiar concept within
bond graphs) [13].

Specifically, the algorithm works as follows. Similar to
Algorithm 1, we keep a queue of variables to propagate
causality restrictions, Q, and a set of variables that are com-
puted in the current causality, V . Initially, V is set to U and
Θ, because these variables are not to be computed by any
constraint. Q is set to U , Θ, and Y , since the causality of

2If algebraic loops exist, the algorithm will terminate before all
constraints have been assigned a causality. Extending the algorithm
to handle algebraic loops is similar to that for bond graphs; a con-
straint without a causality assignment is assigned one arbitrarily,
and then effects of this assignment are propagated until nothing
more is forced. This process repeats until all constraints have been
assigned causality.

Algorithm 2 A ← AssignCausality(M,m,A)

1: A ← ∅
2: V ← UM ∪ΘM
3: Q← UM ∪ΘM ∪ YM
4: for all c ∈ CMm do
5: if |Ac| = 1 then
6: (c, v)← Ac(1)
7: Q← Q ∪ v
8: while |Q| > 0 do
9: v ← pop(Q)

10: for all c ∈ CMm (v) do
11: if c /∈ {c : (c, v) ∈ A} then
12: α∗ ← ∅
13: for all α ∈ Ac do
14: if Vc − {vα∗} ∪ V 6= ∅ then
15: α∗ ← α
16: else if αv ∈ Y then
17: α∗ ← α
18: else if vα∗ = v and |CMm (v)|−|{c′ : (c′, v′) ∈ A∧v ∈

vc}| = 1 then
19: α∗ ← α
20: if α∗ 6= ∅ then
21: A ← A∪ {α∗}
22: Q← Q ∪ (Vc − V )
23: V ← V ∪ {vα∗}

constraints is restricted to U and Θ variables being indepen-
dent variables and Y variables being dependent variables.
We add also to Q any variables involved in constraints that
have only one permissible causal assignment, because this
will also restrict other causal assignments. The set of causal
assignments is maintained in A.

The algorithm goes through the queue, inspecting vari-
ables. For a given variable, we obtain all constraints it is
involved in, and for each one that does not yet have a causal
assignment (in A), we go through all permissible causal as-
signments, and determine if the causality is forced into one
particular causal assignment, α∗. If so, we assign that causal-
ity and propagate by adding the involved variables to the
queue. A causal assignment α = (c, v) is forced in one of
three cases: (i) v is in Y , (ii) all variables other than v of the
constraint are already in V , and (iii) v is not yet in V , and
all but one of the constraints involving v have an assigned
causality, in which case no constraint is computing v and
there is only one remaining constraint that must compute v.

Example 7. Consider the mode m = [1 2]. Here, A[1 2]

is given in column 4 of Table 1, denoted by the voutc in the
causal assignment. In this mode, the first switch is off, so
i1 and i2 act as inputs. Given the integral causality assump-
tion, a unique causal assignment to the model exists and is
specified in the column.

Example 8. Consider the mode m = [2 1]. Here, A[2 1]

is given in column 8 of Table 1. In this mode, the second
switch is off, so i9, i10, and i11 act as inputs. Given the
integral causality assumption, a unique causal assignment to
the model exists and is specified in the column. Note that
some causal assignments are in the same as in m = [1 2],
while others are different. In changing from one mode to
another, an efficient causality reassignment should be able
to determine which constraints need to change causality, and
do the work for only that portion of the model.3 Causal
assignments that do not change from mode to mode are in
fixed causality and found by Algorithm 1.

3Note that this particular circuit was carefully chosen so that
causality does propagate across much of the circuit, in order to
demonstrate the causality reassignment algorithm.
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5 Structural Model Decomposition
For a given causal model in a given mode, we have the
equivalent of a continuous systems model for the purpose of
structural model decomposition, and we can compute mini-
mal submodels using the GenerateSubmodel algorithm
described in our previous work [12]. The algorithm finds
a submodel, which computes a set of local outputs given a
set of local inputs, by searching over the causal model. It
starts at the local inputs, and propagates backwards through
the causal constraints, finding which constraints and vari-
ables must be included in the submodel. When possible,
causal constraints are inverted in order to take advantage of
local inputs. Additional information and the pseudocode are
provided in [12].

In the context of residual generation, we set the local
output set to a single measured value, and the local inputs
to all other measured values and the (known) system inputs.
That is, we exploit the analytical redundancy provided by
the sensors in order to find minimal submodels to compute
estimated values of sensor outputs. In this framework, we
consider one submodel per sensor, each producing estimated
values for that sensor.

Assuming that the set of sensors does not change from
mode to mode, then for a hybrid system we have one sub-
model for each sensor.4 However, since the set of con-
straints changes from mode to mode, the result of the
GenerateSubmodel algorithm will also change. When a
mode changes, we first reassign causality to the model for the
new mode. Then, we generate new updated submodels for
that mode using GenerateSubmodel. In order to reduce
the work performed by this algorithm when a mode changes,
we use an efficient causality reassignment algorithm. That,
coupled with the reduced set AM, significantly reduces the
work of the algorithm compared to a naive approach, where
the submodels are completely regenerated for a new mode.
Additionally, when the system transitions to a new mode,
the causal assignments for the previous mode can be stored,
so that when the system changes to a mode that has already
been visited, it just takes the causal assignments that were
stored previously. Similarly, submodels generated in previ-
ously visited modes can be saved and reused when the mode
reappears.

Example 9. The causal assignments for the submodels in the
different modes are shown in Table 1. For example, consider
the submodel for i∗11 in m = [2 1]. Here, i11 is zero, since
Sw2 is off, and therefore we have just two constraints needed
to compute i∗11. In mode m = [1 2], i∗3 can be computed
using 16 constraints, where v∗8 is used as a local input to the
submodel.

Note that a submodel for an output may have different
states in two different modes (e.g., in moving from m = [2 1]
to m = [1 2], the i∗3 submodel adds state v6). In order to
continue tracking, new states must be initialized. For the pur-
poses of this paper, we assume that in any one system mode,
all states are included in at least one submodel.5 Therefore,

4By assuming that the sensor set does not change, we mean
only that sensors are not added/removed to/from the physical
system upon a mode change. They are still allowed to be con-
nected/disconnected, but still appear in the system model even
when disconnected. For example, if a disconnected sensor outputs
0, then that needs to still be in the model.

5If this is not the case, then a state is not observable in some

Algorithm 3 Am′ ←
ReassignCausality(M,m,Am,A)

1: Am′ ← ∅
2: for all (c, v) ∈ Am do
3: if c ∈ CMm then
4: Am′ ← Am′ ∪ Am

c

5: V ← ∅
6: Q← ∅
7: for all δ ∈ M wheremδ 6= m′δ do
8: Q← Q ∪ Vδ
9: while |Q| > 0 do

10: v ← pop(Q)
11: for all c ∈ CMm (v) do
12: if c /∈ {c : (c, v) ∈ Am′} then
13: α∗ ← ∅
14: for all α ∈ Ac do
15: if Vc − {vα∗} ∪ V 6= ∅ then
16: α∗ ← α
17: else if αv ∈ Y then
18: α∗ ← α
19: else if vα∗ = v and |CMm (v)|−|{c′ : (c′, v′) ∈ A∧v ∈

vc}| = 1 then
20: α∗ ← α
21: if α∗ 6= ∅ then
22: if ∃α ∈ Am′ where vα = v∗α then
23: Am′ ← Am′ − {α∗}
24: Q← Q ∪ (V{α

∗
c} − V )

25: Am′ ← Am′ ∪ {α∗}
26: Q← Q ∪ (Vc − V )
27: V ← V ∪ {vα∗}
28: else if (Vc − V = v then
29: V ← V ∪ {v}
30: Q← Q ∪ {v}

a submodel that gets a state added in a new mode can initial-
ize using the estimated value from another submodel in the
previous mode.

6 Online Causality Reassignment
As we mentioned before, from the initial mode in the system
with a valid set of causal assignments, we compute minimal
submodels. However, when the system transitions to a differ-
ent mode, any submodel containing constraints of a switch-
ing component will no longer be consistent, and must be
recomputed. In order to do this, we need to know the causal
assignments for the new mode. We can reassign causality in
an efficient incremental process to avoid having to reassign
causality to the whole model, as causal changes typically
propagate only to a small local area in the model [11].

Algorithm 3 presents the causality reassignment procedure.
The main ideas are based on the hybrid sequential causality
assignment procedure (HSCAP) developed for hybrid bond
graphs in [11]. In our more general modeling framework,
we find that similar ideas apply. Essentially, we start with a
causal model in a given mode. We then switch to a different
mode, so for the switching components we have a new set of
constraints in the model. We need to find causal assignments
for these constraints. It is likely that some of the necessary
causal assignments will conflict with causal assignments
from the old mode, therefore, we have to resolve the conflict
and propagate the change. The change will propagate only as
far as it needs to in order to obtain a valid causal assignment
for the model in the new mode. Here, propagation stops
along a computational path when a new causal assignment
does not conflict with a previous assignment.

mode. Estimation techniques to handle that situation are outside
the scope of this paper.
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The algorithm works similarly to Algorithm 2. It maintains
a queue of variables to inspect and a set V of variables
that are known to be computed in the causality for the new
mode (so includes only variables from new assignments
or confirmed assignments made in the new mode). In this
case, we initialize the queue only to variables involved in the
constraints of the switching components. If no components
are switching, the queue will be empty and no work will be
done. The main idea is that the required causal changes from
the variables placed in the queue will, on average, be limited
to a very small area. The causal assignments for the new
mode are initialized to those for the previous mode, for any
constraints that still exist in the new mode. Some of these
may conflict with the new mode and will be removed and
replaced with different assignments.

As in all the other causality algorithms, we go through
the queue and propagate the restrictions we find on causality.
We pop a variable off the queue, and look at all involved
constraints. If the constraint is not causal, then we need
to assign causality. We do the same analysis as before to
find if a causality is forced, but checking things only with
respect to V that includes only variables with confirmed
causal assignments computing it in the new mode. If we find
a constraint that is forced into a particular causal assignment
for the new mode, we make the assignment. If it conflicts
with one already in the set of causal assignments (copied
from the old mode), then we remove the old assignment and
add the new one, adding the involved variables to the queue
so that changes are propagated.

7 Demonstration of Approach
For the circuit example, we consider two modes: one where
Sw1 is on and Sw2 is off (i.e., m = [2 1]), and one where
Sw1 is off and Sw2 is on (i.e., m = [1 2]). We consider
a scenario in which to demonstrate the approach where the
system starts in m = [2 1], switches to m = [1 2] at t = 10 s,
and switches back to m = [2 1] at t = 20 s. Additionally, at
t = 15 s, a fault is injected, specifically, an increase in R1.

Fig. 2 shows the measured and submodel-estimated values
for the sensors. Up through the first mode change, the outputs
are correctly tracked by the submodels. At the first mode
change at 10 s, the submodels reconfigure and track correctly
up to 15 s, when the fault is injected, and a discrepancy
is observed in the i∗3 submodel. Specifically, the current
increases above what is expected. The other submodels in
this mode are independent of the fault, and so continue to
track correctly. When the second mode change occurs, i∗11
can still be tracked correctly, since its estimation remains
independent of the fault. However, we now see a discrepancy
in v∗8 , as the measurement increases above what is expected.
This transient occurs because we switch from a mode in
which the submodel is independent of the fault to one where
it is dependent on the fault. Fault isolation can be performed
by using the information that in m = [1 2], an increase in
R1 would produce an increase in the residual for i∗3, and
in m = [2 1], it would produce an increase also in the v∗8
residual.

8 Related Work
Modeling and diagnosis for hybrid systems have been an im-
portant focus of study for researchers from both the FDI and
DX communities during the last 15 years. In the FDI commu-
nity, several hybrid system diagnosis approaches have been
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Figure 2: Measured and estimated values with an increase in
R1 at t = 15 s.

developed. In [14], parameterized ARRs are used. However,
the approach is not suitable for systems with high nonlineari-
ties or a large set of modes. A different approach [15], but
uses purely discrete models.

In the DX community, some approaches have used differ-
ent kind of automata to model the complete set of modes and
transitions between them. In those cases, the main research
topic has been hybrid system state estimation, which has has
been done using probabilistic (e.g., some kind of filter [16]
or hybrid automata [4]) or set-theoric approaches [5].

Another solution has been to use an automaton to track the
system mode, and then use a different technique to diagnose
the continuous behavior (for example, using a set of ARRs
for each mode [3], or parameterized ARRs for the complete
set of modes [17]). Nevertheless, one of the main difficulties
regarding state estimation using these techniques is the need
to pre-enumerate the set of possible system-level modes and
mode transitions, which is difficult for complex systems. We
avoid this problem by using a compositional approach.

Regarding hybrid systems modeling, there are several
proposals. For HBGs [8, 18], there are two main ap-
proaches: those that use switching elements with fixed causal-
ity [18–20], and those who use ideal switching elements that
change causality [8]. The advantages of the latter are that the
modeling of hybrid systems is done through a special kind of
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hybrid component (which avoid the mode pre-enumeration in
the system), and also changes are handled in a very efficient
way [11]. Finally, in [10] the HBGs are used to compute
minimal submodels (Hybrid Possible Conflicts, HPCs) simi-
lar to the minimal submodels presented in this paper. HPCs
can track hybrid systems behavior, efficiently changing on-
line for each mode the PC simulation model, by using block
diagrams as in [11], and performing diagnosis without pre-
enumerating the set of modes in the system. However, HPCs
rely on HBG modeling and do not provide a generalized
framework for hybrid systems.

9 Conclusions
In this work, we have developed a compositional modeling
framework for hybrid systems. Using computational causal-
ity, we developed efficient causality assignment algorithms.
Given this causal information, submodels computed using
structural model decomposition can be computed and recon-
figured efficiently. The approach was demonstrated with a
circuit system. In future work, we will further develop the
hybrid systems diagnosis approach for the single and multi-
ple fault cases, and we will approach the diagnosis task in
a distributed manner. The assumption of one submodel per
sensor can also be dropped, using the extended framework
developed in [21, 22].
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Abstract
The goal of this work is to bridge the gap between
business decision making and real-time factory
data. Beyond real-time data collection, we aim to
provide analysis capability to obtain insights from
the data and converting the learnings into action-
able recommendations. We focus on analyzing
device health conditions and propose a data fusion
method that combines sensor data with limited di-
agnostic signals with the device’s operating con-
text. We propose a segmentation algorithm that
provides a temporal representation of the device’s
operation context, which is combined with sensor
data to facilitate device health estimation. Sensor
data is decomposed into features by time-domain
and frequency-domain analysis. Principal com-
ponent analysis (PCA) is used to project the high-
dimensional feature space into a low-dimensional
space followed by a linear discriminant analysis
(LDA) to search the optimal separation among
different device health conditions. Our industrial
experimental results show that by combining de-
vice operating context with sensor data, our pro-
posed segmentation and PCA-LDA approach can
accurately identify various device imbalance con-
ditions even for limited sensor data which could
not be used to diagnose imbalance on its own.

1 Introduction
The growing Internet of Things is predicted to connect 30
billion devices by 2020 [1]. This will bring in tremendous
amounts of data and drive the innovations needed to realize
the vision of Industry 4.0—cyber-physical systems moni-
toring physical processes, and communicating and cooper-
ating with each other and with humans in real time. One of
the key challenges to be addressed is how to analyze large
amounts of data to provide useful and actionable informa-
tion for businesses intelligence and decision making. In par-
ticular, to prevent unexpected downtime and its significant
impact on overall equipment effectiveness (OEE) and total
cost of ownership (TCO) in many industries. Continuous
monitoring of equipment and early detection of incipient
faults can support optimal maintenance strategies, prevent
downtime, increase productivity, and reduce costs.

A significant number of anomaly detection and diagno-
sis methods have been proposed for machine fault detection
and machine health condition estimation. Chandola et al. [2]

discusses various categories of anomaly detection technolo-
gies and their assumptions as well as their computational
complexity. Several approaches such as statistical meth-
ods [3], neural network methods [4] and reliability meth-
ods [5], have been applied to detect anomalies for various
types of equipment. The philosophies and techniques of
monitoring and predicting machine health with the goal of
improving reliability and reducing unscheduled downtime
of rotary machines are presented by Lee et al. [6].

Many of these methods focus on analyzing, combining,
and modeling sensor data (e.g. vibration, current, acous-
tics signal) to detect machine faults. One issue that remains
mostly unaddressed in these methods is that they rarely con-
sider the varying operating context of the machine. In many
cases, false alarms are generated due to a change in machine
operation (e.g. rotational speed) rather than a change in ma-
chine condition. A major challenge in addressing this issue
is that most machine controllers are built with proprietary
communication protocols, which leads to a barrier in ob-
taining control parameters to understand the context under
which the machine is operating. Recently, the MTConnect
open protocol [7] was developed to connect various legacy
machines independent of the controller providers. MTCon-
nect provides an unprecedented opportunity to monitor ma-
chine operating context in real-time. In this paper, we lever-
age MTConnect to diagnose machine health condition by
combining sensor data with operating context information.
Additionally, we investigate whether it is possible to diag-
nose machine health condition using less sensor data when
it is combined with context information.

Prior work [8] has demonstrated that vibration data could
be used for diagnosing machine imbalance fault conditions.
Our study focuses on extending prior work by exploring var-
ious types of sensor and control data for diagnosing the im-
balance of the machine tools.

Our contribution includes the following extensions:

• Combining control and sensor signals to improve ac-
curacy.

• Utilizing a different set of sensor data such as temper-
ature, power, flow, and lubricant/coolant pH.

Our hypothesis is that these advancements to prior work
will aid in improving the diagnosis capability as well as re-
ducing the cost of machine diagnostics by utilizing cheaper
sensors.
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2 Experimental Data
The data under study has been collected from experiments
utilizing a machine tool monitoring system implemented on
a horizontal machining center manufactured by Milltronic
with Fanuc 0i-MC control. We have two main sources of
data: (i) data from additional sensors installed on the ma-
chine, and (ii) data from the machine tool controller. This
data has been collected using National Instrument equip-
ment and software (LabVIEW).

The external sensors used for data collection include:
• power sensor that measures power using Hall effect,
• accelerometers that capture machine tool motion in 6

degrees of freedom,
• thermocouples that measure temperatures at 10 loca-

tions on the machine tool,
• pH sensor for detecting the pH level of the metalwork-

ing fluid, and
• flow rate sensor to measure metalworking fluid pump

flow.
The second category consists of data collected from the

controller. This data includes drive loads, absolute and rel-
ative positions, servo delays, and feed rate. The complete
list of the components of the control data is listed in Pavel
et al.[8].

Data has been collected in two sessions, one in 2009 and
the other in 2010. Although the basic control signals are
similar, they are offset by constant values (see Figure 1).
Since the positional offset could cause a difference in the
motion dynamics, we have treated them as separate data sets
for this study.

3 Technical Approach

For each extension to prior work listed in Section1, we
have performed two main steps for creating appropriate di-
agnostics:
• Feature Extraction & Synthesis
• Model Selection

3.1 Feature Extraction & Synthesis
There are various approaches for condensing time series in-
formation into data mining features. Prior work has utilized
transfer functions to map control signals to vibrational sen-
sor data [8]. The diagnosis step is then reduced to compar-
ing the features of transfer function-predicted vibration data
and the sensor-derived vibration data. This approach makes
sense when the control signal directly impacts the output
variables of the machine. For motion control of machine
tools, the estimated transfer function should be similar to
the transfer function of the implemented control (like PI or
PID). Typical vibration data features would include average,
standard deviation, and maximum FFT values [9].

However, we would like to diagnose the state of machine
using not only accelerometers, but also other sensors, such
as temperature sensors. Since temperatures at various lo-
cations are not part of active control loops, there may not
exist well defined transfer functions that can map control
signals to temperature sensor data very accurately. In such
cases where conventional features extracted from tempera-
ture signals are not correlated with the fault (imbalance) to a

sufficient degree. Additionally, if the associated sensors are
too expensive to install, then data fusion may be applied.

There are three data fusion approaches typically used in
machinery diagnostics [10; 11]—data-level fusion, feature-
level fusion, and decision-level fusion. Data-level fusion
involves combining sensor data before feature extraction,
such that features contain information gathered from mul-
tiple sensors. Feature-level fusion involves generating fea-
tures from each sensor separately, then fusing this set of
features generated from all of the sensors coherently for di-
agnostics. Finally, decision-level fusion creates diagnostics
from each sensor separately, then aggregates these diagnos-
tics into a single diagnostic output.

The choice of the three types of data fusion methods is
often application specific. In our application, we found that
temperature sensor data cannot resolve imbalance condi-
tions by itself and control signal data is too coarse-grained
to aid in classifying imbalance conditions using the stan-
dard data-fusion techniques. Note that we did not focus on
spindle acceleration data, which could diagnose imbalance
on its own (see Subsection 4.1) since that would require
retrofitting existing machine tools with new expensive sen-
sors and data acquisition hardware. Ideally we would like
to use the readily accessible control signals and data from
inexpensive temperature sensors to diagnose imbalance. To
achieve this goal, we proposed a different type of data fusion
approach. We used the control signal to provide the contex-
tual information for temperature sensor data. The control
signal is used for the segmentation of sensor data, but does
not directly map into feature vectors (see Subsection 4.2).

3.2 Model Selection
Since the data sets are statistically small and dimensional-
ity of the data is increased by feature synthesis, the models
to be used for imbalance classification need to be carefully
chosen to avoid over-fitting. The high-dimensional data
needs to be projected to a much smaller sub-space to prevent
over-fitting1 To accomplish this, the main techniques used
in this study are Principal Component Analysis (PCA) [12]
and Linear Discriminant Analysis (LDA) [13]. These tech-
niques are based on linear coordinate transformation, which
makes them more likely to under-fit and less likely to over-
fit [14].

4 Results
We have explored three types of imbalance diagnostics to
investigate the hypothesis posed in Section 1:

• Sensor based Diagnostics

• Control based Temporal Segmentation followed by
Sensor based Diagnostics

4.1 Sensor based Diagnostics
In this case, each sensor signal was analyzed separately to
determine if any of the sensor signals contains enough diag-
nostic information to detect imbalance on its own. By plot-
ting the time series data we find that spindle acceleration
sensors (which captures vibration) show higher oscillation

1Note that complexity of model is positively correlated with
likelihood of over-fitting. Thus, creating a classifier that takes
high-dimensional input will have higher degree of fredoom (i.e.
higher complexity) compare to low-dimensional inputs, which re-
sults in higher likelihood of over-fitting.
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(a) Absolute X position (b) Absolute Y position

(c) Absolute Z position (d) Spindle Motor Speed

Figure 1: Primary Control Signals
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amplitudes (see Figure 2) with increasing imbalance. Since
imbalance actually impacts moment of inertia of the spindle,
this change in acceleration is expected.

We also considered measuring imbalance through tem-
perature. From the energy flow perspective, additional ac-
celeration caused by imbalance should result in higher en-
ergy consumption from the power source and higher energy
dissipation to thermal inertias due to friction, which should
result in temperature increase in parts of the machine tool.
However, the time series data, from each of the tempera-
ture sensors, did not show distinguishing features similar to
the acceleration sensors. An example of temperature sensor
time series data is shown in Figure 3.

Figure 3: Sample Temperature Sensor Data (Fluid Temper-
ature): blue and red traces indicate nominal and faulty con-
ditions respectively

For this sensor data analysis, the features extracted are (i)
average, (ii) standard deviation, (iii) maximum amplitude
of FFT, and (iv) frequency for maximum amplitude of FFT.
These four features are inspected visually to determine if
imbalance could be classified by a simple linear classifier.
The spindle acceleration (X, Y, and Z) feature (maximum
amplitude of FFT) showed easily visible characteristics that
can distinguish between degrees of imbalance. See Figure 4
for an example of visual classification based on X-axis ac-
celeration data. Other sensor signals like power, pH, flow,
and temperature did not exhibit such classification capabil-
ity.

4.2 Control-based Segmentation followed by
Sensor-based Diagnostics

The second diagnostic approach that we explored combines
both sensor and control data in a coherent manner. The
first step in this approach is to utilize the control signal to
provide temporal segmentation, i.e., assuming quasi-steady
state, the goal is to find the time intervals in which the fol-
lowing conditions are satisfied: (i) all experiments display
same values for the primary control signal (actual spindle
speed) , and (ii) all the control signals are constant over
the same period. Note that, to investigate the dynamic re-
sponse, rather than quasi steady state response, the control
signals should be consistent across the experiments so that
responses are compared under the same set of control in-
puts. Figure 5 (a) shows the result of this temporal seg-
mentation scheme. For each of the control signals, we have

computed the standard deviation at the each time step and
identified the periods with standard deviation below a set
threshold to find the consistent time intervals (shown as col-
ored segments along the time axis in Figure 5 (b)). Then
we find the intersection of the sets of consistent time inter-
vals over all the control signals to determine the aggregate
time intervals over which the control signals are statistically
consistent (shown as black segments along the time axis in
Figure 5 (c)).

These temporal segments are then mapped to sensor data
to facilitate diagnostics. For each of 16 temporal segments,
we computed features including (i) average, (ii) standard de-
viation, (iii) maximum FFT value, and (iv) FFT frequency
at maximum amplitude. This step produces a 64 dimen-
sional feature space to diagnose machine imbalance. As
mentioned before, to avoid the overfitting we focus on linear
transformation based approaches. We implemented Princi-
pal Component Analysis (PCA) to reduce the dimensional-
ity from 64 to 4 (postulating that there should be 4 unique
dimensions given the 4 uncorrelated features that we have
selected). The PCA step is followed by Linear Discrimi-
nant Analysis to find the optimal coordinate transformation
that provides maximum separation between classes. Result
of this PCA-LDA analysis is shown in Figure 6 for Fluid
Temperature sensor data. Another temperature sensor lo-
cated at Spindle Motor also exhibits similar diagnostic ca-
pability after application of control based temporal segmen-
tation. This demonstrates that control data can be used to
provide context to sensor data in a way that helps diagnose
machine imbalance. Thus, temperature sensor which had
inferior diagnostic performance without context data, could
classify imbalance perfectly when it is combined with addi-
tional context from control signal.

5 Conclusion and Discussion
This work explores various types of sensor and control data
for diagnosing the imbalance of the machine tools. Our
proposed approaches utilize sensor data that has not been
used before for this purpose. This includes temperature,
power, flow, and lubricant/coolant pH. In addition, our pro-
posed techniques combine control and sensor signals to im-
prove accuracy. Namely, by combining context information
gained from the control signal, temperature sensor was able
to classify machine imbalance conditions with much higher
accuracy than using itself alone.

For future work, we will explore diagnostics based on
control signal alone. Given that relying on sensor data typ-
ically requires adding sensors to existing machine tools, it
would be ideal if we could diagnose imbalance of the ma-
chine from control signals that are usually recorded (i.e. no
additional hardware required). The expectation is that if a
machine tool uses feedback controls, then the control signal
should be impacted by any change in the operational char-
acteristics (in this case the imbalance of the machine tools).
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Abstract
Model-based anomaly detection approaches by
now have established themselves in the field of
engineering sciences. Algorithms from the field
of artificial intelligence and machine learning are
used to identify a model automatically based on
observations. Many algorithms have been devel-
oped to manage different tasks such as monitoring
and diagnosis. However, the usage of the factor
of time in modeling formalisms has not yet been
duly investigated, though many systems are de-
pendent on time.
In this paper, we evaluate the requirements of the
factor of time on the modeling formalisms and the
suitability for automatic identification. Based on
these features, which classify the timing model-
ing formalisms, we classify the formalisms con-
cerning their suitability for automatic identifica-
tion and the use of the identified models for the
diagnosis in Cyber-Physical Production Systems
(CPPS). We argue the reasons for choosing timed
automata for this task and propose a new timing
learning method, which differs from existing ap-
proaches and we proof the enhanced calculation
runtime. The presentation of a use case in a real
plant set up completes this paper.

1 Introduction
Many learning algorithms have been developed for the iden-
tification of behavior models of CPPS, e.g. [1], [2], [3].
However, most of the learning algorithms do not include
timing information, not least because the modeling for-
malisms do not consider timing information.

Indeed, technical systems mostly depend on time, e.g. the
filling of a bottle or the moving of a part on a conveyor belt.
Therefore, many applications (such as the anomaly detec-
tion) require a model with timing information. Some faults
only can be detected using timing information (especially
degradation faults, e.g. a worn conveyor belt runs slower).

In this paper, we use the term "Cyber-Physical Systems
(CPS)" for "systems that associate (real) objects and pro-
cesses with information processing (virtual) objects and pro-
cesses through open, partly global, anytime interconnected
information networks". Further, a CPPS is a CPS in the con-
text of an industrial production environment.

In this paper, we give a taxonomy of modeling for-
malisms. These formalisms are evaluated according to

specific features. The taxonomy is then used to evaluate
whether the models can be identified automatically and used
for anomaly detection.

Based on this evaluation, we present a timing learning
method, which is used to learn the timing behavior as timed
automaton. In contrast to other approaches, we use the
underlying timing distribution function to differentiate be-
tween transitions with equal events which belong to differ-
ent processes.

By calculating the computation runtime, we prove that
our approach runs faster than other existing methods for
timed automaton learning.

The presented learning method is used in an exemplary
plant setup to demonstrate the suitability for anomaly detec-
tion in CPPS.

The paper is organized as follows: In Section 2 we eval-
uate some timing learning features and give a taxonomy
of how these features are met by three categories of tim-
ing modeling formalisms, namely (i) Dynamic system mod-
els, (ii) Operational formalisms and (iii) Descriptive for-
malisms. In Section 3, we argue why we use timed automata
as formalism, point out some challenges in timed automaton
learning and present our timing learning approach. Further,
we prove formally the enhancement of the calculation run-
time of our approach. Section 4 completes the contribution
with the presentation of a use case in a real plant. Finally
in Section 5, we conclude this paper with a short discussion
and give an outlook to future work.

2 Classification of Timing Learning Features
and Algorithms

The modeling of time for computation purpose is a widely
researched area (e.g. in [4], [5] and [6]). Many formalisms
have been created to model different aspects of timing be-
havior. In this paper, some aspects are analyzed which have
to be considered when choosing an appropriate timing mod-
eling formalism. Based on this analysis, some modeling
formalisms are evaluated according to their capabilities to
model the timing behavior. One of those formalisms is cho-
sen that is well suited for the anomaly detection in CPPS.

To keep the application domain in mind, a special fo-
cus is on modeling and identification of the timing behavior
of CPPS. Additionally, the suitability of the modeling for-
malisms according to automatic learnability from observa-
tions only and the suitability for anomaly detection is eval-
uated.
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2.1 Evaluation of Timing Modeling Features
Before choosing an appropriate timing modeling formalism
some key issues have to be considered, which are listed
below. Some of that and additional features are given in
[5] where the authors provide a comprehensive analysis on
timing modeling features and corresponding modeling for-
malisms is given.

Discrete or dense time domain
The separation of formalisms concerning the usage of dis-

crete and dense time domains is a first natural categoriza-
tion. Discrete time models comprise a set of isolated points,
whereas dense time means that in a dense set, ordered by
"<", for every 2 points t1 and t2 with t1 < t2 there is always
a third point t3 in between, such that t1 < t3 < t2.

Explicit or implicit modeling of time
Another major distinctive feature is the possibility of im-

plicit and explicit modeling of time. Model formalisms with
explicit time allow the modeling of concrete time values for
some specific event, e.g. "if the sensor is activated, start
the conveyor belt within two seconds". Implicit modeling
of time only gives information about the time duration as a
whole.

One clock or many clocks
Furthermore, time model formalisms can be differenti-

ated according to their number of used clocks. When deal-
ing with independent modules within a system, the question
arises whether to use one or many clocks. The usage of
many clocks leads to the need of clock synchronization in
the simulation step, whereas the usage of one clock only re-
quires a transformation from an n-clock model to a 1-clock
model.

Concurrency and composition
Most real systems are too complex to model them in one

overall model. The behavior has to be divided into several
subsystems, so that the overall model is a composition of its
sub-models. For finite state machines, the number of states
reduces enormously if the system is decomposed into sub-
systems. This is also referred to as modularization.

The decomposition is a less mature process. Difficulties
can arise in the synchronization step. Mostly, the separated
models of subsystems have equal or identical properties.
Furthermore, the time bases can be different between the
modules, discrete or continuous, or the time base is implicit
for one module and explicit for another.

Single-mode and multiple-modes
The distinction between models, which can only cope

with single-modes and models that additionally can deal
with multiple-modes, goes a step deeper than concurrency
and decomposition. A system may, at some point in time,
abruptly change its behavior. In technical systems, this hap-
pens for reasons such as shifting a gear or stopping a con-
veyor belt. All state based models (e.g. statecharts, Petri
nets or finite state machines) are able to describe multiple-
mode systems, where equation based formalisms (e.g. ordi-
nary differential equation) can only describe the behavior of
single-mode systems.

Linear- and branching-time models
A difference can also be made between linear and branch-

ing time models [7]. Linear-time formalisms are interpreted
over linear sequences of states. Each description refers to

(a set of) linear behaviors, where the future behavior from a
given state at a given time is always identical. Branching-
time formalisms are interpreted over trees of states. That
means, in contrast to linear-time models, the future behavior
of a given state at a given time can follow different behavior
according to the tree.

A linear behavior can be regarded as a special case of
a tree. Conversely, a tree can be treated as a set of linear
behaviors that share common prefixes (i.e., that are prefix-
closed); this notion is captured formally by the notion of
fusion closure [8]. Thus, linear and branching models can
be put on a common ground and compared.

2.2 Taxonomy of Timing Modeling Formalisms
Mainly, the timing modeling formalisms can be subdivided
into three categories: (i) Dynamic system models, (ii) Oper-
ational formalisms and (iii) Descriptive formalisms:

Dynamic system models
In various engineering disciplines (like mechanical or

electrical) and especially in control engineering, the so-
called state-space representation is a common way to model
the timing behavior of technical systems [9].

Three key elements are essential for the state-based rep-
resentation: The vector x with the state variables, the vector
u with the input variables and the vector y with the output
variables. All these values explicitly depend on the time at
which they are evaluated (usually represented as x(t), u(t),
and y(t)), however, the timing information is not explicitly
described in the form as "the filling of the bottle takes five
second" i.e. it uses implicit timing.

The main advantage of dynamical system models is that
very detailed physical models can be created using estab-
lished mathematical methods. But this also can turn into a
disadvantage. For many purposes, the models are too de-
tailed, i.e. they are unsuitable for high-level description,
since some expert knowledge is required to read and under-
stand the models. As proposed in [10], dynamical systems
can be used for the diagnosis of distributed systems.

Various methods exist to identify dynamic system mod-
els. These methods are grouped under the term model iden-
tification (sometimes the term "system identification" is also
used), although, the model is not identified completely, but
a structure model is presumed and the identification meth-
ods only determine the parameters. So, still some expert
knowledge is necessary and manual work has to be done.
In [6], Isermann describes some methods, e.g by means of
parameter estimation. The states itself are not identified.

Dynamic system models also can be used for fault de-
tection (e.g. [11]). The model-based fault detection uses
the inputs u and the outputs y to generate residuals r, the
parameter estimates Φ or state estimates x, that are called
features. A comparison of these features with the nominal
values (normal behavior) detects changes of features, which
lead to analytical symptoms s. The symptoms are then used
to determine the faults.

Despite their suitability for the modeling of timing be-
havior, dynamic system models can hardly be learned auto-
matically based on observations only, since the structure of
the model has be given and mostly only the parameters are
identified.

Operational Formalisms
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Operational formalisms further can be subdivided into (i)
synchronous state machines and (ii) asynchronous abstract
machines:

Synchronous state machines:
A large variety of synchronous state machines exists: fi-

nite state machine, statecharts, timed automaton, hybrid au-
tomaton, Büchi automaton, Muller automaton, and others
(see [12]). Here, we confine our self to finite state machines
and timed automata, the timing extension of finite state ma-
chines.

The main strength and the reason for the wide usage of
finite state machines is their accessibility for humans and
their simplicity. Often, processes or timing behavior are
described by a sequence of events. In fact, technical sys-
tems are often programmed in state machines, e.g. using
the standardized programming language from IEC 61131.
Therefore, modeling the timing behavior of such technical
systems, in the sense of finite state machines or timed au-
tomata, is consequential.

Some algorithms already exist to identify timed automata
from observations (e.g. in [13] , [14], [15], [16], [1]). Most
automata identification algorithms are based on the state
merging method. The basic procedure is illustrated in Fig-
ure 1. It works as follows:

Data 
Measure-

ments 

Data 
Acquisition 

Prefix 
Detection 

State 
Merging 

1 

2 

3 

Prefix Tree 
Acceptor 

Finite 
Automaton 

Figure 1: The principle of offline automaton learning algo-
rithms using the state merging approach.

First, in step (1), the data is acquired from the system
and stored into a database. In step (2), the observations are
used to create a prefix tree acceptor (PTA) in a dense form,
whereas equal prefixes are stored only once. Then, in step
(3), in an iterative manner all pairs of states are checked for
compatibility. If a compatible pair of states is found, the
states are merged. In [13], additionally a transition split-
ting operation is introduced, which is executed when the
resulting subtrees are different enough. The result is a fi-
nite automaton the generalizes the observed behavior in an
appropriate way.

Finite state machines can also be used for fault detec-
tion and diagnosis (e.g. in [17], [18], [19]). Depending on
the used formalism, different errors can be detected: wrong
event sequence, improper event, timing deviation and error
in continuous signals.

Asynchronous abstract machines:
Beside the finite state machines, which work syn-

chronously, there exist formalisms that work asyn-
chronously, called the asynchronous abstract machines. The
most popular formalism in this group is Petri nets.

Petri nets are named according to Carl Adam Petri, who
initially developed this modeling formalism [20]. A vari-
ety of Petri nets exists [21]. The most common type is
place/transition-nets. It basically consists of states and tran-
sitions. Places store tokens and hand them over to the tran-
sitions. If all incoming places hold at least one token, a
transition is enabled. An enabled transition will be fired.
After firing the transition, tokens from incoming transitions
are moved to outgoing transitions.

Petri nets also have been extended to handle timing infor-
mation. Merlin and Farber proposed the first Timed Petri net
in [22]. Each transition is extended with the minimum and
maximum firing time, where the minimum firing time can
be 0 and the maximum can be ∞. A comprehensive sur-
vey on several timed extensions to Petri nets can be found
in [23] and [24].

Furthermore, several approaches exist to identify Petri
nets from sampled data. However, some requirements are
put on the language to be identified or some assumptions
are made, e.g. in [25], Petri nets are identified from knowl-
edge of their language, where it is assumed that the set of
transitions and the number of places is known. Only the net
structure and the initial marking are identified.

Petri nets in general are suited for fault detection
(e.g. in [26] or [2]). The different types of Petri nets
(mainly condition/event-systems, place/transition-nets and
high-level Petri nets) have different time and space com-
plexity.

Descriptive Formalisms
As the name suggests, descriptive formalisms describe

the model using a natural language, mostly based on mathe-
matical logic [27]. Such formalisms are especially suited if
some conditions have to be described.
Example 1. If it is raining or if it was raining in the last
two hours, then the street is wet.

Similar rules can also be created for the prediction of
output signals (actuators) based on the inputs (sensors) in
a CPPS.

As already shown in Example 1, the conditions can also
contain time information.

There exist different types of descriptive formalisms, e.g.
first order logics, temporal logics, explicit-time logics or al-
gebraic formalisms. Further details can be found in the lit-
erature, e.g. [27].

Some algorithms exist to identify descriptive models. For
the prediction of the behavior of CPPS, a timed decision
tree can be learned for instance. Examples for such learning
algorithms are ID3 [28], the C4.5 algorithm as extension of
the ID3 algorithm [29] or a generic algorithm for building a
decision tree by Console [3].

Note that the rule can not always be interpreted back-
wards. Using Example 1, a reason for the wet street could
be that somebody has washed his car on the street. There-
fore, descriptive formalisms have a limited suitability for
anomaly detection. The usage of descriptive formalisms for
anomaly detection puts additional requirements on the rules,
they have to be more concrete. Using the given example, it
can be modified as follows:
Example 2. The street is wet if and only if it is raining or it
was raining in the last two hours.

This rule allows a backward interpretation, if the reason
for the wet street is unknown. However, the meaning of the
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rule has now changed. Additionally, these kind of rules is
hardly identifiable from observations only.

Comparison of Modeling Formalisms
Table 1 shows how the mentioned timing modeling fea-

tures are met by the corresponding modeling formalisms.
It can be seen that operational and descriptive formalisms

allow a similar level of timing modeling, while dynamic
system models differ in nearly all features. In contrast to
the other formalisms, dynamic system models use a dense
time domain, only allow implicit modeling of, time, use one
clock only and can model linear time models.

Please note the different possibilities to handle concur-
rent behavior. Petri nets are the first choice for this task.
Using tokens, concurrent behavior can be modeled in one
model. Timed automata and hidden Markov models (HMM)
are able to decompose the behavior in several subsystems.

3 Automaton Learning
The decision of which formalism to use is based on several
factors. These can differ based on the individual use case.
Here, we consider the models to be used for learning and
diagnosis of CPPS.

Despite there exist several algorithms for the identifica-
tion of timed behavior, it can be seen in Table 2 that the
usage of timed automata is a good choice.

• Understandability: In contrast to many other auto-
matically identified models, the identified finite state
machines can be better understood by third persons.
They can be verified by experts.

• Wide usage: Finite state machines are widely used,
e.g. for modeling or programming.

• Learnability: Finite state machines are suitable for
automatic learning. The goal is to use as few expert
knowledge as possible.

• Diagnosability: Finite state machines are suitable for
fault detection. This applies for both, manually created
and automatically identified finite state machines.

• Suitability for verification: The identified finite state
machines can be used for automatic verification.

• Modification: The identified finite state machine can
be manually modified and adapted after learning. This
can also be done automatically.

3.1 Challenges in Automaton Learning
Some algorithms have already been introduced for the iden-
tification of timed automata, see Section 2.2. However, there
are still some challenges in learning timed automata. This
applies in particular to the time factor.

• Identification of states and events: The timing behav-
ior includes not only the time stamps for some obser-
vations, but also some states and transitions with timed
events in between. Many learning algorithms (espe-
cially for learning of Markov chains) assume the states
and transitions as given and only learn the transition
probabilities. Here, the structure (states and events) is
not given but has to be identified from observations.

• Timing representation method: Additionally, an ap-
propriate timing representation method has to be cho-
sen, which is able to correctly describe the technical
processes. At the beginning of Section 3.2 we review

some state of the art timing representation methods and
propose our solution.

• Relative or absolute time base: The time base is also
a very important issue. The base can be either absolute
e.g. referred to the beginning of a production cycle or
relative to the last event.

• Number of clocks: Technical systems may be pro-
grammed using a certain number of clocks. These have
to be identified or the behavior has to be expressed us-
ing only one clock.
Timed automata allow both, one and many clocks.
However, in [13] Verwer showed that 1-clock timed
automata and n-clock timed automata are language-
equivalent, but in contrast to n-clock timed automata,
1-clock timed automata can be identified efficiently.

• Event splitting: When do events with different timing
belong to the same event, or do they describe different
events? As can be seen in Figure 2, the events can be
split based on the timing, which is based on the con-
tainer size: The robot needs more time to move the big
container compared to the small one, this is captured
in the given probability distribution function over time.
More formally: The event’s timing distribution func-
tion can comprise several modes that have to be identi-
fied.
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Figure 2: The timing behavior changes based on the con-
tainer size.

• Event splitting or timing preprocessing: Continu-
ing from the previous point, additionally the question
arises that whether the modes are identified during the
learning process itself or whether a preprocessing can
be used to identify multiple modes and use this infor-
mation in the learning process, avoiding the additional
splitting operation.

3.2 Timed Automaton Learning Algorithm
Several algorithms have been introduced to learn an au-
tomaton based on observations of the normal behavior only.
While most automaton identification algorithms do not con-
sider time (e.g. MDI [30] and Alergia [31]), recently only
few algorithms have been introduced that identify a Timed
Automaton. RTI+ [13] and BUTLA/HyBUTLA [16] learn
in an offline manner, i.e. first the data is acquired and stored
and then the automaton is learned. However, for the case
that observations cannot be stored, an online learning algo-
rithm is desirable, which includes each observed event on-
line, without a preprocessing. OTALA [1] is an extension of
BUTLA and learns a timed automaton in an online manner.
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Table 1: Taxonomy of the timing modeling features and how they are satisfied by the corresponding modeling formalisms.

operational Formalisms descriptive
Formalisms

Dynamic
system models

Timed
Automata HMM Petri nets e.g. Rule-

based system
e.g. state space
representation

Discrete or dense
time domain discrete discrete discrete discrete dense

Explicit or implicit
modeling of time explicit explicit explicit explicit implicit

One clock or
many clocks one/many one/many one/many one/many one

Concurrency
and composition ++ ++ +++ + +

Single-mode and
multiple-modes

single/
multiple

single/
multiple

single/
multiple single single

Linear- and branching-
time models

linear/
branching

linear/
branching

linear/
branching

linear/
branching linear

Table 2: Satisfiability of the mentioned properties by different timing modeling formalisms.
Timed

Automata HMM Petri nets Rule-based
system

State space
representation

Understandability +++ ++ ++ +++ +
Wide usage +++ +++ ++ ++ ++
Learnability +++ ++ + +++ +

Diagnosability +++ ++ ++ ++ ++
Suitability for verification +++ +++ ++ ++ +

Modification +++ ++ ++ +++ +

A crucial issue for the modeling formalism of timed sys-
tems is the representation of the timing information. Usu-
ally, timed automata use a single clock only and therefore a
relative time base is required, where a relative time stamp
represents the passed time from entering until leaving a
state. The timing information is annotated in the transition
next to an event. The usual way is to use intervals record-
ing the minimum and maximum observed time values for a
specific event [13], [14], [15], [1].

RTI+, the first algorithm for the identification of timed
automata [13], included a transition splitting operation in
addition to the merging operation. The timing in the transi-
tions is represented with histograms using bins and uniform
distribution [13]. During the state merging procedure, it is
also checked, whether a transition can be split. A transi-
tion is split when the resulting subtrees are different enough.
However, the splitting operation is associated with a high
calculation time, since depending on the bin size, all pos-
sible splits have to be calculated. The disadvantage of this
approach is that the bin size has to be set manually by ex-
perts. Further, it does not take the underlying distribution
into account.

In contrast to other existing algorithms for the identifi-
cation of timed automata, our proposed identification algo-
rithm BUTLA [16] uses probability density functions over
time (PDFs) to express the timing behavior. Unlike other
approaches, we base our decision on the timing information
itself, not on the subtree resemblance.

The identification algorithm BUTLA follows the method-
ology from Figure 1. Additionally, instead of the splitting
operation, a preprocessing step is introduced, which identi-
fies the timing behavior and captures different behavior pat-

terns as shown in Figure 2.

Timing preprocessing
The timing of events is analyzed in a preprocessing step.

The relative time values of each event are collected in a his-
togram. It is decided whether the timing behavior is subdi-
vided into multiple modes based on this histogram and the
resulting probability density distribution over time. In case
of multiple modes, an event is separated according to the
number of modes in the PDF such that each event consists
of only one mode. For instance, an event ei with 2 modes is
separated into ei,1, ei,2, as can be seen in Figure 3.

Probability density 

function over time 
Separated events 

t 

p(t) 

ei ei,1 

p(t) 

ei,2 

t 

Figure 3: An event with a multi-mode timing behavior is
separated into its modes.

For the detection of multiple modes in events, three meth-
ods have been evaluated:

• Kernel density estimation: This version is straight for-
ward by estimating the density of the distribution func-
tion and subdividing at local minimums. It is optimized
for efficient computation time. Nevertheless it delivers
useful results.

• ExpectationŰmaximization (EM) - algorithm: This
method is well-known from the state of the art. It per-
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forms well, but the number of mixed distribution func-
tions has to be known or determined subsequently by
trying all values and take the best fitting.

• Variational Bayesian inference: This version has the
weakest performance but delivers the best results. The
number of overlapping distribution function is calcu-
lated in an iterative manner.

Due to the high computation effort of the EM-algorithm
and Variational Bayesian inference, we chose to use the
kernel density estimation for the timing preprocessing in
BUTLA. The determination of the timing modes using the
kernel density estimation works as follows:

First, for each event e, all timing values t1, t2, ..., tk are
collected and stored in a list {e, {t1, t2, ..., tk}}, k ∈ N is
the number of collected timing values for one event. Then,
the PDFs are calculated using the kernel density estimation
method for each event. Density estimation methods use a
set of observations to find the subjacent density function.
Given a vector t with the time values of the observations,
the underlying density distribution for a time value t can be
estimated as

f(t) =
1

N

N∑

i=1

k(ti; t) (1)

where N ∈ N is the number of time values in the vector of
observations and k(ti; t) is a non negative kernel function

∫ ∞

−∞
k(t; t)dt = 1. (2)

As underlying probability distribution, we use the Gaus-
sian distribution, which is defined as:

G(µ, σ2, t) =
1√

2πσ2
e−

(t−µ)2
2σ2 (3)

where σ2 is the bandwidth (smoothing factor), µ the mean
value and t is the time value, for which the probability is
calculated.

The choice of the bandwidth is important for the correct-
ness of the results and it is the subject of research in dif-
ferent publications (e.g. [32]). In the case of identifying
the normal behavior of production plants, it is useful not to
use a fixed value for smoothing factor but to keep it vari-
able. Here, the variable smoothing factor is 5% of the cur-
rent value. This results in the greater variance for greater
time values and smaller variance for smaller time values.
Therefore, the density is estimated as:

f(t) =
1

N

N∑

i=1

1√
2π · 0.05ti

e
− (x−t)2

2·0.05ti . (4)

In the next step the local minimums in the calculated PDF
are localized. One mode is assumed to be between the local
minimums.

Finally, referring to the original data (discrete time val-
ues) and based on the assumption of normally distributed
data, the needed statistic parameters (mean µ and standard
deviation σ) are calculated. This is done for each mode:
between the minimum value, all local minimums and the
maximum value.

Using this preprocessing of the timing information, the
time-consuming splitting operation during the state merging

procedure is not necessary, since the transitions are already
split according to the identified timing modes.

3.3 Analysis of the Timing Preprocessing
Figure 2 illustrates that a state can be a starting point for
different processes: When the robot is started, it depends on
the size of the containers that which of the sub-trees is taken
for the further process, based on the time that is needed to
move the container. Different possibilities exist to identify
the different timing behavior of the sub-trees.

The algorithm RTI+ uses a splitting operation, which cal-
culates a p-value for all possible splits and its sub-trees. If
the lowest p-value of one split is less than 0.05, the transition
is split.

Figure 4 illustrates the problem of the splitting operation.
The main drawback of using the splitting operation is that
it requires additional computation time. First, all possible
splits have to be evaluated. Based on the number of ob-
servations, these can be a huge amount. And after finding
the best splitting point based on the smallest p-value, the
transition has to be split. Here, for all postfixes of the cor-
responding transition, it has to be decided that which path
to follow. Since all these paths are mixed in the previous
states, the information that which path follows which states,
based on the original data, has to be stored somehow. This
leads to a huge memory consumption. To avoid this high
memory consumption, RTI+ renews the prefix tree acceptor
beginning with the corresponding state after each splitting
operation. However, this is still time and space consuming.

n n' 
m 

Split a a a 

? 
 

Figure 4: The problem of the splitting operation.

Proposition 1. The time complexity of calculating and per-
forming a splitting operation is O(m2 · n2), where m is the
number of input samples and n is the number of states in the
PTA.

Proof. For each transition (in worst case there are n − 1
transitions in the PTA, if it is a linked list of states with only
one input sample or all input samples follow the path), the
p-value has to be calculated (which has to be done for each
input sample using the certain transition). Therefore, the
complexity for calculating the p-values is O(m · n).

One splitting operation itself also needs time in O(m · n)
for the creation of the PTA with m input samples, where
each can have n states.

In the worst case, if each transition has to be split, the
complexity is in O(m2 · n2).

BUTLA firstly uses a preprocessing of timing values to
avoid this splitting operation. This version is based on the
assumption that events with the same changing signals but
different timing behavior describe different behavior.

In the preprocessing step, events with multiple timing
modes are identified. These modes are used for the creation
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of the prefix tree. Events with the same symbol but arising
from different timing modes are handled as different events
and lead to different states in the prefix tree. In the iden-
tification phase, these events are also handled as different.
Using this preprocessing step, the splitting process can be
omitted. This leads to a computation speed increase.

Proposition 2. The time complexity of calculating the tim-
ing modes in a preprocessing step is inO(n), where n is the
number of observed events.

Proof. Since this is during the preprocessing step and the
PTA does not exist so far, the worst case is not dependent
on the PTA structure, but only on the number of incoming
events and the number of symbols.

First, the time stamps for each symbol in the alphabet
a ∈ Σ have to be collected. This takes time O(n).

Then for each a ∈ Σ, the probability density distribution
over time has to be calculated. For this, Equation 4 is com-
puted. Note that all events are not considered for a single
symbol a ∈ Σ, but only those that belong to this symbol
a. All computations together need time O(n). Additionally
the local minimums have to identified, which is also done in
O(n).

All these steps are performed subsequently and therefore
the overall time complexity for the preprocessing step is
O(n).

Using the preprocessing step, the computation time can
be reduced compared to the splitting version. While the
splitting version runs in polynomial time, we could reduce
this additional timing computation to linear time using the
preprocessing step.

4 Learning Automata Results
As mentioned before, the goal of the identified automata is
the usage for anomaly detection. An exemplary plant at the
institute has been used for experimental results. Figure 5
shows a part of the Lemgo Model Factory and the identified
models of two modules.

2 1 

Muscle on 
[8…34] 

Muscle off 
[7…35] event 

timing 

Figure 5: Example plant with identified models for two
modules.

During the anomaly detection phase, the running plant’s
timing behavior is compared to the prognosis of the automa-
ton. A timing anomaly is signaled whenever a measured
timing is outside the timing interval in the learned timed au-
tomaton. Here, the interval is defined as [µ − k · σ, µ + k ·
σ], k ∈ R+ where µ is the mean value of the corresponding

original observations’ timings and σ is the standard devia-
tion.

In a first experiment, the Lemgo Model Factory (see Fig-
ure 5) is used. A frequently occurring error for example is
the wear of a conveyor belt which leads to a decrease in the
system’s throughput. 12 production cycles are used to iden-
tify a normal behavior model. The PTA comprises 6221
states. BUTLA reduces this to 13 states—this corresponds
to a compression rate of 99.79%.

To verify the model learning algorithm with a high
amount of data, in a second experiment, data is generated ar-
tificially using the modified Reber grammar (extended with
timing information). 1000 samples are generated to learn
the model, then 2000 test samples are created where 1000
comprise timing errors. From the initial 5377 states in the
PTA, a model with 6 states is learned.

Table 3 shows the error rates for the anomaly detection
applied to both data sets using different factors k in the tim-
ing intervals.

Table 3: Experimental results using real and artificial data.

k =1 k =2 k =3 k =4

false negative rate (%) - LMF 2 5.3 12.8 30
false positive rate (%) - LMF 12 4.2 2 0
false negative rate (%) - Reber 0 1.3 7.5 21
false positive rate (%) - Reber 9 3.1 1.1 0

The experimental results in Table 3 show that the false
positive rate could be reduced by enlarging the time bounds.
But at the same time, the false negative rate rose. The ap-
plication of the enlargement of the time requires a trade off
between false positive and false negative rate. This has to be
done separately for each application.

5 Conclusion
In this paper we analyzed the possibilities of learning the
timing behavior for anomaly detection in CPPS. First, we
gave a taxonomy of timing modeling formalisms. Based
on this taxonomy we analyzed whether the models can be
identified automatically and whether they are suitable for
anomaly detection.

Timed automata are often the first choice for the modeling
of timed behavior of CPPS, especially for the modeling of
sequential timed behavior.

Due to the intuitive interpretation, timed automata are
well-suited to model the timing behavior. In our proposed
learning method, we used probability density distribution
functions over time for the timing representation. In a
preprocessing step multiple modes in single transitions are
identified, this enables the omission of the time consuming
splitting operation.

We proved the runtime enhancement formally and gave
some experimental results which prove the practicability of
timed automata for automatic identification and for anomaly
detection.
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Abstract
Behavioral models are at the core of Fault-
Detection and Isolation (FDI) and Model-Based
Diagnosis (MBD) methods. In some practical ap-
plications, however, building and validating such
models may not always be possible, or only par-
tially validated models can be obtained. In this
paper we present a diagnosis solution when only
a partially validated model is available. The solu-
tion uses a fault-augmented physics-based model
to extract meaningful behavioral features corre-
sponding to the normal and abnormal behavior.
These features together with experimental train-
ing data are used to build a data-driven statisti-
cal model used for classifying the behavior of the
system based on observations. We apply this ap-
proach for a railway switch diagnosis problem.

1 Introduction
Consider the case of developing diagnostic software for a
complex system (for this paper our example is a railway
switch). The task is to determine from operational data
whether the switch is operating correctly or in one of a fixed
number of fault modes. We are given the following very
limiting (but all too common) conditions: (a) very limited
resources to complete the project (a few man months); (b)
limited number of sensors; (c) unavailability of the model
of the system; (d) unavailability of the system itself (would
require an instrumented private rail system); (e) unavailabil-
ity of the parameters of the system components; (f) lim-
ited nominal data; (g) extremely limited fault data (supplied
as time series); (h) highly non-linear multi-physics system
having multiple operating modes. Broadly speaking there
are three approaches to this type of problem: Model-Based
Diagnosis (MBD), Fault Detection and Isolation (FDI) and
Machine Learning (ML). None of these approaches is ade-
quate of this task. MBD and FDI require models and param-
eters which are unavailable. ML approaches will require a
large amount of training data, and most approaches would
require extensive feature engineering. In this paper we will
demonstraint a hybrid approach to this task which was ulti-
mately fully satisfactory for the train company. Many real
world diagnostic tasks have similar limitations and we be-
lieve our approach is one that yields good diagnostic algo-
rithms for many cases.

At a high level our approach is as follows. First we build
by hand an approximate model in Modelica (our switch

model ultimately has 56 continuous time state and more than
2000 time-varying variables). We require this model to con-
tain the key mechanisms which comprise a switch mecha-
nism. Under the limiting conditions, building an accurate
model of the system proved to be impractical and therefore
we used simplified models for the system’s components. For
example, we model the controller as a PID controller while
the actually mechanism surely has a more complex one. The
Modelica model is fault augmented [Minhas et al., 2014]
including parameters which represent the fault amounts for
wear, etc. Second, we develop ML classifiers to detect and
diagnose faults by running the Modelica model repeatedly
with various fault amounts. We mix noise in the simulation
to avoid over-fitting. For the ML classifier to work requires
developing a set of features for the signal. Each time series
is segmented at defined conditions and a set of features is
designed (e.g., mean in segment, max in segment). Mul-
tiple ML techniques can develop a classifier, the best we
found are based on random-forest. Third, we throw away
the model — it was only important to develop the features
and the classifier. We now use the classifiers developed for
the synthetic data on the real data. We were able to detect
faults with a high level of accuracy, but were only partially
successful in identifying the correct fault mode (or nomi-
nal) for the operating system. Independently, we showed
that given enough data for the various fault modes, using
the same set of features, a ML classifier can be designed that
also achieves a high diagnostic accuracy. The latter effort is
not the subject of the paper. Overall, the customer was very
satisfied with the results of the project. Throughout the rest
of the paper we describe in detail the procedure described
above.

1.1 FDI and MBD
In model-based approaches (FDI and MBD), the diagnosis
engine is provided with a model of the system, values of the
parameters of the model and values of some of its inputs
and outputs. Its main goal is to determine from only this
information whether the system is malfunctioning, which
components might be faulty and what additional informa-
tion need to be gathered (if any) to identify the faulty com-
ponents with relative certainty. The distinguishing features
of the MBD [de Kleer et al., 1992] approach are an empha-
sis on general diagnostic reasoning engines that perform a
variety of diagnostic tasks via on-line reasoning, and infer-
ence of a system’s global behavior from the automatic com-
bination of physical components. Hence, MBD models are
compositional - the model of a combination of two systems
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is directly constructed from the models of the constituent
systems. FDI methods can work with both physics-based
and empirical models. The physics-based models are usu-
ally flattened, that is, the components and sub-components
structure is lost into an overall behavioral model. Often,
the faults are seen as separate inputs that need to be com-
puted by the diagnosis engine. The disadvantage of this
approach is that the physical semantics of the faults is ig-
nored. In addition, treating the faults as exogenous inputs
ignores the fact that the abnormal behavior may in fact
depend on the variables of the systems. However, many
FDI techniques were shown to be effective in diagnosing
dynamical systems [Gertler, 1998; Isermann, 1997; 2005;
Patton et al., 2000].

The above discussion emphasizes the need for a model
when using either an FDI or MBD approach. As we will see
later in the paper, there are cases when such a model is very
difficult to obtain and (more importantly) validate, or only
a partial model is available. Naturally, both FDI and MBD
approaches would not fare well in such a scenario. When
no model is available, data-driven methods can be used to
learn the behavior of the system and use this knowledge
to predict the system behavior. Such methods require ex-
perimental data corresponding to the normal and abnormal
behavior for classification purposes; data that is used to ex-
tract features representative for the system’s behavior. The
set of features together with observations of the system (out-
put measurements) are used to learn a data-driven statistical
model that is further used to classify the current observed
behavior. Namely, when new data is available it is fed into
the data-driven model, which in turn will provide a “best
guess” to which class of behavior (normal or abnormal) the
data corresponds to. It is well recognized that in data-driven
approaches, the effectiveness of the classification is highly
dependent on the quality of the features used for learning.

In this paper, we begin to bridge the gap between pure
model-based and data-driven methods with a more hybrid
approach. We propose the use of a partially validated model
to help us determine a set of features that are representa-
tive for the normal and abnormal behavior. In this approach
we build a physics based model of the system, emphasiz-
ing its components and sub-components. Due to the lack
of sufficient technical specifications and measurement data,
only partial validation is achieved. By this we mean that
only a sub-set of the variables of interest match their coun-
terpart in the experimental data. The rest of the variables,
although not completely matching the real data, they do ex-
hibit similar characteristics compared to the real data, e.g.,
same number of maxima, minima, or common regions of
increasing/decreasing values, etc. In other words they are
qualitatively equivalent. The physics-based model is further
extended to include behaviors under different fault operating
modes. In particular, physics-based models for the faults
are included in the nominal model. The fault-augmented
model is then used to generate synthetic simulated normal
and abnormal (including multiple faults) behavior and ex-
tract representative features that are used in a data-driven
approach. Note that although ideally we would like to exe-
cute the feature extraction step automatically, in this paper it
is performed manually as the automatic feature extraction is
a challenging problem in its own. The diagnosis procedure
described above is pictorially presented in Figure 1.

The rest of the paper is organized as follows: in Section

2 we motivate and describe the railway switch diagnosis
problem. Sections 3 and 4 present the physics-based model,
its fault-augmented version and the partial validation of the
system. Section 5 describes the diagnosis solution under a
partially validated physics-based model while Section 6 puts
our solution in the context of exiting work on railway switch
diagnostics.

2 Problem Description
Railway signaling equipment (including switches) generates
approximately 60% of the failure statistics related to traffic
disruptions due to signalling problems. As a consequence
more and more attention is paid to railway safety and op-
timal railway maintenance. As a result of the rapid tech-
nological advances in microelectronics and communication
technologies in the past decades, it has become possible
to add sensing and communication capabilities to railway
equipment such as switches, to detect equipment failure and
therefore to enhance the quality of the railway service. Al-
though these sensing capabilities allow for easy detection of
faults in the electrical components of the equipment, a sig-
nificant number of faults related to the mechanical compo-
nents affect parameters whose monitoring would be difficult
either due to cost or impracticality of sensor placement.

The rail switch assembly considered in this paper is
shown Figure 2. The component responsible for moving the
switch blades is the point machine. The point machine has
two sub-components: a servo-motor (generates rotational
motion) and a gear-cam mechanism (amplifies the torque
generated by the motor and transforms the rotational motion
into a translational motion).

The adjuster transfers the motion from the point machine
to the load (switch blades) through a drive rod. In particular,
by adjusting two bolts, the adjuster controls the time when
the switch blades start moving having as reference the time
when the drive rod commence moving. The switch blades
are supported by a set of rolling bearings to minimize mo-
tion friction. The manufacturer of the point machine en-
dowed the equipment with a series of sensors that can mea-
sure the motor’s angular velocity and torque, and the cam’s
angle and stroke (linear position). These sensors log data
in real time which is ten sent to a central station for anal-
ysis. These sensors were installed by design on the point
machine to monitor its safety. Although the operator of the
railway switch is also interested in the diagnosis of the point
machine, other possible faults are of interest as well. The
faults considered in this paper are as follows: loose lock-pin
fault (at the connection between the drive rod and the point
machine), adjuster bolts misalignment (the bolts move away
from their nominal position), missing bearings and the pres-
ence of an obstacle preventing the completion of the switch
blades motion. Adding new sensors measuring forces ap-
plied to the switch blades or the position of the switch blades
may facilitate immediate detection of such faults. How-
ever, due to the sheer number and possible configurations
of switches in the railway transportation network, this is not
a scalable solution. Therefore, the challenge is to diagnose
the aforementioned faults using only the available measure-
ments.

3 System Modeling
This section presents the fault augmented physics-based
model of railway switch assembly, together with some
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Figure 1: Diagnosis procedure with partially validated model

Figure 2: Diagnosis procedure with partially validated
model

model validation results. Such models provide deeper in-
sight on the behavior of the physical system. Simulated
behavior helps with learning of normal and abnormal be-
havior patterns. The abnormal patterns are especially useful
when not enough experimental data describing the abnormal
behavior is available. The modeling process consists of de-
composing the system into its main components, build phys-
ical models and combining them into an overall model of
the system. We used the Modelica language to construct the
model, which is a non-proprietary, object-oriented, equation
based language to model complex physical systems [Tiller,
2001]. Models for the three main components of the rail-
way switch, the point machine, the adjuster and the switch
blades, are presented in what follows.

3.1 Point machine
The point machine is the component of the railway switch
system that is responsible for moving the switch blades and
locking them in the final position until a new motion action
is initiated. It is composed of two sub-components: servo-
motor and gear-cam mechanism. The electrical motor trans-
forms electrical energy into mechanical energy and gener-

ates a rotational motion. The gear-cam mechanism scales
down the angular velocity of the motor and amplifies the
torque generated by the motor. In addition, it transforms the
rotational motion into a translational motion.

Servomotor
No technical details were provided on this component, such
as type of motor or type of controller. Values for technical
parameters (e.g., armature resistance, motor shaft inertia)
were not available either. This information was not avail-
able to the switch operator either. Therefore, as a result of
a literature review on the type of motors used in railway
switches, a DC-permanent motor was chosen to be the most
likely candidate. The dynamical model for this component
is given by

La
di(t)

dt
= −Rai(t)−Keω(t) + v(t),

J
dω(t)

dt
= Kti(t)−Bω(t)− τ(t),

where v(t) acts as input signal, ω(t) is the angular veloc-
ity at the motor flange that acts as output, τ(t) is the torque
load of the motor and i(t) is the current through the arma-
ture. Generic motor parameters from the literature were also
chosen [Zattoni, 2006]. One question that may arise is if an
empirical model can be estimated. Unfortunately since only
the output ω(t) is available, an empirical model based on
system identification cannot be estimated, since no voltage
measurements are available. No information on the type of
controller was available to us either. As a consequence, we
used a PID controller for the feedback loop. Based on the
observed profile of the motor output we determined that the
controlled variable is the angular velocity ω(t). Indeed, Fig-
ure 3 shows the motor’s angular velocity1 that is maintained
at a constant value by the controller. To compute the pa-
rameters of the PID controller we estimated metrics corre-
sponding to the transient component of the output (angular
velocity), such as rise time and overshoot; metrics that are
formulated in .

1The angular velocity profile shown in the graph is similar but
not exactly the observed one, due to proprietary information re-
strictions.
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Figure 3: Motor angular velocity

The Gear-Cam mechanism
As mentioned earlier, the gear-cam mechanism amplifies the
torque generated by the motor and transforms the rotational
motion into a translational motion. The technical details
provided to us confirmed only the presence of the cam, but
not of the gear. We inferred the presence of the latter, by
comparing the angular velocity of the motor with the cam’s
angular velocity, estimated from the measured cam’s angle.
This allowed us to estimate the ratio between the two veloci-
ties, and therefore estimate the gear ratio. The cam diagram
is shown in Figure 4, where a wheel rotates as a result of
the torque transmitted through the gear and acts on a lever
that pushes the drive rod. Using the geometry of the cam,

Figure 4: Cam schematics

the relation between the rotation motion and the linear mo-
tion (that is, the relation between the angle and the stroke)
is given by

stroke = R× sin(angle),
where R denotes the radius of the cam. In addition, the map
between the applied torque and the generated force is

force =
1

R
× torque× cos(angle).

As both the cam angle and the stroke were included in the
available measurements, we used a least square method to
estimate the radius of the cam.

3.2 Adjuster
The adjuster links the drive rod connected to the point ma-
chine to the switch blades, and hence it is responsible for
transferring the translational motion. There is a delay be-
tween the time instants the drive rod and the switch blades
start moving. This delay is controlled by setting the po-
sitions of two bolts on the drive rod. Tighter bolt setting
means a smaller delay, while looser bolt setting produce a
larger delay. The high level diagram of the adjuster is de-
picted in Figure 5. The most challenging part in construct-

Figure 5: Adjuster diagram

ing the adjuster was modeling the non-sticking contact be-
tween the drive rod and the adjuster extremes. Stiff contact
two bodies is usually modeled using a spring-damper com-
ponent with very large values for the elasticity and damping
constants. However, under this approach once contact takes
place, it is permanent. To solve this challenge, we built a
custom component that models the non-sticking contact.

3.3 Switch blades
The adjuster is connected to two switch blades that are
moved from left to right or right to left, depending on
the traffic needs. We look at a switch blade as a flexi-
ble body and used an approximation method to modeling
beams, namely the lumped parameter approximation. This
method assumes that beam deflection is small and in the lin-
ear regime. The lumped parameter approach approximates
a flexible body as a set of rigid bodies coupled with springs
and dampers. It can be implemented by a chain of alter-
nating bodies and joints. The springs and dampers act on
the bodies or the joints. The spring stiffness and damping
coefficients are functions of the material properties and the
geometry of the flexible elements. Parameters such a rail
length, mass and mass moment of inertia were provided to
us through technical documentation. To model the effect of
the rail moving on rolling bearings, we included a friction
component that accounts for energy loss due to friction. Al-
though the component can model different friction models,
the default models is Coulomb friction.

3.4 Fault augmentation
In this section we describe the modeling artifacts that were
used to include in the behavior of the system the four fault
operating modes: loose lock-pin, misaligned adjuster bolts,
obstacle and missing bearings.

Loose lock-pin
The lock-pin referred in this fault mode connects the point
machine with the drive rod that transfers the motion to the
switch blades. More precisely, it locks the drive rod to the
point machine. When this lock-pin becomes loose due to
wear, it introduces a slackness in the way the motion is
transferred to the switch blades. The lock-pin fault affects
stability the connection point between the drive rod and
the point machine. In time, if not fixed, this can lead to a
complete failure of the pin, and therefore the point-machine
cannot longer act upon the blades. A custom-built compo-
nent whose main characteristic is that it implements a non-
sticking pushing and pulling between two rods was built to
model the effects of this fault. The impact between the two
rods is assumed to be elastic, that is, we use a spring-damper
assembly with large values for their parameters to model the
contact. There are two types of contact: contact of the rods
with the boundaries of the locking mechanism and contact
between the rods. Both these types of contact must exhibit
non-sticking pushing and pulling properties.

Proceedings of the 26th International Workshop on Principles of Diagnosis

228



Misaligned adjuster bolts
In this fault mode the bolts of the adjuster deviate from their
nominal position. As a result, the instant at which the drive
rod meets the adjuster (and therefore the instant at which the
the switch rail starts moving) happens either earlier or later.
For example in a left-to-right motion, if the left bolt moves
to the right, the contact happens earlier. The reason is that
since the distance between the two bolts decreases, the left
bolt reaches the adjuster faster. As a result, when the drive
rod reaches its final position, there may be a gap between
the right switch blade and the right stock rail. In contrast, if
the left bolt moves to the left the contact happens later. The
model of the adjuster includes parameters that can set the
positions of the bolts, and therefore the effects of this fault
mode can be modeled without difficulty.

Obstacle
In this fault mode, an obstacle prevents the switch blades
reach their final nominal position, and therefore a gap be-
tween the switch blades and the stock rail appears. The ef-
fect on the motor torque is a sudden increase in value, as the
motor tries to overcome the obstacle. To model this fault
we included a component that implements a hard stop for
the position of the switch blades. This component has two
parameters for setting the left and right limits within motion
of the switch blades is allowed. By changing the values of
these parameters, the presence of an obstacle can be simu-
lated.

Missing bearings
To minimize friction, the rails are supported by a set of
rolling bearings. When they become stuck or lost, the en-
ergy losses due to friction increase. As mentioned in the
section describing the switch blades modeling, a component
was included to account for friction. This component has a
parameter that sets the value for the friction coefficient. By
increasing the value of this parameter, the effect of the miss-
ing bearings fault can be simulated.

4 Model Validation
Motor angular velocity, cam angle and stroke, together with
the motor torque were used in the validation process. To
these measurements, we added the rail position that was
estimated from a set of movies depicting the rail motion,
to which image processing techniques were applied. We
achieved partial validation of the model. The simulated mo-
tor angular velocity, cam angle and stroke closely match
the measured data. The simulated motor torque however
matches in a qualitative sense its measured counterpart. The
main reason is the fact that we had to make assumptions on
the type controller motor and controller, without no way to
validate these assumptions. In addition, the available mea-
surements did not allowe for the estimating the parameters
in the assumed models, as this problem is ill posed. Figure 6
depicts the simulated torque, emphasizing the five operating
zone. In Zone 1, the motor rotates the cam and the drive rod
moves freely. No contact with the switch blades takes place
in this zone, and the (small) energy loss is due to friction in
the mechanical components. Zone 2 corresponds to the case
where the drive rod pushes the two switch blades. The elas-
ticity in the switch blades can be noticed in the toque profile
in this zone. In Zone 3, the switch blades accelerate (as they
drop off the rolling bearings) and again the drive rod moves
freely (note the drop in torque). Zone 4 depicts the case

Figure 6: Motor torque with its five operating zones

where the drive rod catches up again with switch blades an
pushes them to their final position. Finally, in Zone 5 the
switch blades are pushed against the stock rails for a short
period of time, hence the increase in torque. In support of
the validation of these five operating zone, a set of movies
depicting the motion of the switch blades were used. With
respect to the fault operating modes, we managed to gener-
ate similar effects in the simulated data, as the ones observed
in the measured data. Figure 7 shows the effect of the mis-
aligned bolts fault, and in particular the case where the left
bolt moves to the left. The effect is a delay applied on the
time instant the drive rod reaches the switch blades. In ad-
dition, Zone 5 is also affected since due to the decreased
distance, the switch blades are no longer pushed against the
stock rails. In the case of an obstacle, the switch blades (and

Figure 7: Motor torque in the normal and misaligned bolts
fault modes

hence the drive rod) push against an obstacle that does not
allow the completion of the motion. Therefore, the electric
motor develops the maximum allowable torque as seen in
Figure 8. In the case of the missing bearing fault mode, the
motion friction of the switch blades increases, and hence
the torque generated by the motor must accommodate this
increase. We obtained this effect in simulation as shown in
Figure 9. Finally, Figure 10 shows the effects of the lock-
pin fault. The slackness introduced by the looseness of the
pin induces a delay in the rail motion which also affects the
behavior in Zone 5. In terms of the changes in the five op-
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Figure 8: Motor torque in the normal and obstacle fault
modes

Figure 9: Motor torque in the normal and missing bearings
fault modes

Figure 10: Motor torque in the normal and lock-pin fault
modes

erating zones, the simulated behavior showed similar char-
acteristics as in the case of the real data. The understanding
of these behaviors come as a result of building the model,
augmenting the model with fault modes, and analyzing their

effects in simulation. The choice of features described in the
next section was supported by this understanding.

5 Fault Detection and Diagnosis
In the case of a railway switch, our measurements include
the motor torque and motor angular velocity. As the switch
moves from one extreme position to the other, these quan-
tities are measured at a fixed sampling rate. Thus, we
obtain a time series for each of the measurements. Let
{τ(t1), . . . , τ(tN )} denote torque measured at time instants
{t1, . . . , tN}. Likewise, let {ω(t1), . . . , ω(tN )} denote the
angular velocity. For simplicity’s sake, we denote the two
time series of measurements by X . The diagnosis objective
is to determine the underlying condition of the system from
these time series. In other words, the objective is to deter-
mine a classifier f : X → {N,F1, F2, F3, F4, F5}, where
N refers to the class label corresponding to the normal con-
dition and F1, F2, F3 and F4 denote the class labels loose
bolt, tight bolt, loose lock-pin, missing bearings, and obsta-
cle respectively.

We adopt a machine learning approach to constructing the
above mentioned classifier. The two main steps in building
a machine learning classifier are feature selection and clas-
sifier type selection. These two steps are discussed next.

5.1 Feature selection
As seen in Figure 6, the motor torque profile shows five dis-
tinct operating zones. Moreover, we notice from Figures 7,
8, 9 and 10 that a given fault’s impact on the torque pro-
file seems limited to only some of the five zones. With this
observation, our feature selection strategy is as follows.

1. Identify the approximate time instants that define the
boundaries of the five zones. For example, Zone 1 is
defined to be between times 0.8 seconds and 2 seconds,
zone 2 is defined to be between times 2 seconds and 4.1
seconds, and so on.

2. Within each zone, compute a set of measures. An ex-
ample of a measure is the total energy dissipated within
the zone. This is computed as instantaneous power in-
tegrated over the duration of the zone. The instanta-
neous power is the product of instantaneous torque and
angular velocity. Other examples of features include
maximum and minimum torque values within the zone.
The disclosure of the full set of measures used is not
possible at this time for proprietary reasons. The fea-
tures are normalized to have zero mean and unit stan-
dard deviation.

Note that it might be possible to combine one or more zones
into one for feature selection.

5.2 Classifier selection
To map the features to the classes, {N,F1, F2, F3, F4, F5},
we use machine learning. Examples of types of classifiers
commonly used include k− nearest neighbors, support vec-
tor machines, neural networks and decision trees. We chose
Random Forest, an ensemble classifier, because of its ro-
bustness to overfitting. For a more detailed discussion on
the advantages of Random Forest, we refer the reader to
[Breiman, 2001]. In addition, we also developed a binary
classifier for fault detection based on Alternating Decision
Tree (AD Tree). The advantage of AD Tree is that the re-
sults are human interpretable.
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5.3 Results
For each fault type, we introduce varying magnitudes of
fault and simulate the switch model described earlier. The
fault magnitude is parameterized by a factor k which is var-
ied over a pre specified range. A value of k equal to zero
corresponds to normal case. Higher values of k correspond
to the faulty cases. In addition, we also add representative
noise to the measurements. Figure 11 shows some example
torque profiles generated by the simulation.

Figure 11: Simulated torque measurements with added
noise.

The data generated is recorded and used to train and test
the machine learning classifier. We use leave-one-out cross-
validation for training and testing the classifiers. In this ap-
proach, one data sample is used for testing whereas all the
rest of the data is used for training. This is repeated un-
til each data sample has been tested once. Table 1 shows
the confusion matrix for the simulated data described ear-
lier. The (i, j)th entry of the confusion matrix refers to the
percentage of cases where the true class was i but was clas-
sified as j by the classifier. A matrix with 100 along all
the diagonal entries would correspond to a perfect classifier.
In the results shown in Table 1, we observe some misclas-
sification between classes N and F4. Recall that N is the
normal class and F4 is the missing bearing class. On fur-
ther investigation, we determined that the misclassification
occurs between the normal data and data corresponding to
low magnitudes of the missing bearing fault.

Table 1: Fault diagnosis confusion matrix on simulated data

N F1 F2 F3 F4 F5

N 97.2 0 0 2 0.8 0
F1 0 100 0 0 0 0
F2 0 0 99 1 0 0
F3 9 0 4 87 0 0
F4 11 0 0 0 89 0
F5 0 0 0 0 0 100

The binary classification or fault detection result using
AD Tree is shown in Table 2. As in the multi-class classifi-
cation case, the false positives (normal classified as abnor-
mal), and false negatives (abnormal classified as normal) are

primarily due to confusion between missing bearings and
normal. Figure 12 shows part of the fault detection AD
Tree. A pink oval represents a feature node. Depending
on the value of the feature, one of two branches is followed
until a leaf node is reached. Each edge that is traversed re-
sults in a score shown within the blue rectangles. For every
root to leaf traversal, the total score is the sum of the scores
accumulated on each edge. For a given data sample, mul-
tiple root to leaf paths may be traversed. In that case, the
final score is the sum of the scores accumulated over all the
paths. If the final score is negative, the decision is normal;
otherwise the decision is abnormal.

Table 2: Fault detection confusion matrix on simulated data
Normal Abnormal

Normal 94.6 5.4
Abnormal 9.6 90.4

Next, we test the classifiers on real data. A key prepro-
cessing step is to compute a linear transformation that trans-
forms the mean and standard deviation of the features of the
nominal (normal) real data to make them equal to the mean
and standard deviation of the features of the nominal simu-
lated data. The same transformation is then applied on the
real faulty data before testing with the ML classifier. We
emphasize here that to compute the transformation we only
require examples of real data showing normal behavior. We
do not use any real fault data for training the ML classifier.
Table 3 shows the fault detection results on real data. As
can be seen, we achieve a high accuracy of greater than 80
percent. We also tested the multi-class random forest classi-
fier to diagnose the various faults. We were able to diagnose
correctly all missing bearing faults but were unable to cor-
rectly diagnose the other faults.

Table 3: Fault detection confusion matrix on real data
Normal Abnormal

Normal 85.5 14.5
Abnormal 20 80

6 Related Work
A malfunctioning railway switch assembly can have a high
impact on the railway transportation safety, and therefore
the problem of diagnosing such systems has been addressed
in other works. [Zattoni, 2006] proposes a detection sys-
tem based on off-line processing of the armature current
and voltage. The system implements an algorithm that real-
izes a finite impulse response system designed on the basis
of an H2-norm criterion, and allows for detection of incre-
mental faults (e.g., loss of lubrication, increasing obstruc-
tions, etc.). The approach hinges on the availability of a
validated model of the point machine, which was not the
case in our setup. [Zhou et al., 2001; 2002] propose a re-
mote monitoring system for railway point machines. The
system includes a variety of sensors for acquiring trackside
data related to parameters such as, distance, driving force,
voltage, electrical noise, or temperature. The monitoring
system logs data for offline analysis that offers detailed in-
formation on the condition of the system in the form of event
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Figure 12: Part of the fault detection AD Tree

analysis and data trends. Hence unlike in our setup, the fo-
cus is on detection rather than isolation. In addition, due
to scalability constraints, our solution is based on the em-
bedded sensors, no other sensor being added. In [Asada
et al., 2013] classification based fault detection and diag-
nosis algorithm is developed using measurements such as
drive force, electrical current and voltage. In particular, a
classifier based on support vector machines is used. Our
work also uses classification for diagnosis, but considers a
wider verity of classifiers such as Multiclass Random For-
est or Logitboosted Random Forest that were proved to be
more robust [Opitz and Maclin, 1999]. The classification
step in [Asada et al., 2013] depends on a set of features ex-
tracted by applying the discrete wavelet transform on the
active power. This step is oblivious on the operating modes
of the point machine, which we showed to relevant in our
case. Hence, the diagnosis approach in [Asada et al., 2013]
is purely data driven. Since we had no access to current and
voltage measurements this avenue for feature construction
was not available to us. Depending of the type of electri-
cal motors, the current and the voltage could be computed
from the angular velocity and torque, respectively. How-
ever, knowledge of motor parameters is needed. [Asada
et al., 2013] consider two type of faults: underdriving and
overdriving of the drive rod. Overdriving refers to the case
where the switch blades are pushed against the stock rails
due to misalignment, and a higher force then normal ap-
pears between the stock rails and the switch blades. Over-
driving map to misaligned bolts, missing bearings and ob-
stacles in our setup. All these fault modes exhibit higher
forces than normal. Underdriving maps to a particular in-
stance of the misaligned bolts fault (left bolt moves to the
left for example). Therefore, our solution differentiate be-
tween more possible causes of higher forces since we take
advantage of the particular signature these forces have in
each fault corresponding to overdriving. Another pure data-
driven approach for railway point machine monitoring was
proposed in [Oyebande and Renfrew, 2002], where a net
energy analysis technique was used to discriminate between

normal and abnormal behavior. This approach relies on a set
of sensors measurements such as motors, voltage, current or
switch blade positions, not all of them being available in our
case. In addition, the computation of the net energy requires
parameters of the electrical motor (armature resistance and
motor shaft inertia) that again are not available in our setup.
In addition, unlike our diagnosis objective, the focus in on
detecting abnormalities within the point machine.

7 Conclusions
The three main general approaches to developing diagnostic
software (FDI, MBR, and ML) all have severe limitations in
many real-world applications. We believe we will see many
more hybrid approaches to diagnosis that include the best of
these three approaches to build accurate diagnosers.The rail-
way switch is a critical and complex piece of equipment re-
quiring extremely high diagnostic accuracy (the main reason
this project was initiated), and the approach outlined in this
paper was ultimately successful. Ultimately deployment of
this approach will depend on expanding the set of faults de-
tecting and on installation of more sensor rich switches in
railroad infrastructures.
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Abstract

A generalized principle of PD faults observer de-
sign for continuous-time linear MIMO systems is
presented in the paper. The problem addressed
is formulated as a descriptor system approach to
PD fault observers design, implying the asymp-
totic convergence both the state observer error as
fault estimate error. Presented in the sense of the
second Lyapunov method, an associated structure
of linear matrix inequalities is outlined to possess
the observer asymptotic dynamic properties. The
proposed design conditions are verified by simu-
lations in the numerical illustrative example.

1 Introduction
As is well known, observer design is a hot research field ow-
ing to its particular importance in observer-based control,
residual fault detection and fault estimation [1], where, es-
pecially from the stand point of the active fault tolerant con-
trol (FTC) structures, the problem of simultaneous state and
fault estimation is very eligible. In that sense various effec-
tive methods have been developed to take into account the
faults effect on control structure reconfiguration and fault
detection [16], [22]. The fault detection filters, usually re-
lying on the use of particular type of state observers, are
mostly used to produce fault residuals in FTC. Because it is
generally not possible in residuals to decouple totally fault
effects from the perturbation influence, different approaches
are used to tackle in part this conflict and to create residuals
that are as a rule zero in the fault free case, maximally sensi-
tive to faults, as well as robust to disturbances [2], [8]. Since
faults are detected usually by setting a threshold on the gen-
erated residual signal, determination of an actual thresh-
old is often formulated in adaptive frames [3]. Generalized
method to solve the problem of actuator faults detection and
isolation in over-actuated systems is given in [14], [15].

To estimate actuator faults for the linear time invariant
systems without external disturbance the principles based
on adaptive observers are frequently used, which make es-
timation of actuator faults by integrating the system output
errors [25]. In particular, proportional-derivative (PD) ob-
servers introduce a design freedom giving an opportunity
for generating state and fault estimates with good sensitivity
properties and improving the observer design performance
[6], [18], [19]. Since derivatives of the system outputs can
be exploited in the fault estimator design to achieve faster

fault estimation, a proportional multi-integral derivative es-
timators are proposed in [7], [24].

Although the state observers for linear and nonlinear
systems received considerable attention, the descriptor de-
sign principles have not been studied extensively for non-
singular systems. Modifying the descriptor observer design
principle [13], the first result giving sufficient design condi-
tions, but for linear time-delay systems, can be found in [5].
Reflecting the same problems concerning the observers for
descriptor systems, linear matrix inequality (LMI) methods
were presented e.g. in [9] but a hint of this method can be
found in [23], [25]. The extension for a class of nonlinear
systems which can be described by Takagi-Sugeno models
is presented in [12].

Adapting the approach to the observer-based fault estima-
tion for descriptor systems as well as its potential extension,
the main issue of this paper is to apply the descriptor prin-
ciple in PD fault observer design. Preferring LMI formula-
tion, the stability condition proofs use standard arguments
in the sense of Lyapunov principle for the design condi-
tions requiring to solve only LMIs without additional con-
straints. This presents a method designing the PD observa-
tion derivative and proportional gain matrices such that the
design is non-singular and ensures that the estimation error
dynamics has asymptotical convergence. From viewpoint
of application, although the descriptor principle is used, it
is not necessary to transform the system parameter into a
descriptor form or to use matrix inversions in design task
formulation. Despite a partly conservative form, the design
conditions can be transformed to LMIs with minimal num-
ber of symmetric LMI variables.

The paper is organized as follows. Placed after Introduc-
tion, Sec. 2 gives a basic description of the PD fault ob-
server and Sec. 3 presents design problem formulation in
the descriptor form for a standard Luenberger observer. A
new LMI structure, describing the PD fault observer design
conditions, is theoretically explained in Sec 4. An example
is provided to demonstrate the proposed approach in Sec. 5
and Sec. 6 draws some conclusions.

Used notations are conventional so that xT , XT de-
note transpose of the vector x and matrix X , respectively,
X = XT > 0 means that X is a symmetric positive defi-
nite matrix, ‖X‖∞ designs the H∞ norm of the matrix X ,
the symbol In represents the n-th order unit matrix, ρ(X)
and rank(X) indicate the eigenvalue spectrum and rank of
a square matrix X , IR denotes the set of real numbers and
IRn, IRn×r refer to the set of all n-dimensional real vectors
and n× r real matrices, respectively.
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2 The Problem Statement
The systems under consideration are linear continuous-time
dynamic systems represented in state-space form as

q̇(t) = Aq(t) +Bu(t) + Ff(t) , (1)

y(t) = Cq(t) , (2)
where q(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRm are the vectors
of the state, input and output variables, f(t) ∈ IRp is the
fault vector, A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n and
F ∈ IRn×p are real finite values matrices, m, r, p < n and

rank
[

A F
C 0

]
= n+ p . (3)

It is considered that the fault f(t) may occur at an uncertain
time, the size of the fault is unknown but bounded and that
the pair (A,C) is observable.

Focusing on fault estimation task for slowly-varying
faults, the fault PD observer is considered in the following
form [19]

q̇e(t) = Aqe(t) +Bu(t) + Ffe(t)+

+J(y(t)− ye(t)) +L(ẏ(t)− ẏe(t)) ,
(4)

ye(t) = Cqe(t) , (5)

ḟe(t) = M(y(t)− ye(t)) +N(ẏ(t)− ẏe(t)) , (6)
where qe(t) ∈ IRn, ye(t) ∈ IRm, fe(t) ∈ IRp are esti-
mates of the system states vector, the output variables vec-
tor and the fault vector, respectively, and J ,L ∈ IRn×m,
M ,N ∈ IRp×m is the set of observer gain matrices is to be
determined.

To explain and concretize the obtained results, the fol-
lowing well known lemma of Schur complement property is
suitable.
Lemma 1. [20] Considering the matrices Q = QT , R =
RT and S of appropriate dimensions, where detR 6= 0,
then the following statements are equivalent
[

Q S
ST −R

]
< 0 ⇔ Q+ SR−1ST < 0, R > 0 (7)

This shows that the above block matrix inequality has a
solution if the implying set of inequalities has a solution.

3 Descriptor Principle in Luenberger
Observer Design

To formulate the proposed PD observer design approach,
the descriptor principle in the observer stability analysis is
presented.

If the fault-free system (1), (2) is considered, the Luen-
berger observer is given as

q̇e(t) = Aqe(t) +Bu(t) + J(y(t)− ye(t)) , (8)

ye(t) = Cqe(t) , (9)
and using (1), (2), (8), (9), it yields

ė(t) = (A− JC)e(t) , (10)

(A− JC)e(t)− ė(t) = 0 , (11)
respectively, where

eq(t) = q(t)− qe(t) . (12)

Using the descriptor principle, the following lemma pre-
sents the Luenberger observer design conditions in terms of
LMIs for the fault-free system (1), (2).

Lemma 2. The Luenberger observer (8), (9) is stable if for
given positive scalar δ ∈ IR there exist a symmetric positive
definite matrix P 1 ∈ IRn×n a regular matrix P 3 ∈ IRn×n

and a matrix Y ∈ IRn×m such that

P 1 = P T
1 > 0 , (13)

[
ATP 3 + P T

3A− Y C −CTY T ∗
P 1 − P 3 + δP T

3A− δY C −δ(P 3 + P T
3 )

]
< 0 .

(14)
When the above conditions hold, the observer gain matrix
J is given as

J = (P T
3 )

−1Y . (15)
Hereafter, ∗ denotes the symmetric item in a symmetric

matrix.

Proof. Denoting the observer system matrix as

Ae = A− JC , (16)

then with the equality

ė(t) = ė(t) (17)

the equivalent form of (11) can be written
[
In 0
0 0

][
ė(t)
ë(t)

]
=

[
ė(t)
0

]
=

[
0 In

Ae −In

][
e(t)
ė(t)

]
,

(18)
or, more generally,

E⋄ė⋄(t) = A⋄
ee

⋄(t) , (19)

where
e⋄T (t) =

[
eT (t) ėT (t)

]
, (20)

E⋄ = E⋄T =

[
In 0
0 0

]
, A⋄

e =

[
0 In

Ae −In

]
. (21)

Defining the Lyapunov function of the form

v(e⋄(t)) = e⋄T (t)E⋄TP ⋄e⋄(t) > 0 , (22)

where
E⋄TP ⋄ = P ⋄TE⋄ ≥ 0 , (23)

then the derivative of (22) becomes

v̇(e⋄(t)) =

= ė⋄T(t)E⋄TP ⋄e⋄(t) + e⋄T(t)P ⋄TE⋄ė⋄(t) < 0
(24)

and, inserting (19) in (24), it yields

v̇(e⋄(t)) = e⋄T (t)(P ⋄TA⋄
e +A⋄T

e P ⋄)e⋄(t) < 0 , (25)

P ⋄TA⋄
e +A⋄T

e P ⋄ < 0 , (26)
respectively. Introducing the matrix

P ⋄ =

[
P 1 P 2

P 3 P 4

]
, (27)

then, with respect to (23), it has to be
[
In 0

0 0

][
P 1 P 2

P 3 P 4

]
=

[
P T

1 P T
3

P T
2 P T

4

][
In 0

0 0

]
≥ 0 ,

(28)
which gives

[
P 1 P 2

0 0

]
=

[
P T

1 0

P T
2 0

]
≥ 0 . (29)
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It is evident that (29) can be satisfied only if

P 1 = P T
1 > 0, P 2 = P T

2 = 0 . (30)

After simple algebraic operations so (26) can be trans-
formed into the following form

[
AT

eP 3 + P T
3Ae ∗

P 1 − P 3 + P T
4Ae −P 4 − P T

4

]
< 0 (31)

and, owing to emerged products P T
3Ae, P T

4Ae in (31), the
restriction on the structure of P 4 can be enunciated as

P 4 = δP 3 , (32)

where δ > 0, δ ∈ IR. Since now

P T
4Ae = δP T

3 (A− JC) , (33)

then, with the notation

Y = P T
3 J , (34)

(31) implies (14). This concludes the proof.

Remark 1. It is naturally to point out that the symmetrical
form of Lemma 2, defined for P 1 = P , P 3 = P T

3 =
Q, is an equivalent inequality to the enhanced Lyapunov
inequality for Luenberger observer design [11].

The above results can be generalized to formulate the de-
scriptor principle in fault PD observer design. The main rea-
son is to eliminate matrix inverse notations from the design
conditions.

4 PD Observer Design
If the observer errors between the system state vector and
the observer state vector as well as between the fault vector
and the vector of its estimate are defined as follows

eq(t) = q(t)− qe(t) , (35)

ef (t) = f(t)− fe(t) , (36)
then, for slowly-varying faults, it is reasonable to consider
[12]

ėf (t) = 0− ḟe(t) = −MCeq(t)−NCėq(t) . (37)

Note, since fe(t) can be obtained as integral of ḟe(t), an
adapting parameter matrix G can be adjust interactively to
set the amplitude of fe(t), i.e., as results it is

fe(t) = G

t∫

0

ḟe(τ)dτ . (38)

To express the time derivative of the system state error eq(t),
the equations (1), (4) together with (2), (5) can be integrated
as

ėq(t) = Aeeq(t) + Fef (t)−LCėq(t) , (39)
where Ae is given in (16) and the PD observer system ma-
trix is

APDe= (In+LC)−1Ae= (In+LC)−1(A−JC) . (40)

Since (37), (39) can be rewritten in the following com-
posed form
[
ėq(t)

ėf (t)

]
=

[
Ae F

−MC 0

][
eq(t)

ef (t)

]
−
[

LC 0

NC 0

][
ėq(t)

ėf (t)

]
,

(41)

by denoting

e◦T (t) =
[
eTq (t) eTf (t)

]
, (42)

A◦ =

[
A F

0 0

]
, J◦ =

[
J

M

]
, L◦ =

[
L

N

]
, (43)

I◦ =

[
In 0

0 Ip

]
, C◦ = [ C 0 ] , (44)

where A◦, I◦ ∈ IR(n+p)×(n+p), J◦,L◦ ∈ IR(n+p)×m,
C◦ ∈ IRm×(n+p), then the equation (41) can be written
as

(I◦ +L◦C◦)ė◦(t) = (A◦ − J◦C◦)e◦(t) , (45)

A◦
ee

◦(t)−D◦
eė

◦(t) = 0 , (46)

respectively, where

A◦
e = A◦ − J◦C◦, D◦

e = I◦ +L◦C◦ . (47)

Introducing the equality

ė◦(t) = ė◦(t) , (48)

in analogy to the equation (18), then (48), (46) can be writ-
ten as
[
I◦ 0

0 0

][
ė◦(t)
ë◦(t)

]
=

[
ė◦(t)
0

]
=

[
0 I◦

A◦
e −D◦

e

] [
e◦(t)
ė◦(t)

]
.

(49)
Thus, by denoting

E•=

[
I◦ 0

0 0

]
, A•

e=

[
0 I◦

A◦
e −D◦

e

]
, e•(t)=

[
e◦(t)
ė◦(t)

]
,

(50)
the obtained descriptor form to PD fault observer is

E•ė•(t) = A•
ee

•(t) , (51)

where A•
e,E

• ∈ IR2(n+p)×2(n+p).
The following solvability theorem is proposed to the de-

sign PD fault observer in the structure proposed in (4)-(6).

Theorem 1. The PD fault observer (4)-(6) is stable if for
given positive scalar δ ∈ IR there exist a symmetric po-
sitive definite matrix P ◦

1 ∈ IR(n+p)×(n+p), a regular matriz
P ◦

3 ∈ IR(n+p)×(n+p) and matrices Y ◦ ∈ IR(n+p)×m, Z◦ ∈
IR(n+p)×m such that

P ◦
1 = P ◦T

1 > 0 , (52)
[
A◦TP ◦

3 + P ◦T
3 A

◦ − Y ◦C◦ −C◦TY ◦T ∗
V ◦

21 V ◦
22

]
< 0 ,

(53)
where

V ◦
21 = P ◦

1 −P ◦
3 + δP ◦T

3 A
◦ − δY ◦C◦ −C◦TZ◦T , (54)

V ◦
22 = −δP ◦

3 − δP ◦T
3 − δZ◦C◦ − δC◦TZ◦T . (55)

If the above conditions hold, the set of observer gain matri-
ces is given by the equations

J◦ = (P ◦T
3 )−1Y ◦, L◦ = (P ◦T

3 )−1Z◦ (56)

and the matrices J , LM , N can be separated with respect
to (43).
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Proof. Defining the Lyapunov function of the form

v(e•(t)) = e•T (t)E•TP •e•(t) > 0 , (57)

where
E•TP • = P •TE• ≥ 0 , (58)

then, using the property (58), the time derivative of (57)
along the trajectory of (51) becomes

v̇(e•(t)) =

= ė•T(t)E•TP •e•(t) + e•T(t)P •TE•ė•(t) < 0 .
(59)

Thus, substituting (51) into (59), it yields

v̇(e•(t)) = e•T (t)(P •TA•
e +A•T

e P •)e•(t) < 0 , (60)

which implies

P •TA•
e +A•T

e P • < 0 . (61)

Defining the Lyapunov matrix

P • =

[
P ◦

1 P ◦
2

P ◦
3 P ◦

4

]
, (62)

in analogy with (29) then (58) implies

P ◦
1 = P ◦T

1 > 0, P ◦
2 = P ◦T

2 = 0 (63)

and, using (50) and (62), (63) in (61), it yields
[
0 A◦T

e

I◦ −D◦T
e

][
P ◦

1 0

P ◦
3 P ◦

4

]
+

[
P ◦

1 P ◦T
3

0 P ◦T
4

][
0 I◦

A◦
e −D◦

e

]
< 0 .

(64)
After some algebraic manipulations, (64) takes the follow-
ing form [

U•
1 U•T

2

U•
2 U•

3

]
< 0 , (65)

where, with the notation (47),

U•
1 = (A◦ − J◦C◦)TP ◦

3 + P ◦T
3 (A◦ − J◦C◦) , (66)

U•
2 = P ◦T

4 (A◦−J◦C◦)+P ◦
1−P ◦

3−C◦TL◦TP ◦
3 , (67)

U•
3 = −P ◦

4 − P ◦T
4 − P ◦T

4 L◦C◦ −C◦TL◦TP ◦
4 . (68)

By setting

P ◦
4 = δP ◦

3, Y ◦ = P ◦T
3 J◦, Z◦ = P ◦T

3 L◦, (69)

where δ > 0, δ ∈ IR, then (65)-(68) imply (53)-(55).
Writing (68) as follows

U•
3 =

=−P ◦T
4 (I◦+L◦C◦)− (I◦+L◦C◦)TP ◦

4 = −R• (70)

and comparing (7) and (65), then, if the inequalities (52)-
(53) are satisfied, the Schur complement property (7) ap-
plied to (65) implies that R• is positive definite.

Since P ◦
4 is regular, (I◦+L◦C◦) is also regular and so

APDe given by (40) exists. This concludes the proof.

Since there is no restriction on the structure of P 3 in The-
orem 1, it follows that the problem of checking the existence
of a stable system matrix of PD adaptive fault observer in a
given matrix space may also be formulated with symmet-
ric matrices P 3 and P 3. This limit case of the LMI struc-
ture design condition, bound to a single symmetric matrix,
is given by the following theorem.

Theorem 2. The PD observer (4)-(6) is stable if for given
positive scalar δ ∈ IR there exist a symmetric positive
definite matrix Q◦ ∈ IR(n+p)×(n+p) and matrices Y ◦ ∈
IR(n+p)×m, Z◦ ∈ IR(n+p)×m such that

Q◦ = Q◦T > 0 , (71)
[
A◦TQ◦ +Q◦A◦ − Y ◦C◦ −C◦TY ◦T ∗

W ◦
21 W ◦

22

]
< 0 ,

(72)
where

W ◦
21 = δQ◦A◦ − δY ◦C◦ −C◦TZ◦T , (73)

W ◦
22 = −2δQ◦ − δZ◦C◦ − δC◦TZ◦T . (74)

If the above conditions are affirmative, the extended ob-
server gain matrices are given by the equations

J◦ = (Q◦)−1Y ◦, L◦ = (Q◦)−1Z◦. (75)

Proof. Since there is no restriction on the structure of P 3 it
can be set

P ◦
1 = P ◦

3 = P ◦T
3 = Q◦ > 0 (76)

and the conditioned structure of P ◦
4, with respect to P ◦

3 and
A◦

e , can be taken into account as

P ◦
4 = δP ◦

3 = δQ◦, (77)

where δ > 0, δ ∈ IR. If these conditions are incorporated
into (66)-(68), then

P T
3A

◦
e = Q◦(A◦ − J◦C◦) = Q◦A◦ − Y ◦C◦ , (78)

P ◦T
4 L◦C◦ = δP ◦T

3 L◦C◦ = δQ◦L◦C◦ = δZ◦C◦ , (79)
where

Y ◦ = Q◦J◦, Z◦ = Q◦L◦. (80)
Thus, with these modifications, (65)-(68) imply (72)-(74).
This concludes the proof.

Note, the design conditions formulated in Theorem 2 give
potentially more conservative solutions.

5 Illustrative Example
The considered system is represented by the model (1), (2)
with the model parameters [10]

A =




1.380 −0.208 6.715 −5.676
−0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104




B =




0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000


 , C =

[
4 0 1 0
0 0 0 1

]

To consider single actuator faults it was set E = B, and
the matrix variables Q◦, Y ◦, Z◦ satisfying (71)-(74) for
δ = 0.75 were as follows

Q◦ = [ Q◦
1 Q◦

2 ] ,

Q◦
1 =




0.1737 0.0012 0.1409
0.0012 0.1615 0.0195
0.1409 0.0195 0.1794

−0.1316 0.0252 −0.1439
−0.0118 −0.1975 −0.0464
0.1461 −0.0026 0.1557



,
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Q◦
2 =




−0.1316 −0.0118 0.1461
0.0252 −0.1975 −0.0026

−0.1439 −0.0464 0.1557
0.2177 −0.1136 −0.1255

−0.1136 1.4490 −0.1904
−0.1255 −0.1904 1.3479



,

Y ◦ =




0.1162 −0.0220
−0.0094 0.1404
0.0814 0.1439

−0.0719 0.1072
0.0060 0.0171
0.0003 0.2159



,

Z◦ =




−0.0164 −0.0445
0.0013 −0.0528

−0.0728 0.1181
0.0678 0.0229
0.0015 0.1434

−0.1062 0.1758



,

where the SeDuMi package [17] was used to solve given set
of LMIs.

The PD observer extended matrix gains are then com-
puted using (56) as

J◦ =




0.8777 −1.5720
−0.0801 0.5621
−0.0624 3.7385
0.1229 2.2486

−0.0021 0.3934
−0.0767 0.1649



,

L◦ =




0.7391 −2.0549
0.0663 −0.6605

−0.7915 3.4010
0.1994 1.3731

−0.0000 0.2244
−0.0488 0.1187



.

Verifying the PD observer system matrix eigenvalue spec-
trum, the results were

ρ(Ae) = { −0.7731,−2.8914,−4.7816,−8.9188 } ,

ρ(APDe) = { −1.1194,−1.6912,−1.9969,−2.9765 } .

That means the PD observer is stable as well as its "P" part
is stable, too. Moreover, also the descriptor form (45) of the
PD observer is stable, where

ρ
(
(I◦ +L◦C◦)−1(A◦ − J◦C◦)

)
=

=

{
−1.7763, −2.0966,

−0.6629± 0.7872 i, −1.3632± 0.4931 i

}
.

Comparing with a solution of (52)-(55) for the δ = 0.95, it
is possible to verify that in this case

ρ(Ae) = { −6.8230,−10.3876,−81.5789,−472.0230 } ,

ρ(APDe) = { −0.9562,−0.9774,−7.2561,−9.8300 } ,

ρ
(
(I◦ +L◦C◦)−1(A◦ − J◦C◦)

)
=

=

{
−1.0240,−1.0748, −6.4810,−9.1501

−0.9650± 0.0068 i

}
,

which implies in this case a faster dynamics of the descriptor
form of the PD observer but a slower for the PD observer.
Note, the exploitation of δ = 0.75 leads in this case to un-
stable "P" part of the PD observer.
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Figure 1: Adaptive fault estimator responses

Although many actuator faults can cause the gain to drift,
in practice the faults lead to an abrupt change in gain [21].
To simulate this phenomena, it was assumed that the fault in
actuators for (1) was given by

f(t) =





0, t ≤ tsa ,
fh

tsb−tsa
(t− tsa), tsa < tsb ,
fh, tsb ≤ tca ,

− fh
tcb−tca

(t− tcb), tca < tcb ,
0, t ≥ tcb ,

where, analyzing the single first actuator fault estimation, it
was set

fh = 2, tsa = 30s, tsb = 35s, tea = 65s, teb = 70s ,

and for the single second actuator fault these parameters
were

fh = 2, tsa = 100s, tsb = 105s, tea = 135s, teb = 140s .

It is demonstrates that for equal fh in the first and the sec-
ond actuator faults it is possible for given B to adjust the
common adapting parameter matrix G in (38) as follows

G =

[
40.0 5.9
5.9 22.0

]
.

The obtained results are illustrated in Fig. 1 where, just in
terms of rendering, all faults responses and their estimates
were combined into a single image, and so the demonstra-
tion can not be seen as a progressive sequence of single
faults in the actuators system. This figure presents the fault
signals, as well as their estimations, reflecting the single first
actuator fault starting at the time instant t = 30s and ap-
plied for 40s and then the fault of the second actuator is
demonstrated beginning in the time instant t = 100s and
lasts for 40s. The presented simulation was carried out in
the system autonomous mode, practically the same results
were obtained for forced regime of the system.

The adapting parameter G and the tuning parameter δ
were set interactively considering the maximal value of fault
signal amplitude fh and the fault observer dynamics. It can
be seen that the exists very small differences between the
signals reflecting single actuator faults and the observer ap-
proximate ones for slowly warring piecewise constant actu-
ator faults. The principle can be used directly in the control
structures with the fault compensation [4], but can not be
directly used to localize actuator faults [14].
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6 Concluding Remarks
Based on the descriptor system approach a new PD fault
observer design method for continuous-time linear systems
and slowly-varying actuator faults is introduced in the paper.
Presented version is derived in terms of optimization over
LMI constraints using standard LMI numerical procedures
to manipulate the fault observer stability and fault estima-
tion dynamics. Presented in the sense of the second Lya-
punov method expressed through LMI formulation, design
conditions guaranty the asymptotic convergence of the state
as well as fault estimation errors. The numerical simulation
results show good estimation performances.
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Abstract

The transitions between operational modes
(startup/shutdown) in chemical processes gen-
erate alarm floods and cause critical alarm
saturation. We propose in this paper an approach
of alarm management based on a diagnosis
process. This diagnosis step relies on situation
recognition to provide to the operators relevant
information on the failures inducing the alarms
flows. The situation recognition is based on
chronicle recognition. We propose to use the
information issued from the modeling of the
system to generate temporal runs from which the
chronicles are extracted. An illustrative example
in the field of petrochemical plants ends the
article.

1 Introduction
The petrochemical industries losses have been estimated at
20 billion dollars only in the U.S. each year, and the AEM
(Abnormal Events Management) has been classified as a
problem that needs to be solved. Hence the alarm man-
agement is one of the aspects of great interest in the safety
planning for the different plants. In the process state tran-
sitions such as startup and shutdown stages the alarm flood
increases and it generates critical conditions in which the
operator does not respond efficiently, then a dynamic alarm
management is required [1]. Currently, many fault detec-
tion and diagnosis techniques for multimode processes have
been proposed; however, these techniques cannot indicate
fundamental faults in the basic alarm system [2], in the other
hand the technical report ”Advance Alarm System Require-
ments” EPRI (The Electric Power Research Institute) sug-
gests a cause-consequence and event-based processing. In
this perspective, diagnosis approaches based on complex
events processing or situation recognition are interesting is-
sues. Therefore, in this paper, a dynamic alarm management
strategy is proposed in order to deal with alarm floods hap-
pening during transitions of chemical processes. This ap-
proach relies on situations recognition (i.e. chronicle recog-
nition). As, the efficiency of alarm management approaches
depends on the operator expertise and process knowledge,
our final objective is to develop a diagnosis approach as a
decision tool for operators. The paper is divided into 6 sec-
tions. Section 2 gives an overview on the relevant literature.
The section 3 concerns the modeling of the system. The sec-
tion 4 is about the chronicle principle and the temporal runs

used for the chronicle design. The section 5 is devoted to
the chronicle generation. Finally , an illustrative application
on real data from a petrochemical plant is given section 6.

2 State of the art: Alarm management
Alarm management has recently focused the attention of
many researchers in themes such as:

Alarm historian visualization and analysis: A combined
analysis of plant connectivity and alarm logs to reduce the
number of alerts in an automation system was presented by
[3]; the aim of the work presented is to reduce the num-
ber of alerts presented to the operator. If alarms are re-
lated to one another, those alarms should be grouped and
presented as one alarm problem. Graphical tools for rou-
tine assessment of industrial alarm systems was proposed
by [4], they presented two new alarm data visualization tools
for the performance evaluation of the alarm systems, known
as the high density alarm plot (HDAP) and the alarm sim-
ilarity color map (ASCM). Event correlation analysis and
two-layer cause-effect model were used to reduce the num-
ber of alarms in [5]. A Bayesian method has been intro-
duced for multimode process monitoring in [6]. This type
of techniques helps us to recognize alarm chattering, group-
ing many alarms or estimate the alarm limits in transition
stages, but the time and the procedure actions are not in-
cluded.

Process data-based alarm system analysis and rational-
ization: The evaluation of plant alarm systems by behavior
simulation using a virtual subject was proposed by [7]. [8]
introduced a technique for optimal design of alarm limits
by analyzing the correlation between process variables and
alarm variables. In 2009 a framework based on the receiver
operating characteristic (ROC) curve was proposed to op-
timally design alarm limits, filters, dead bands, and delay
timers; this work was presented in [9] and a dynamic risk
analysis methodology that uses alarm databases to improve
process safety and product quality was presented in [10]. In
[11] the Gaussian mixture model was employed to extract
a series of operating modes from the historical process data
and then the local statistic and its normalized contribution
chart were derived for detecting abnormalities early and for
isolating faulty variables. We can see that the use of virtual
subjects could be applied to probe the alarm system and us-
ing historical information about the alarm behavior for de-
tecting abnormalities. The problem is presented when the
simulation requires a lot time to probe the totally of scenar-
ios and when we have new plants that do not contain infor-
mation about historical data.
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Plant connectivity and process variable causality analy-
sis (causal methods): In the literature, transition monitor-
ing of chemical processes has been reported by many re-
searchers. In [12] was presented a fault diagnosis strategy
for startup process based on standard operating procedures,
this approach proposes behavior observer combined with
dynamic PCA (Principal Component Analysis) to estimate
process faults and operator errors at the same time, and in
[13] was presented a framework for managing transitions
in chemical plants where a trend analysis-based approach
for locating and characterizing the modes and transitions in
historical data is proposed. Finally, in [14] a hybrid model-
based framework was used for alarm anticipation where the
user can prepare for the possibility of a single alarm occur-
rence. For the transition monitoring, these types of tech-
niques are the most used in industrial processes and the hy-
brid model based framework could be a good representation
of our system. We can observe that a causal model allows
identify the root of the failures and check the correct evo-
lution in a transitional stage. Our proposal is closer to the
third type of approach and seeks to exploit the causal rela-
tionships as presented in the next sections.

3 Representation of the system
3.1 Hybrid Causal Model
The hybrid system is represented by an extended transition
system [15], whose discrete states represent the different
modes of operation for which the continuous dynamics are
characterized by a qualitative domain. Formally, a hybrid
causal system is defined as a tuple:

� = (#, D, Conf, Tr,E,CSD, Init) (1)

Where
• # = {vi} is a set of continuous process variables

which are function of time t.
• D is a set of discrete variables. D = Q [ K [ VQ. Q

is a set of states qi of the transition system which repre-
sent the system operation modes. The set of auxiliary
discrete variables K = {Ki, i = 1, ...nc} represents
the system configuration in each mode qi as defined
below by Conf(qi). VQ = {Vi} is a set of qualitative
variables whose values are obtained from the behavior
of each continuous variable vi.

• Conf(qi): Q ! ⌦i D(Ki) where ⌦ is the Cartesian
product and D(Ki) is the domain of Ki 2 K that
provides the configuration associated to the mode. i.e.
the modes of the underlying multimode components
(typically, a valve has two normal modes, opened and
closed)

• E = ⌃[⌃c is a finite set of event types noted �, where:
– ⌃ is the set of event type associated to the proce-

dure actions in a startup or shutdown stages.
– ⌃c is the set of event type associated to the behav-

ior of the continuous process variables.
• Tr : Q⇥ ⌃ ! Q is the transition function. The tran-

sition from mode qi to mode qj with associated event
� is noted (qi, �, qj) or qi ��! qj . We assume that the
model is deterministic, without loss of generality i.e.
whenever qi ��! qj and qi ��! qk then qj = qk for each
(qi, qj , qk) 2 Q3 and each � 2 ⌃.

• CSD ◆ S
i CSDi is the Causal System

Description or the causal model used to repre-
sent the constraints underlying in the continuous
dynamic of the hybrid system. Every CSDi asso-
ciated to a mode qi, is given by a graph (Gc = #
[ K, I). I is the set of influences where there is
an edge e(vi, vj) 2 I from vi 2 # to vj 2 # if the
variable vi influences variable vj . Then, the vertices
represent the variables and the edges represent the
influences between variables and for each edge exists
an association with a component in the system. The
set of components is noted as COMP .

• Init is the initial condition of the hybrid system,

3.2 Qualitative abstraction of continuous
behavior

In each mode of operation, variables evolve according to
the corresponding dynamics. This evolution is represented
with qualitative values. The domain D(Vi) of a qualitative
variable Vi 2 VQ is obtained through the function fqual :
D(vi) ! D(Vi) that maps the continuous values of variable
vi to ranges defined by limit values (High Hi and Low Li).

f(vi)qual =

8
>>>>><
>>>>>:

V H
i if vi � Hi ^ dvi

dt > 0

V M
i if vi < Hi ^ dvi

dt < 0

_
vi � Li ^ dvi

dt > 0

V L
i if vi < Li ^ dvi

dt < 0

(2)

dvi

dt > 0 represents that the continuous variable vi is increas-
ing and dvi

dt < 0 that it is decreasing. The behavior of these
qualitative variables is represented in Figure 1. by the graph
GVi = (VQ,⌃c, �) where VQ is the set of the possible qual-
itative states (V L

i : Low, V M
i : Medium, V H

i : High) of
the continuous variable vi, ⌃c is the finite set of the events
associate to the transitions and � : VQ ⇥ ⌃c ! VQ is the
transition function. The corresponding event generator is

Figure 1: Qualitative values of the process variables

defined by the abstraction function fVQ!�

fVQ!� : VQ ⇥ �(VQ,⌃c) ! ⌃c

8Vi 2 VQ, (V n
i , V m

i ) !

8
>><
>>:

l+(vi) if V L
i ! V M

i

l�(vi) if V M
i ! V L

i

h+(vi) if V M
i ! V H

i

h�(vi) if V H
i ! V M

i

V n
i , V m

i 2 {V L
i , V M

i , V H
i }

(3)
⌃c =

S
vi2#{l+(vi), l

�(vi), h
+(vi), h

�(vi)} (4)
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3.3 Automatic derivation of the causal model
To obtain the causal model of a system in a given operat-
ing mode implies to collect the equations that represent the
behavior of the system in this mode. The theory of causal
ordering issued from the Qualitative Reasoning community
can be well applied to obtain automatically the causal struc-
ture associated to a set of equations. Now, associating acti-
vation conditions to the equations extend the causal order-
ing to systems with several operating modes [16]. Then
these activation conditions can be related in the influences
of the resulting causal graph.The proposed algorithm, im-
plemented in the Causalito software makes use of condi-
tions that avoid recomputing a totally new perfect matching
for every operating mode, thus reducing the computational
cost. In this work, the Causal System Description is given
by CSD = (#, I), where each influence I is labeled with:

• An activation condition indicating the modes in which
it is active (or no label if it is active in all modes),

• The corresponding equation,
• The component whose behavior is expressed by the

equation.
In the follow section we expose the principle of the chroni-
cle generation where concepts such as event, chronicle and
temporal run are described.

4 Chronicles
4.1 Events and chronicles
Let us consider time as a linearly ordered discrete set of in-
stants. The occurrence of different events in time represents
the system dynamics and a model can be determined to di-
agnose the correct evolution. An event is defined as a pair
(�i, ti), where �i 2 E is an event type and ti is a variable of
integer type called the event date. We define E as the set of
all event types and a temporal sequence on E is an ordered
set of events denoted S = h(�i, ti)ij with j 2 Nl where l
is the size of the temporal sequence S and Nl is a finite set
of linearly ordered time points of cardinal l. A chronicle is
a triplet C = (⇠, CT , G) such that ⇠ ✓ E, CT is the set of
temporal constraints. G = (N, It) is a directed graph where
N represent event types of E and the arcs It represent the
relationship between events � 2 E, if the event �1 occurs t
time units after �2, then it exists a directed link from �1 to
�2 associated with a time constraint. Considering the two
events (�i, ti) and (�j , tj), we define the time interval as
the pair ⌧ij = [t�, t+], ⌧ij 2 CT corresponding to the lower
and upper bounds on the temporal distance between the two
event dates ti and tj [17]. The idea of our proposal is to
design the chronicles from the hybrid causal model of the
system. Indeed the evolution of the system can be captured
with temporal runs from which chronicles can be learn (See
Figure 2). More precisely, the system initiates in the state q0

and it evolves according to the transitions resulting from the
events defined by the procedure actions for specific scenar-
ios (startup/shutdown). For a given system modes qi 2 Q,
the associated CSDi is used to generate the set of event
types corresponding to the evolution of the continuous pro-
cess variables. A run is defined by a sequence of event types
↵1, ↵2, ....↵n where ↵i 2 E generated for each scenario us-
ing the startup/shutdown procedures. These runs with time
constraints permit to construct the chronicle database of the
system. In this preliminary approach, time constraints are
obtained by simulation.

Figure 2: Principle of chronicle generation

4.2 Temporal runs

We denote a temporal run as h R, T i where R is a run and T
is the time graph of the run that includes the time constraints
CT between each pair of time points where must occurs the
events type. Figure 3 gives time graph examples and the
possible composition of time graphs. In our approach the

Figure 3: Time graphs example

runs are issued from the system evolution from one oper-
ation mode to another. The interleaved sequence of event
types ↵1, ↵2, . . . ↵n represents the procedure actions and the
behavior evolution of the process variables. The time con-
straints between each pair of event types are determined by
simulation of the continuous behavior for each process vari-
able, responding to the procedure actions.

5 Generation of Chronicles

5.1 Chronicle database

An industrial or complex process Pr is composed of differ-
ent areas Pr = {Ar1, Ar2, ...Arn} where each area Ark

has different operational modes such as startup, shutdown,
slow march, fast march, etc. The set CArk of chronicles Ck

ij
for each area Ark is presented in the matrix below, where
the rows represent the operating modes (i.e. O1 : Startup,
O2 : Shutdown, O3 : Startuptype, O4 : Startuptype, etc)
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and the columns the different faults.

CArk =

O1

O2

O3

O4

. . .

. . .
Oj

N f1 f2 . . . . . . fn2
66666664

Ck
01 Ck

11 Ck
21 . . . . . . Ck

i1

Ck
02 Ck

12 Ck
22 . . . . . . Ck

i2

Ck
03 Ck

13 Ck
23 . . . . . . Ck

i3

Ck
04 Ck

14 Ck
24 . . . . . . Ck

i4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ck

0j Ck
1j Ck

2j . . . . . . Ck
ij

3
77777775

(5)
The chronicle database used for diagnosis is composed by
the entries of all the matrices {CArk}. This chronicle
database is submitted to a chronicle recognition system that
identifies in an observable flow of events all the possible
matching with the set of chronicles from which the situation
(normal or faulty) can be assessed.

5.2 Chronicle learning

As explained previously when the system changes mode of
operation, a set of event types occurs forming a run R. As
this evolution is due to procedure actions. Not only a unique
temporal run can occur. Hence, we need to set up the maxi-
mal number of temporal runs that it could occur in each sce-
nario represented in the matrix (5). To obtain the chronicle
in each scenario is necessary to obtain the larger time graph
with as many event types and with the minimal values of the
constraints. [18] proposes to determine the chronicles from
the temporal runs. They define a partial order relation be-
tween two temporal runs as hR, T i  h R0, T 0i when the set
of event types in R0 is a subset of event type in R and the
time graphs T and T 0 are related by T � T 0 determining the
result graph where exists a unique equivalent constraint that
is the minimal. The relation � expresses that the set of con-
straints in the time graph T 0 is a subset of constraints in T ,
CT (t, t0) ✓ CT 0(t, t0). Therefore, we apply the composition
(see Figure 3) between the time graphs in order to merge the
constraints obtaining the larger and constrained time graph
that represents the chronicle in that scenario. Figure 4 gives
an example of a chronicle generation from a maximal tem-
poral run. In the next section a case study is presented in

Figure 4: Chronicle example

which the chronicle generation from the temporal runs is il-
lustrated.

6 Case study
6.1 HTG (Hydrostatic Tank Gauging) system
In the Cartagena Refinery currently are being implemented
news units and elements. In the startup stage they will need
a tool to help the operator to recognize dangerous condi-
tions. We will analyze the startup and shutdown stages in the
unit of water injection. This process is a HTG (Hydrostatic
Tank Gauging) system composed by the following compo-
nents: one tank (TK), two normally closed valves (V 1 and
V 2), one pump (Pu), a level sensor (LT ), a pressure sensor
(PT ), inflow sensor (FT1) and an outflow sensor (FT2), see
Figure 5.

Figure 5: Process diagram

Assuming this system as a hybrid causal model, the un-
derlying discrete event system and the different process
operation modes are described in Figure 6 where we can
see a possible correct evolution for the startup procedure.
The events V 1c,o, V 2c,o represents that the valves V 1,V 2
move from the state closed to the state opened, the events
V 1o,c,V 2o,c represents on the contrary the valves moving
from the state opened to the state closed. The event Puf�n

indicates that the pump Pu is turned on and the event
Pun�f indicates that the pump Pu is turned off.

6.2 Identification of causal relationships
The level (L) in the tank is related to the weight (m) of
the liquid inside, its density (⇢) and the tank area (A). The
density (⇢) is the relationship of the pressures (Pmed,Pinf )
in separated points (h). Based on the global material bal-
ance, we define that the input flow is equal to the outlet flow.
Then, the variation of the weight (dm(t)/dt) in the tank is
proportional to the difference between the inflow (QiTK)
and the outflow (QoV 2). The differential pressure in the
pump and in V 2 are specified as � PPu and � PV 2. The
outlet pressure in the pump (Po) is related with the outlet
flow tank (QoTK), the revolutions per minute in the pump
(RPMPu), his capacity (C) and the radio of the outlet pipe
(r). The outflow (QoV 2) and inflow (QiTK) control are re-
lated to the percentage aperture of the valves V 1 (LV 1) and
V 2 (LV 2) and differential pressures (�PV 1,�PV 2). In Fig-
ure 7 we can see the CSD of the system in the modes q1,
q5 and q7. For example, the mode q1 activates the influence
of QiTK to L. The mode q5 activates the influence of QiTK

to L and the influence of L to Po and finally the mode q7

activates the influence of QiTK to L, L to Po and Po to
QoV 2.
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Figure 6: Underlying DES of the HGT system

Figure 7: CSD in the modes q1, q5 and q7

6.3 Event identification
One of the most important steps for fault diagnosis based
on chronicle recognition is to determine the set of events
that can carry the system to a failure. Each situation pat-
tern (normal or abnormal) is a set of events and temporal
constraints between them; then a situation model may also
specify events to be generated and actions to be triggered
as a result of the situation occurrence. For a startup proce-
dure in the example process, the set of event types ⌃ that
represent the procedure actions is:

⌃ = {V 1c,o, V 2c,o, Puf�n, V 1o,c, V 2o,c, Pun�f} (6)

According to the causal graphs associated to the modes in-
volved in the sequence of procedure actions (i.e q1, q5 and q7

indicated by red arrows on Figure 6), the event types of ⌃c

correspond to the behavior of the variables L,Po and QoV 2.

⌃c =

{l+(L), l
�
(L), h

+
(L), h

�
(L),

l+(Po), l
�
(Po), h

+
(Po), h

�
(Po),

l+(QoV 2)
, l�(QoV 2)

, h+
(QoV 2)

, h�
(QoV 2)

}
(7)

From the startup/shutdown procedures the different tempo-
ral runs are determined and these temporal runs are related
to the normal and abnormal situations. The chronicle result-
ing from a normal startup procedure is presented in Figure
8. The model system was developed in Matlab including

Figure 8: Chronicle C01 for normal behavior startup

the injection water process area. The continuous behavior
is related to the evolution of the level L, outlet pump pres-
sure Po and the outlet flow QoV 2 in the system. The dis-
crete evolution is related to the event evolution of the pro-
cedures in the startup and shutdown stages. From the dif-
ferent failure modes of the process, the dynamic behavior
of the variables is shown with a detection for the possible
process states, including the normal procedure without fail-
ure. The simulation includes 3 types of startup procedures
(OK, fail1 and fail2) with 4 types of fault modes (V1, V2,
Pump and Drainopen) and 3 types of Shutdown proce-
dure (OK, Non � actived and Fail). The evolution of the
continuous variables in the startup procedure without failure
is shown in Figure 9. The events are generated by the pro-
gram through the evolution of the differential equations, the
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variable conditions and the procedural actions. Recognition
of the chronicles was done using the tool stateflow.

Figure 9: Normal behavior in startup procedure without fail-
ure. Blue: Level, Green:Pressure, Red: ouletflow

7 Conclusion
A preliminary method for alarm management based on au-
tomatically learned chronicles has been proposed. The pro-
posal is based on a hybrid causal model of the system and a
chronicle based approach for diagnosis. An illustrative ex-
ample of an hydrostatic tank gauging has been considered
to introduce the main concepts of the approach. In this pa-
per the design of the temporal constraints of the chronicles
were performed from simulation results, but further research
aim to generate the chronicles from the model of the system.
Learning approaches are currently considered for acquiring
the chronicle base directly from the sequences of events rep-
resenting the situations. For this propose the algorithm HC-
DAM (Heuristic Chronicle Discovery Algorithm Modified
[17]) may be used. The use of HIL (Hardware in the loop)
to simulate and validate the proposal is also in our prospects.
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Abstract

The task of software diagnosis algorithms is to
identify which software components are faulty,
based on the observed behavior of the system.
Software diagnosis algorithms have been studied
in the Artificial Intelligence community, using a
model-based and spectrum-based approaches. In
this work we show how software fault predic-
tion algorithms, which have been studied in the
software engineering literature, can be used to
improve software diagnosis. Software fault pre-
diction algorithms predict which software com-
ponents is likely to contain faults using ma-
chine learning techniques. The resulting data-
augmented diagnosis algorithm we propose is
able to overcome of key problems in software di-
agnosis algorithms: ranking diagnoses and distin-
guishing between diagnoses with high probability
and low probability. This allows to significantly
reduce the outputted list of diagnoses. We demon-
strate the efficiency of the proposed approach
empirically on both synthetic bugs and bugs ex-
tracted from the Eclipse open source project. Re-
sults show that the accuracy of the found diag-
noses is substantially improved when using the
proposed combination of software fault prediction
and software diagnosis algorithms.

1 Introduction
Software is prevalent in practically all fields of life, and its
complexity is growing. Unfortunately, software failures are
common and their impact can be very costly. As a result,
there is a growing need for automated tools to identify soft-
ware failures and isolate the faulty software components,
such as classes and functions, that have caused the failure.
We focus on the latter task, of isolating faults in software
components, and refer to this task as software diagnosis.

Model-based diagnosis (MBD) is an approach to auto-
mated diagnosis that uses a model of the diagnosed system
to infer possible diagnoses, i.e., possible explanations of the
observed system failure. While MBD was successfully ap-
plied to a range of domains [1; 2; 3; 4], it has not been ap-
plied successfully yet to software. The reason for this is that
in software development, there is usually no formal model
of the developed software. To this end, a scalable software
diagnosis algorithm called Barinel has been proposed [5].

Barinel is a combination of MBD and Spectrum Fault Lo-
calization (SFL). SFL considers traces of executions, and
finds diagnoses by considering the correlation between exe-
cution traces and which executions have failed. While very
scalable, Barinel suffers from one key disadvantage: it can
return a very large set of possible diagnoses for the soft-
ware developer to choose from. To handle this disadvantage,
Abreu et al. [5] proposed a Bayesian approach to compute
a likelihood score for each diagosis. Then, diagnoses are
prioritize according to their likelihood scores.

Thanks to the open source movement and current soft-
ware engineering tools such as version control and issue
tracking systems, there is much more information about a
diagnosed system than revealed by the traces of performed
tests. For example, version control systems store all revi-
sions of every source files, and it is quite common that a
bug occurs in a source file that was recently revised. Barinel
is agnostic to this data. We propose a data-driven approach
to better prioritize the set of diagnoses returned by Barinel.

In particular, we use methods from the software engi-
neering literature to learn from collected data how to pre-
dict which software components are expected to be faulty.
These predictions are then integrated into Barinel to better
prioritize the diagnoses it outputs and provide more accurate
estimates of each diagnosis likelihood.

The resulting data-augmented diagnosis algorithm is part
of a broader software troubleshooting paradigm that we call
Learn, Diagnose, and Plan (LDP). In this paradigm, illus-
trated in Figure 1(a), the troubleshooting algorithm learns
which source files are likely to fail from past faults, previ-
ous source code revisions, and other sources. When a test
fails, a data-augmented diagnosis algorithm considers the
observed failed and passed tests to suggest likely diagnoses
leveraging the knowledge learned from past data. If further
tests are necessary to determine which software component
caused the failure, such test are planned automatically, tak-
ing into consideration the diagnoses found. This process
continues until a sufficiently accurate diagnoses is found.

In this work we implemented this paradigm and simulated
its execution on a popular open source software project – the
Eclipse CDT. Information from the Git version control and
the Bugzilla issue tracking systems was used, as illustrated
in Figure 1(b) and explained in the experimental results.

Results show a huge advantage of using our data-
augmented diagnoser over Barinel with uniform priors for
both finding more accurate diagnoses and for better select-
ing tests for troubleshooting. Moreover, to demonstrate the
potential benefit of our data-augmented approach we also

Proceedings of the 26th International Workshop on Principles of Diagnosis

247



QA Tester Developer

Server Logs

Source Code

AI Engine

Issue Tracking 
System

Version 
Control System

(a) Learn, Diagnos, and Plan Paradigm

QA Tester Developer

Source Code

AI Engine

(b) Our current implementation

Figure 1: The learn, diagnose, and plan paradigm and our implementation.

experimented with a synthetic fault prediction model that is
correctly identifies the faulty component. As expected, us-
ing the synthetic fault prediction model is better than using
the learned fault prediction model, thus suggesting room for
further improvements in future work. To our knowledge,
this is the first work to integrate successfully a data-driven
approach into software diagnosis.

2 Model-Based Diagnosis for Software
The input to classical MBD algorithms is a tuple
〈SD,COMPS,OBS〉, where SD is a formal description
of the diagnosed system’s behavior, COMPS is the set of
components in the system that may be faulty, and OBS
is a set of observations. A diagnosis problem arises when
SD and OBS are inconsistent with the assumption that all
the components in COMPS are healthy. The output of an
MBD algorithm is a set of diagnoses.

Definition 1 (Diagnosis). A set of components ∆ ⊆
COMPS is a diagnosis if

∧

C∈∆

(¬h(C)) ∧
∧

C′ /∈∆

(h(C ′)) ∧ SD ∧OBS

is consistent, i.e., if assuming that the components in ∆ are
faulty, then SD is consistent with OBS.

The set of components (COMPS) in software diagnoses
can be, for example, the set of classes, or all functions, or
even a component per line of code. Low level granularity of
components, e.g., setting each line of code as a component,
will result in very focused diagnoses (e.g., pointing on the
exact line of code that was faulty). Focusing the diagnoses
in such way comes at a price of an increase in the computa-
tional effort. Automatically choosing the most suitable level
of granularity is a topic for future work.

Observations (OBS) in software diagnosis are observed
executions of tests. Every observed test t is labeled as
“passed” or “failed”, denoted by passed(t) and failed(t),
respectively. This labeling is done manually by the tester or
automatically in case of automated tests (e.g., failed asser-
tions).

There are two main approaches for applying MBD to
software diagnosis, each defining SD somewhat differently.
The first approach requires SD to be a logical model of the
correct functionality of every software component [6]. This
approach allows using logical reasoning techniques to infer
diagnoses. The main drawbacks of this approach is that it

does not scale well and modeling the behavior of software
component is often infeasible.

2.1 SFL for Software Diagnosis
An alternative approach to software diagnosis has been pro-
posed by Abreu et al. (5; 7), based on spectrum-based fault
localization (SFL). In this SFL-based approach, there is no
need for a logical model of the correct functionality of every
software component in the system. Instead, the traces of the
observed tests are considered.
Definition 2 (Trace). A trace of a test t, denoted by trace(t),
is the sequence of components involved in executing t.

Traces of tests can be collected in practice with com-
mon software profilers (e.g., Java’s JVMTI). Recent work
showed how test traces can be collected with low over-
head [8]. Also, many implemented applications maintain
a log with some form of this information.

In the SFL-based approach, SD is implicitly defined in
SFL by the assumption that a test will pass if all the compo-
nents in its trace are not faulty. Let h(C) denote the health
predicate for a component C, i.e., h(C) is true if C is not
faulty. Then we can formally define SD in the SFL-based
approach with the following set of Horn clauses:

∀test (
∧

C∈trace(test)

h(C))→ passed(test)

Thus, if a test failed then we can infer that at least one of the
components in its trace is faulty. In fact, a trace of a failed
test is a conflict.
Definition 3 (Conflict). A set of components Γ ⊆ COMPS
is a conflict if

∧
C∈Γ

h(C) ∧ SD ∧OBS is inconsistent.

Many MBD algorithms use conflicts to direct the search
towards diagnoses, exploiting the fact that a diagnosis must
be a hitting set of all the conflicts [9; 10; 11]. Intuitively,
since at least one component in every conflict is faulty, only
a hitting set of all conflicts can explain the unexpected ob-
servation (failed test).

Barinel is a recently proposed software MBD algo-
rithm [5] based on exactly this concept: considering traces
of tests with failed outcome as conflicts and returning their
hitting sets as diagnoses. With a fast hitting set algorithm,
such as the STACATTO hitting set algorithm proposed by
Abreu et al. [12], Barinel can scale well to large systems.
The main drawback of using Barinel is that it often outputs
a large set of diagnoses, thus providing weaker guidance to
the programmer that is assigned to solve the observed bug.
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2.2 Prioritizing Diagnoses
To address this problem, Barinel computes a score for every
diagnosis it returns, estimating the likelihood that it is true.
This serves as a way to prioritize the large set of diagnoses
returned by Barinel.

The exact details of how this score is compute is given
by Abreu et al. [5]. For the purpose of this paper, it is im-
portant to note that the score computation used by Barinel
is Bayesian: it computes for a given diagnosis the posterior
probability that it is correct given the observed passes and
failed tests. As a Bayesian approach, Barinel also requires
some assumption about the prior probability of each com-
ponent to be faulty. Prior works using Barinel has set these
priors uniformly to all components. In this work, we pro-
pose a data-driven way to set these priors more intelligently
and demonstrate experimentally that this has a huge impact
of the overall performance of the resulting diagnoser.

3 Data-Augmented Software Diagnosis
The prior probabilities used by Barinel represent the a-priori
probability of a component to be faulty, without considering
any observed system behavior. Fortunately, there is a line of
work on software fault prediction in the software engineer-
ing literature that deals exactly with this question: which
software components is more likely to have a bug. We pro-
pose to use these software fault predictions as priors to be
used by Barinel. First, we provide some background on soft-
ware fault prediction.

3.1 Software Fault Prediction
Fault prediction in software is a classification problem.
Given a software component, the goal is to determine its
class – healthy or faulty. Supervised machine learning algo-
rithms are commonly used these days to solve classification
problems. They work as follows. As input, they are given a
set of instances, in our case these are software components,
and their correct labeling, i.e., the correct class for each in-
stance. They output a classification model, which maps an
instance to a class.

Learning algorithm extract features from a given instance,
and try to learn from the given labeled instances the relation
between the features of an instance and its class. Key to
the success of machine learning algorithms is the choice of
features used. Many possible features were proposed in the
literature for software fault prediction.

Radjenovic et al. [13] surveyed the features used by ex-
isting software prediction algorithms and categorizes them
into three families. Traditional. These features are tradi-
tional software complexity metrics, such as number of lines
of code, McCabe [14] and Halstead [15] complexity mea-
sures.
Object Oriented. These features are software complex-
ity metrics that are specifically designed for object oriented
programs. This includes metrics like cohesion and coupling
levels and depth of inheritance.
Process. These features are computed from the software
change history. They try to capture the dynamics of the soft-
ware development process, considering metrics such as lines
added and deleted in the previous version and the age of the
software component.

It is not clear from the literature which combination of
features yields the most accurate fault predictions. In a

preliminary set of experiments we found that the combina-
tion of features that performed best is a combination of 68
features from the features listed by Radjenovic et al. [13]
worked best. This list of features included the McCabe [14]
and Halstead [15] complexity measures, several object ori-
ented measures such as the number of methods overriding
a superclass, number of public methods, number of other
classes referenced, and is the class abstract, and several pro-
cess features such as the age of the source file, the number
of revisions made to it in the last release, the number of de-
velopers contributed to its development, and the number of
lines changed since the latest version.

As shown in the experimental results section, the result-
ing fault prediction model was accurate enough so that the
overall data-augmented software diagnoser be more effec-
tive than Barinel with uniform priors. However, we are not
sure that a better combination of features cannot be found,
and this can be a topic for future work. The main novelty of
our work is in integrating a software fault prediction model
with the Barinel.

3.2 Integrating the Fault Prediction Model
The software fault prediction model generated as described
above is a classifier, accepting as input a software compo-
nent and outputting a binary prediction: is the component
predicted to be faulty or not. Barinel, however, requires
a real number that estimates the prior probability of each
component to be faulty.

To obtain this estimated prior from the fault prediction
model, we rely on the fact that most prediction models also
output a confidence score, indicating the model’s confidence
about the classified class. Let conf(C) denote this con-
fidence for component C. We use conf(C) for Barinel’s
prior if C is classified as faulty, and 1−conf(C) otherwise.

4 Experimental Results
To demonstrate the benefits of the proposed data-augmented
approach, we implemented it and evaluated it as follows.

4.1 Experimental Setup
As a benchmark, we used the source files, tests, and
bugs reported for the Eclipse CDT open source software
project (eclipse.org/cdt). Eclipse CDT is a popular
open source Integrated Development Environment (IDE) for
C/C++. The first release dates back to December 2003 and
the latest release we consider, labeled CDT 8.2.0, was re-
leased in June 2013. It consists of 8,502 source code files
and have had more than 10,129 bugs reported so far (for all
releases). In addition, there are 3,493 automated tests coded
using the JUnit unit testing framework.

Determining Faulty Files
Eclipse CDT is developed using the Git version control sys-
tem and the Bugzilla issue tracking system. Git maintains
all versions of each source file in a repository. This en-
ables computing process metrics for every version of every
source file. Similarly, Bugzilla is used to maintain all re-
ported bugs. Some source file versions are marked in the
Git repository as versions in which a specific bug was fixed.
The Git repository for Eclipse CDT contained matching ver-
sions of source files for 6,730 out of 10,129 bugs reported as
fixed in Bugzilla. We performed our experiments on these
6,730 bugs.
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For both learning and testing a fault prediction model, we
require a mapping between reported bug and the source files
that were faulty and caused it. One possible assumption is
that every source file revision that is marked as fixing bug
X is a faulty file that caused X . We call this the “All files”
assumption. The “All files” assumption may overestimate
the number of faulty files as some of these files may have
been modified due to other reasons, not related to the bug.
Even if all changes in a revision are related to fixing a bug,
it still does not mean that all these files are faulty. For ex-
ample, properties files and XML configuration files. As a
crude heuristic to overcome this, we also experiment with
an alternative assumption that we call the “Most modified”
assumption. In the “Most modified” assumption, for a given
bug X we only consider a single source file as faulty from
all the files associated with bug X , We chose from these
source file the one in which the revision made to that source
file was the most extensive. The extensiveness of the re-
vision is measured by the number of lines added, updated,
and deleted to the source file in this revision. Below we
present experiments for both “All files” and “Most modi-
fied” assumptions. Śliwerski et al. [16] proposed a more
elaborate method to heuristically identify the source files
that are caused the bug, when analyzing a similar data set.

Training and Testing Set
The sources files and reported bugs from 5 releases, 8.0.0–
8.1.1, were used to train the model of our data-augmented
diagnoser, and the source files and reported bugs from re-
lease 8.1.2 were used to evaluate it.

4.2 Comparing Fault Prediction Accuracy
As a preliminary, we evaluated the quality of the fault pre-
diction models used by our data-augmented diagnoser on
our Eclipse CDT benchmark.

All files Precision Recall F-Measure AUC
Random Forest 0.56 0.09 0.16 0.84
J48 0.44 0.17 0.25 0.61
Naive Bayes 0.27 0.31 0.29 0.80

Most modified Precision Recall F-Measure AUC
Random Forest 0.44 0.04 0.08 0.76
J48 0.15 0.03 0.05 0.55
Naive Bayes 0.08 0.31 0.12 0.715

Table 1: Faulty prediction performance.

We used the Weka software package (www.cs.
waikato.ac.nz/ml/weka) to experiment with several
learning algorithms and compared the resulting fault predic-
tion models. Specifically, we evaluated the following learn-
ing algorithms: Random Forest, J48 (Weka’s implementa-
tion of a decision tree learning algorithm), and Naive Bayes.
Table 1 shows the precision, recall, F-measure, and AUC
of the fault prediction models generated by each of these
learning algorithms. These are standard metrics for evaluat-
ing classifiers. In brief, precision is the ratio of faulty files
among all files identified by the evaluated model as faulty.
Recall is the number of faulty files identified as such by the
evaluated model divided by the total number of faulty files.
F-measure is a known combination of precision and recall.
The AUC metric addresses the known tradeoff between re-
call and precision, where high recall often comes at the price
of low precision. This tradeoff can be controlled by setting
different sensitivity thresholds to the evaluated model. AUC

is the area under the curve plotting the accuracy as a func-
tion of the recall (every point is a different threshold value).

All metrics range between zero and one (where one is
optimal) and are standard metrics in machine learning and
information retrieval. The unfamiliar reader can find more
details in Machine Learning books, e.g. Mitchell’s classical
book [17].

The results for both “All files” and “Most modified” as-
sumptions show that the Random Forest classifier obtained
the overall best results. This corresponds to many recent
works. Thus, in the results reported henceforth, we only
used the model generated by the Random Forest classifier
in our data-augmented diagnoser. The precision and espe-
cially recall results are fairly low. This is understandable,
as most files are healthy, and thus the training set is very
imbalanced. This is a known inhibitor to performance of
standard learning algorithms. We have experimented with
several known methods to handle this imbalanced setting,
such as SMOTE and random under sampling, but these did
not produce substantially better results. However, as we
show below, even this imperfect prediction model is able
to improve the existing data-agnostic software diagnosis al-
gorithm. Note that we also experimented with other popular
learning algorithms such as Support Vector Machine (SVM)
and Artificial Neural Network (ANN), but their results were
worse than those shown in Table 1.

Next, we evaluate the performance of our data-augmented
diagnoser in two diagnostic tasks: finding diagnoses and
guiding test generation.

4.3 Diagnosis Task
First, we compared the data-agnostic diagnoser with the
proposed data-augmented diagnoser in the task of finding
accurate diagnoses. The input is a set of tests, with their
traces and outcomes and the output is a set of diagnoses,
each diagnosis having a score that estimates its correctness.
This score was computed by Barinel as desribed earlier in
the paper, where the data-agnostic diagnoser uses uniform
priors and the proposed data-augmented diagnoser uses the
predicted fault probabilities from the learned model.

Most modified All files
Diagnoser Precision Recall Precision Recall
Data-agnostic 0.72 0.27 0.55 0.26
Data-augmented 0.90 0.32 0.73 0.35
Syn. (0.6,0.01) 0.97 0.39 0.96 0.45
Syn. (0.6,0.1) 0.84 0.35 0.89 0.42
Syn. (0.6,0.2) 0.77 0.34 0.83 0.39
Syn. (0.6,0.3) 0.73 0.33 0.78 0.37
Syn. (0.6,0.4) 0.69 0.32 0.74 0.36

Table 2: Comparison of diagnosis accuracy.

To compare the set of diagnoses returned by the differ-
ent diagnosers, we computed the weighted average of their
precision and recall. This was computed as follows. First,
the precision and recall for every diagnoses was computed.
Then, we averaged these values, weighted by the score given
to the diagnoses by Barinel. This enables aggregating the
precision and recall of a set of diagnoses while incorporat-
ing which diagnoses are regarded as more likely according
to Barinel’s. For brevity, we will refer to this weighted av-
erage precision and weighted average recall as simply pre-
cision and recall.
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Table 2 shows the precision and recall results of the data-
agnostic diagnoser and our data-augmented diagnoser, for
both “Most modified” and “All files” assumptions. Each
result in the table is an average over the precision and re-
call obtained for 50 problem instances. A problem instance
consists of (1) a bug from one of the bugs reported for re-
lease 8.1.2. of Eclipse CDT, and (2) a set of 25 tests, chosen
randomly, while ensuring that at least one tests would pass
through the faulty files.

Both precision and recall of the data-augmented and data-
agnostic diagnosers support the main hypothesis of this
work: a data-augmented diagnoser can yield substantially
better diagnoses that a data-agnostic diagnoser. For exam-
ple, the precision of the data-augmented diagnoser under the
“Most modified” assumption is 0.9 while that of the data-
agnostic diagnoser is only 0.72. The superior performance
of the data-augmented diagnoser is shown for both “Most
modified” and “All files” assumptions. Another observation
that can be made from the results in Table 2 is that while the
precision of the data-augmented diagnoses is very high and
is substantially better than that of the data-agnostic diag-
noser, the improvement in recall is relatively more modest.
This can be explained by the precision and recall results of
the learned model, shown in Table 1 and discussed earlier.
There too, the recall results was far worse than the preci-
sion results (recall that we are using the model learned by
the Random Forest learning algorithm). It is possible that
learning a model with higher recall may result in higher re-
call for the resulting diagnoses. We explore the impact of
learning more accurate fault prediction model next.

Synthetic Priors
The data-augmented diagnoser is based on the priors gen-
erated by the learned fault prediction model. Building bet-
ter fault prediction models is an active field of study [13]
and thus future fault prediction models may be more accu-
rate than the ones used by our data-augmented diagnoser.
To evaluate the benefit of a more accurate fault prediction
model on our data-augmented diagnoser, we created a syn-
thetic fault prediction model, in which faulty source files
get Pf probability and healthy source files get Ph, where
Pf and Ph are parameters. Setting Ph = Pf would cause
the data-augmented diagnoser to behave in a uniform distri-
bution exactly like the data-agnostic diagnoser, setting the
same prior probability for all source files to be faulty. By
contrast, setting Ph = 0 and Pf = 1 represent an optimal
fault prediction model, that exactly predicts which files are
faulty and which are healthy.

The lines marked “Syn. (X,Y)” in Table 2 mark the
performance of the data-augmented diagnoser when using
this synthetic fault prediction model, where X = Pf and
Y = Ph. Note that we experimented with many values of
Pf and Ph, and presented above a representative subset of
these results.

As expected, setting lowering the value of Ph results in
more better diagnoses being found. Setting a very low Ph

value improves the precision significantly up to almost per-
fect precision (0.97 and 0.96 for the “Most modified” and
“All files”, respectively). The recall results, while also im-
proving as we lower Ph, do not reach a very high value. For
Ph = 0.01, the obtained recall is almost 0.39 and 0.45 for
the “Most modified” and “All files”, respectively.

A possible explanation for these low recall results lays in
the fact that all the evaluated diagnosers use the Barinel di-

agnosis algorithm with different fault priors. Barinel uses
these priors only to prioritize diagnoses, but Barinel consid-
ers as diagnoses hitting sets of faulty traces. Thus, if two
faulty components are used in the same trace, only one of
them will be detected even if both have very high likelihood
of being faulty according to the fault prediction model.

Considering More Tests
Next, we investigate the impact of adding more tests to the
accuracy of the returned diagnoses.

Figure 2 shows the precision and recall results (Figures 2
(a) and (b), respectively), as a function of the number of
observed tests. We compared the different diagnosers, given
25, 40, 70, 100, and 130 observed tests.

The results show two interesting trends in both precision
and recall. First, as expected, the data-agnostic diagnoser
performs worse than the data-augmented diagnoser, which
in terms performs worse than the diagnoser using a synthetic
fault prediction model, with Ph = 0.01. This supports our
main hypothesis — that data-augmented diagnosers can be
better than a data-agnostic diagnoser. Also, the better per-
formance of Syn. (0.6, 0.01) demonstrates that future re-
search on improving the fault prediction model will results
in a better diagnoser.

The second trend is that adding more tests reduces the
precision and recall of the returned diagnoses. This, at
first glance, seem counter-intuitive, as we would expect
more tests to allow finding more accurate diagnoses and
thus higher recall and precision. This non-intuitive results
can be explained by how tests were chosen. As explained
above, the observed tests were chosen randomly, only veri-
fying that at least one test passes through each faulty source
file. Adding randomly selected tests adds noise to the di-
agnoser. By contrast, intelligent methods to choose which
tests to add can improve the accuracy of the diagnoses [18].
This is explored in the next section. Another reason for the
degraded performance when adding more tests is that more
tests may pass through more fault source files, in addition
to those from the specific reported bug used to generate the
problem instance in the first place. Thus, adding more tests
increases the amount of faulty source files to detect.

4.4 Troubleshooting Task
Efficient diagnosers are key components of troubleshoot-
ing algorithms. Troubleshooting algorithms choose which
tests to perform to find the most accurate diagnosis. Za-
mir et al. [18] proposed several troubleshootings algorithms
specifically designed to work with Barinel for troubleshoot-
ing software bugs. In the below preliminary study, we eval-
uated the impact of our data-augmented diagnoser on the
overall performance of troubleshooting algorithms. Specif-
ically, we implemented the so-called highest probability
(HP) troubleshooting algorithm, in which tests are chosen
in the following manner. HP chooses a test that is expected
to pass through the source file having the highest probability
of being faulty, given the diagnoses probabilities.

We run the HP troubleshooting algorithm with each of
the diagnosers mentioned above (all rows in Table 2). We
compared the HP troubleshooting algorithm using different
diagnosers by counting the number of tests were required to
reach a diagnoses of score higher than 0.7.

Table 3 shows the average number of tests performed by
the HP troubleshooting algorithm until it halts (with a suit-
able diagnosis). The results show the same over-arching
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Figure 2: Diagnosis accuracy as a function of # tests given to the diagnoser.

Algorithm Most modified All files
Data-agnostic 20.24 18.06
Data-augmented 10.80 15.45
Syn. (0.6,0.01) 3.94 14.91
Syn. (0.6,0.1) 15.44 17.83
Syn. (0.6,0.2) 19.78 18.99
Syn. (0.6,0.3) 20.90 19.24
Syn. (0.6,0.4) 20.74 19.18

Table 3: Avg. additional tests for troubleshooting.

theme: the data-augmented diagnoser is much better than
the data-agnostic diagnoser for this troubleshooting task.
Also, using the synthetic fault prediction model can result
in even further improvement, thus suggesting future work
for improving the learned fault prediction model.

5 Conclusion, and Future Work
We presented a method for using information about the di-
agnosed system to improve Barinel, a scalable, effective,
software diagnosis algorithm [7]. In particular, we incor-
porated a software fault prediction model into Barinel. The
resulting data-augmented diagnoser is shown to outperform
Barinel without such a fault prediction model. This was
verified experimentally using a real source code system
(Eclipse CDT), real reported bugs and information from
the software’s source control repository. Results also sug-
gests that future work on improving the learned fault pre-
diction model will result in an improved diagnosis accuracy.
In addition, it is worthwhile to incorporate the proposed
data-augmented diagnosis methods with other proposed im-
provements of the based SFL-based software diagnosis, as
those proposed by Hofer et al. [19; 20].
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Abstract 

This paper deals with sensor and process fault de-
tection, isolation (FDI) and identification of an in-
tensified heat-exchanger/reactor. Extended high 
gain observers are adopted for identifying sensor 
faults and guaranteeing accurate dynamics since 
they can simultaneously estimate both states and 
uncertain parameters. Uncertain parameters in-
volve overall heat transfer coefficient in this paper. 
Meanwhile, in the proposed algorithm, an ex-
tended high gain observer is fed by only one meas-
urement. In this way, observers are allowed to act 
as soft sensors to yield healthy virtual measures for 
faulty physical sensors. Then, healthy measure-
ments, together with a bank of parameter interval 
filters are processed, aimed at isolating process 
faults and identifying faulty values. Effectiveness 
of the proposed approach is demonstrated on an in-
tensified heat-exchanger/ reactor developed by the 
Laboratoire de Génie Chimique, Toulouse, France. 

1 Introduction 

Nowadays, safety is a priority in the design and develop-
ment of chemical processes. Large research efforts contrib-
uted to the improvement of new safety tools and methodol-
ogy. Process intensification can be considered as an inher-
ently safer design such as intensified heat exchangers 
(HEX) reactors in [1], the prospects are a drastic reduction 
of unit size and solvent consumption while safety is in-
creased due to their remarkable heat transfer capabilities.  
However, risk assessment presented in [2] shows that po-
tential risk of thermal runaway exists in such intensified 
process. Further, several kinds of failures may compromise 
safety and productivity: actuator failures (e.g., pump fail-
ures, valves failures), process failures (e.g., abrupt varia-
tions of some process parameters) and sensor failures. 
Therefore, supervision like FDI is required prior to the im-
plementation of an intensified process. 
For complex systems (e.g. heat-exchanger/reactors), fault 
detection and isolation are more complicated for the reason 
that some sensors cannot be placed in a desirable place, and 
for some variables (concentrations), no sensor exists. In ad-
dition, complete state and parameters measurements (i.e. 
overall heat transfer coefficient) are usually not available. 

Supervision studies in chemical reactors have been reported 
in the literature concerning process monitoring, fouling de-
tection, fault detection and isolation. Existing approaches 
can be roughly divided into data based method as in [3], 
neural networks as in [4] and model based method as in 
[5,6,7,8,9]. Among the model based approach, observer 
based methods are said to be the most capable 
[10,11,12,13,14] if analytical models are available. 
Most of previous approaches focus on a particular class of 
failures. This paper deals with integrated fault diagnosis for 
both sensor and process failures. Using temperature meas-
urements, together with state observers, an integrated diag-
nosis scheme is proposed to detect, isolate and identify 
faults. As for sensor faults, a FDI framework is proposed 
based on the extended observer developed in [15]. Extended 
high gain observers are adopted in this paper due to its ca-
pability of simultaneous estimation of both states and pa-
rameters, resulting in more accurate system dynamics. The 
estimates information provided by the observers and the 
sensors measurements are processed so as to recognize the 
faulty physical sensors, thus achieving sensor FDI. Moreo-
ver, the extended high gain observers will work as soft sen-
sors to output healthy virtual measurements once there are 
sensor faults occurred. Then, the healthy measures are uti-
lized to feed a bank of parameter intervals filters developed 
in [11] to generate a bank of residuals. These residuals are 
processed for isolating and identifying process faults which 
involves jumps in overall heat transfer coefficient in this 
work. 
It should be pointed out that the contribution of this work 
does not lie with the soft sensor design or the parameter in-
terval filter design as either part has individually already 
been addressed in the existing literature. However, the au-
thors are not aware of any studies where both tasks are com-
bined for integrated FDI, besides, there is no report whereby 
parameter estimation capacity of the extended high gain ob-
server is used to adapt the coefficient, rather than parameter 
FDI, thus together with sensor FDI framework forms the 
contribution of this work. 

2 System modelling 

2.1 Process description  

The key feature of the studied intensified continuous heat-
exchanger/reactor is an integrated plate heat-exchanger 
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technology which allows for the thermal integration of sev-
eral functions in a single device. Indeed, by combining a re-
actor and a heat exchanger in only one unit, the heat gener-
ated (or absorbed) by the reaction is removed (or supplied) 
much more rapidly than in a classical batch reactor. As a 
consequence, heat exchanger/reactors may offer better 
safety (by a better thermal control of the reaction), better 
selectivity (by a more controlled operating temperature).  

2.2 Dynamic model 

Supervision like FDI study can be much more efficient if a 
dynamic model of the system under consideration is availa-
ble to evaluate the consequences of variables deviations and 
the efficiency of the proposed FDI scheme. 
Generally speaking, intensified continuous heat-exchanger/ 

reactor is treated as similar to a continuous reactor [16,17], 

then flow modelling is therefore based on the same hypoth-

esis as the one used for the modelling of real continuous re-

actors, represented by a series of N perfectly stirred tank re-

actors (cells). According to [18] , the number of cells N 

should be greater than the number of heat transfer units, and 

the heat transfer units is related with heat capacity flowrate.  

The modelling of a cell is based on the expression of bal-

ances (mass and energy) which describes the evolution of 

the characteristic values: temperature, mass, composition, 

pressure, etc. Given the specific geometry of the heat-ex-

changer/reactor, two main parts are distinguished. The first 

part is associated with the reaction and the second part en-

compasses heat transfer aspect. Without reaction, the basic 

mass balance expression for a cell is written as: 

{Rate of mass flow in – Rate of mass flow out = Rate of 

change of mass within system} 

The state and evolutions of the homogeneous medium cir-
culating inside cell 𝑘 are described by the following bal-
ance: 

2.2.1 Heat balance of the process fluid (J. s−1) 

ρp
kVp

kCpp

k dTp
k

dt
= hp

kAk(Tp
k − Tu

k) + ρp
kFp

kCpp

k(Tp
k−1 − Tp

k)  (1)  

where ρp
k  is density of the process fluid in cell k (in 

kg. m−3), Vp
k is volume of the process fluid in cell k (in m3), 

Cpp

kspecific heat of the process fluid in cell k (in 
J. kg−1. K−1) , hp

k    is the overall heat transfer coefficient (in 
J. m−2. K−1. s−1). 

2.2.2 Heat balance of the utility fluid (J. s−1) 

ρu
kVu

kCpu

k dTu
k

dt
= hu

kAk(Tu
k − Th

k) + ρu
kFu

kCpu

k(Tu
k−1 − Tu

k)      (2) 

whereρu
k is density of the utility fluid in cell k (in kg. m−3), 

Vu
k is volume of the utility fluid in cell k (in m3), Cpu

kspecific 

heat of the utility  fluid in cell k (in J. kg−1. K−1) , hu
k   is 

overall heat transfer coefficient (in J. m−2. K−1. s−1). 
The eq. (1) (2) represent the dynamic reactor comportment. 
The two equations represent the evolution of two states (Tp: 
reactor temperature and Tu: utility fluid temperature).The 
heat transfer coefficient (h) is considered as a variable 
which undergoes either an abrupt jumps (by an expected 
fault in the process) or a gradual variation (essentially due 
to degradation). The degradation can be attributed to foul-
ing. Fouling in intensified process is tiny due to the micro 

channel volume and cannot be a failure leads to fatal acci-
dent normally, but it may influence the dynamic of the pro-
cess and it is rather difficult to calculate the changes online. 
In this paper, we treat the parameter uncertainty as an un-
measured state, and employ an observer as soft sensor to 
estimate it, unlike other literature, the estimation here is not 
for fouling detection but for more accurate model dynamics, 
and to ensure the value of the variable is within acceptable 
parameter, (e.g., upper and lower bounds of the process var-
iable value). 
To rewrite the whole model in the form of state equations, 
due to the assumption that every element behaves like a per-
fectly stirred tank, we suppose that one cell can keep the 
main feature of the qualitative behavior of the reactor. For 
the sake of simplicity, only one cell has been considered. 
Let us delete the subscript k for a given cell. 

Define the state vector as x1
T = [x11, x12]T = [Tp, Tu]T, un-

measured state x2
T = [x21, x22]T = [hu, hp]T ,    

dhp

dt
=

dhu

dt
= ε(t) , ε(t) is an unknown but bounded function refers 

to variation of h, the control input u = Tui, the output vector 

of measurable variables yT = [y1, y2]T = [Tp, Tu]
T
, then 

the equation (1) and (2) can be rewritten in the following 

state-space form: 

                   {

ẋ1 = F1(x1)x2 + g1(x1, u)

ẋ2 = ε(t)                              
y = x1                                                  

    (3) 

 

  

Where, F1(x1) = (

A

ρpCpp
Vp

(Tp − Tu) 0

0
A

ρuCpu
Vu

(Tu − Tp)
),  

and g1(x) = (

(Tpi−Tp)Fp

Vp

(Tui−Tu)Fu

Vu

) , Tpi, Tui is the output of previ-

ous cell, for the first cell, it is the inlet temperature of pro-

cess fluid and utility fluid. 

In this case, the full state of the studied system is given as: 

 

                     {
ẋ = F(x1)x + G(x1, u) +  ε̅(t)
y = Cx                                          

       (4) 

 

Where x = [
x1

x2
] , F(x1) = (

0 F1(x1)
0 0

) , G(x1, u) =

(
g1(x, u)

0
) , C = (I 0), ε̅(t) = (

0
ε(t)

) 

3 Fault detection and diagnose scheme 

3.1 Observer design for sensor FDI 

The extended high gain observer proposed by [15] can be 
used like an adaptive observer for estimation both states and 
parameters simultaneously, in this paper, the latter capabil-
ity is utilized to estimate incipient degradation of overall 
heat transfer coefficient (due to fouling), thus guaranteeing 
a more accurate approximation of the temperature. It is quite 
useful in chemical processes since parameters are usually 
with uncertainties and unable to be measured. 
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Consider a nonlinear system as the form: 
 

{
ẋ = F(x1)x + G(x1, u)
y = Cx                             

      (5) 

where x = (x1, x2)T ∈ ℛ2n, x1 ∈ ℛn is the state, x2 ∈ ℛn 

is the unmeasured state, x2 = ϵ(t), u ∈ ℛm, y ∈ ℛp are in-

put and output, ϵ(t) is an unknown bounded function 

which may depend on u(t), y(t), noise, etc., and  
  

 F(x1) = (
0 F1(x1)
0 0

) , G(x1, u) = (
g1(x, u)

0
), C(I 0),   

 

 F1(x1) is a nonlinear vector function, g1(x, u) is a matrix 

function whose elements are nonlinear functions. 

Supposed that assumptions related boundedness of the 

states, signals, functions etc. in [15] are satisfied, the ex-

tended high gain observer for the system can be given by:   

     

{
ẋ̂ = F(x̂1)x + G(x̂1, u) − Λ−1(x̂1)Sθ

−1CT(ŷ − y)

ŷ = Cx̂                                                                            
      (6)   

   

Where:    Λ(𝑥̂1) = [
𝐼 0
0 𝐹1(𝑥̂1)

]                                      
 

𝑆𝜃  is the unique symmetric positive definite matrix satisfy-

ing the following algebraic Lyapunov equation: 
 

                 θSθ  + ATSθ  + Sθ A − CTC = 0              (7) 
 

Where A = [
0 I
0 0

] , θ > 0 is a parameter define by [15] 

and the solution of eq. (7) is: 
 

                      Sθ = [

1

θ
I −

1

θ2 I

−
1

θ2 I
2

θ3 I
]                          (8)                

 

Then, the gain of estimator can be given by: 
 

        H = Λ−1(x̂1)Sθ
−1CT =  Λ(x̂1) [

2θI
θ2F1

−1(x̂1)
]      (9) 

 

Notice that larger 𝜃 ensures small estimation error.  How-
ever, very large values of 𝜃 are to be avoided in practice due 
to noise sensitiveness. Thus, the choice of 𝜃 is a compro-
mise between fast convergence and sensitivity to noise. 

3.2 Sensor fault detection and isolation scheme 
 

The above observer could guarantee the heat-exchanger/re-
actor dynamics ideally. Then, a bank of the proposed ob-
servers, together with sensor measurements, are used to 
generate robust residuals for recognizing faulty sensor. 
Thus, we propose a FDI scheme to detect, meanwhile, iso-
late and recovery the sensor fault. 
 

3.2.1 Sensor faulty model 
 

A sensor fault can be modeled as an unknown additive term 
in the output equation. Supposed θsj is the actual measured 
output from jth sensor, if jth sensor is healthy, θsj=yj , while 
if jth sensor is faulty, θsj = yj

f = yj + fsj,   (𝑓𝑠𝑗  is the fault), 
for t ≥ tf and lim

t→∞
|yj − θsj| ≠ 0.That means yj

f is the actual 
output of the jth sensor when it is faulty, while yj is the ex-
pected output when it is healthy, that is: 
 

θsi = {
yi;                       jth sensor when it is faulty

yi
f = yi + fsi; jth sensor when it is faulty

  (10) 

 

With this formulation, the faulty model becomes: 
 

{
ẋ = F(x1)x + G(x1, u) + ε̅(t)

y = Cx + Fsfs                            
               (11) 

 

𝐹𝑠  is the fault distribution matrix and we consider that fault 
vector 𝑓𝑠 ∈ ℛ𝑝 (𝑓𝑠𝑗is the 𝑗𝑡ℎ element of the vector) is also a 
bounded signal. Notice that, a faulty sensor may lead to in-
correct estimation of parameter. That is why we emphasized 
healthy measurement for parameter fault isolation as men-
tioned above. 
 

3.2.2 Fault detection and isolation scheme 
 

The proposed sensor FDI framework is based on a bank of 

observers, the number of observers is equal to the number 

of sensors. Each observer use only one sensor output to es-

timate all the states and parameters. First, assumed the sen-

sor used by ith observer is healthy, let  yi denotes the ith 

system output used by the ith observer. Then we form the 

observer as: 
 

1 ≤ i ≤ p {
ẋ̂i = F(x̂1

i )x + G(x̂1
i , u) + Hi(yi − ŷi

i)

ŷi = Cx̂i                                                       
     (12) 

 

Define  ex
i = x̂i − x, ey

i = Cex
i , eyj

i = ŷj
i − yj, rj

i(t) = ‖ŷj
i −

yj‖,   μi = ‖rj
i(t)‖ ≔ sup‖rj

i(t)‖, for  t ≥ 0. 

Where i denotes the ith observer,  ŷi
i, ŷj

idenotes the ith, jth 

estimated system output generated by the ith observer, Hi is 

the gain of ith observer determined by the following equa-

tion :   

Hi = Λ−1(x̂1)Sθi

−1CT = Λ(x̂1) [
2θiI

θi
2F1

−1(x̂1)
] 

Then we get: 

Theorem 1: 

If the lth  sensor is faulty, then for system of form (4), the 

observer (12) has the following properties: 

For  i ≠ l , ŷi = y asymptotically 

For  i = l,  ŷi ≠ y 

Proof: If the lth  sensor is faulty, then: 

For  i ≠ l, means that  fsi = 0, yi = θsi , we have: 
 

lim
t→∞

ex
i = lim

t→∞
(x̂i − x) = 0  (13) 

 

Then the vector of the estimated output ŷi generated by ith 

observer guarantee ŷi = y after a finite time. 

For i = l, means that θsl = yl
f = yl + fsl, fsl ≠ 0 , the ob-

server is designed on the assumption that there is no fault 

occurs, because there is fault  fsl exit, so the estimation error 

  ex
l = 0 asymptotically cannot be satisfied, then : 

 

lim
t→∞

(x̂i − x) = lim
t→∞

(x̂l − x) ≠ 0        (14) 

we have: 

                  ėx
l = F(x̂1

i , u)  ex
l − HiG(x̂1

i , u, fsl)  ex
l          (15) 

 

Then the vector of the estimated output ŷi generated by the 

ith observer is different from y, that is ŷi ≠ y.⊡ 

As mentioned above, the observers are deigned under the 

assumption that no fault occurs, furthermore, each observer 

just subject to one sensor output. Residual ri
i is the differ-

ence between the ith output estimation ŷi
i determined by 

the ith observer and the ith system output yi, then Theorem 

2 formulates the fault detection and isolation scheme. 
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Theorem 2:  

If the lth  sensor is faulty, then: 

For  i ≠ l, we have: 

fsi = 0, yi = θsi   (16) 

thus ŷi
i converges to  yi asymptotically, we get:       

ri
i = ‖ŷi

i − yi‖ ≤ μi  (17) 

For i = l, we have: 

 fsl ≠ 0, θsl = yl
f = yl + fsl ≠ yl, then ŷl

l could not track yl 

correctly: 

rl
l = ‖ŷl

l − yl‖ ≥ μl      (18) 
 

Therefore, in practice, we can check all the residuals  ri
i, for 

1 ≤ i ≤ p, if  ri
i ≥ μi  denotes that ith sensor is faulty, then 

the sensor fault detection and isolation is achieved. 

The residuals are designed to be sensitive to a fault that 

comes from a specific sensor and as insensitive as possible 

to all the others sensor faults. This residual will permit us to 

treat not only with single faults but also with multiple and 

simultaneous faults. 

Let rsi denotes the fault signature of the ith sensor, define: 
 

    rsi(t) = {
1  if ri

i ≥ μi; ith sensor is faulty

0  if ri
i ≤ μi; ith sensor is health

    (19) 

 

3.2.3 Fault identification and handling mechanism 
 

1) Fault identification 
 

Supposed there are m healthy sensors and  p − m faulty 

ones, then to identify the faulty size of ith sensor, use m 

estimated output ŷi
m  generated by m observers which use 

healthy measures, 1 ≤ m ≤ p − 1, m ≠ i , define f̂si as the 

estimated faulty value of the ith sensor, then: 
 

f̂si =
1

m
∑ |ŷi

m − θsi|
m
i=1

∆
→ fsi  (20)  

2) Fault recovery 

As mentioned above, the extended high gain observer is 

also worked as a software sensor to provide an adequate 

estimation of the process output, thus replacing the meas-

urement given by faulty physical sensor. 

θsi is the actual measured output from ith sensor: 

θsi = {
yi

yi
f = yi + fsi

  (21) 

Let m observers use healthy measurements as the soft sen-

sor for ith sensor, define: 

y̅i =
1

m
∑ ŷi

m     (22)

m

i=1

 

If ith sensor is healthy, let the sensor actual output as θsi 

its output, while if it is faulty, let y̅i to replace  θsi , that is:  
 

yi = {
θsi , if ith sensor healthy

y̅i, if ith sensor faulty
   (23) 

3.3 process fault diagnose 

In order to achieve process FDD, healthy measurements are 

fed to a bank of parameter intervals filters developed in [11] 

to generate a bank of residuals. These residuals are pro-

cessed for identifying parameter changes, which involves 

variation of overall heat transfer coefficient in this paper. 

The main idea of the method is as follows. 

The practical domain of the value of each system parameter 

is divided into a certain number of intervals. After verifying 

all the intervals whether or not one of them contains the 

faulty parameter value of the system, the faulty parameter 

value is found, the fault is therefore isolated and estimated. 

The practical domain of each parameter is partitioned into a 

certain number of intervals. For example, parameter hp is 

partitioned into q intervals, their bounds are denoted 

by  hp
(0)

, hp
(1)

, … , hp
(i), … , hp

(q)
 . The bounds of ith interval are 

hp
(i−1)

and  hp
(i)

 , are also noted as hp
bi and hp

ai, and the nomi-

nal value for hp denotes by hp0 . 

To verify if an interval contains the faulty parameter value 

of the post-fault system, a parameter filter is built for this 

interval. A parameter filter consists of two isolation observ-

ers which correspond to two interval bounds, and each iso-

lation observer serves two neighboring intervals. An inter-

val which contains a parameter nominal value is unable to 

contain the faulty parameter value, so a parameter filter will 

not be built for it.  

Define Eq. (3) into a simple form as: 
 

 {
ẋ1 = F1(x1)x2 + g1(x1, u)
 y = x1                                    

=  {
ẋ1 = f(x1, hp, u)
y = x1                 

   (24) 

 

The parameter filter for ith interval of hp is given below. 

The isolation observers are: 
 

{

ẋ̂ai = f(x̂1, hp0
ai , u) + H(y − ŷai)

ẏ̂ai = cẋ̂ai                                        

εai = y − cẋ̂ai                                

       (25) 

 

            {

ẋ̂bi = f(x̂1,  hp0
bi , u) + H(y − ŷbi)

ẏ̂bi = cẋ̂bi                                         

εbi = y − hẋ̂bi                                 

(26) 

Where: 

hp0
ai (t) = {

 hp0,    t < tf

hp
(i)

, t ≥ tf

  , hp0
bi (t) = {

 hp0,    t < tf

hp
(i−1)

, t ≥ tf

   ,(27) 

 

The isolation index of this parameter filter is calculated by: 
 

            νi(t) = sgn(εai)sgn(εbi)             (28) 

As soon as  νi(t) = 1, the parameter filter sends the ’non-

containing’ signal to indicate that this interval does not con-

tain the faulty parameter value. And if the fault is in the ith 

interval. Let: 

ĥA =
1

2
(haiA + hbiA)       (29) 

 to represent the faulty value, fault isolation and identifica-

tion is then achieved. 

4 Numerical simulation  

A case study is developed to test the effectiveness of the 

proposed scheme. The real data is from a laboratory pilot of 

a continuous intensified heat-exchanger/reactor. The pilot is 

made of three process plates sandwiched between five util-

ity plates, shown in Fig.1. More Relative information could 

be found  in [2]. As previously said, the simulation model is 

considered just for one cell which may lead to moderate in-

accuracy of the dynamic behavior of the realistic reactor. 

However, this point may not affect the application and 

demonstration of the proposed FDD algorithm encouraging 

results are got.  
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Figure 1 (a) Reactive channel design; (b) utility channel de-

sign; (c) the heat exchanger/reactor after assembly. 

The constants and physical data used in the pilot are given 

in table1. 

Table 1.  Physical data used in the pilot 

Constant Value units 

hA 214.8 W. K−1 

A 4e−6 m3 

Vp 2.685e−5 m3 

Vu 1.141e−4 m3 

ρp, ρu 1000 kg. m−3 

cpp
, cpu

 4180 J. kg−1. k−1 

4.1 operation conditions  

The inlet fluid flow rate in utility fluid and process fluid are   

𝐹𝑢 = 4.17𝑒−6𝑚3, 𝐹𝑝 = 4.22𝑒−5𝑚3𝑠−1.The inlet tempera-

ture in utility fluid is time-varying between 15.6℃ and 

12.6℃, which is a classical disturbance in the studied sys-

tem, as shown in Fig.2. The inlet temperature in process 

fluid is 76℃. Initial condition for all observers and models 

are supposed to be T̂𝑝
0 = T̂𝑢

0 = 30℃, hA = 214.8 W. K−1 .   

                

                Fig.2 utility inlet temperature  𝑇𝑢𝑖 

4.2 High gain observer performance 

To prove the convergence of the observers and show their 

tracking capabilities, suppose the heat transfer coefficient 

subjects to a decreasing of ℎ = (1 − 0.01𝑡)ℎ and followes 

by a sudden jumps of 15 at 𝑡 = 100𝑠. These variations and 

observer estimation results are reported in Fig.3. 

 

 

 

Fig.3. simulation and estimation of heat transfer coefficient 

variation. 

Black curve simulates the actual changes of the parameter 

while the red one illustrates the estimation generated by the 

proposed observer, it can be seen from Fig. 3 that the esti-

mation value tracks behavior of the real value with a good 

accuracy, thus ensuring a good dynamics. 

4.3 Sensor FDI and recovery demonstration   

In order to show effectiveness of the proposed method on 
sensor FDI, multi faults and simultaneous faults in the tem-
perature sensors are considered in case 1 and case 2 respec-
tively. Besides, the pilot is suffered to parameter uncertain-
ties caused by heat transfer coefficient decreases with ℎ =
(1 − 0.01𝑡)ℎ. Two extended high gain observers are de-
signed to generate a set of residuals achieving fault detec-
tion and isolation in individual sensors. Observer 1 is fed by 
output of sensor 𝑇𝑝 to estimate the whole states and param-
eter while observer 2 uses output of sensor 𝑇𝑢.  Advantages 
of the proposed FDI methodology drop on that if one sensor 
is faulty, we can use the estimated value generated by the 
healthy one to replace the faulty physical value, thus provid-
ing a healthy virtual measure. 
Case 1:  abrupt faults occur at output of sensor 𝑇𝑝 at t=80s, 
100s, with an amplitude of 0.3℃, 0.5℃ respectively.the re-
sults are reported in Fig.5-8.   
 
 

 

 

 

 

Fig. 5 output temperature of both fluid in case 1 by observer 

1, red curve demonstrates the estimated value while black 

one is the measured value.  

It is obviously that since t=80s, 𝑇̂𝑢 (red curve) cannot track 

𝑇𝑢 (black curve) correctly, while it needs about 0.2s for 𝑇̂𝑝 

to track 𝑇𝑝 at t=80s and t=100s. It suggests that faults occur, 

then the following task is to identify size and location of 

faulty sensors. Fig.6 and Fig.7 achieves the goal. It takes 

0.1s and 0.3s for isolating the faults at 80s, 100s respec-

tively.  

             

             

                       Fig.6 isolation residual in case 1. 
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Fig.7b fault signature in case 1, obviously, faults only occur 

at output of sensor 𝑇𝑝. 

For fault recovery, we can employ observer 2 as soft sensor 

to generate a health value for faulty sensor 𝑇𝑝 . Observer 2 

uses only measured 𝑇𝑢 to estimate all states and parameters. 

Therefore, 𝑇̂𝑢, 𝑇̂𝑝 generated by observer 2 are only decided 

by 𝑇𝑢 . In case 1, faults occur only on sensor 𝑇𝑝, sensor 𝑇𝑢 is 

healthy, that is to say 𝑇̂𝑢, 𝑇̂𝑝 generated by observer 2 will be 

satisfied their expected values. As shown in Fig.8, we can 

see that since 𝑇𝑢 is healthy, estimated value 𝑇̂𝑢 tracks meas-

ured 𝑇𝑢 perfectly, while estimated value 𝑇̂𝑝 (red curve) does 

not track the faulty measured value 𝑇𝑝 (black curve), 𝑇̂𝑝 (red 

curve) illustrates the expected value for sensor 𝑇𝑝, we can 

use estimate 𝑇̂𝑝 (red curve) to replace measured faulty value 

 𝑇𝑝 ( black curve) for fault recovery. 

Fig.8 fault recovery in case 1, red curve demonstrates the 

estimated value while black one is the measured value.  

If there are faults occurred only on output of sensor 𝑇𝑢, the 

same results can be yield easily. For multi and simultaneous 

faults on both sensors, we can still isolate the faults cor-

rectly. Case 2 will verify this point.    

Case 2: simultaneous faults imposed to the outputs of sen-

sors  𝑇𝑝 as in case 1 and  𝑇𝑢 at t=80s with amplitude of 0.6℃. 

Results are reported in Fig.9-10. Residuals are beyond their 

threshold obviously at time 80s, 100s. 

It can be seen from Fig.9, Fig .10 that the proposed FDI 

scheme can isolate faults correctly, and it takes 0.25s, 0.4s 

for isolating the faults in sensor  𝑇𝑝 at 80s, 100s and 0.2s for 

isolating that in sensor 𝑇𝑢 at t=80s respectively. Compared 

with Case 1, more times is needed in this Case 2. 

 

 

Fig. 9 isolation residual in case 2 

 

 

                Fig 10. Fault signature in case 2 

4.4 Fast process fault isolation and identification 

Process fault is related to variation of overall heat transfer 

coefficient (h). The heat transfer coefficient is considered as 

variable which undergoes either an abrupt jumps (by an ex-

pected fault in the flow rate) or a gradual variation (essen-

tially due to fouling). For incipient variation, since fouling 

in intensified heat-exchanger/reactor is tiny and only influ-

ence dynamics, we have employed extended high observers 

to ensure the dynamic influenced by this slowly variation. 

Therefore, the abrupt changes in heat transfer coefficient ℎ 

can only be because of sudden changes in mass flow rate. It 

implies that the root cause of process fault is due to actuator 

fault in this system.  

Supposed an abrupt jumps in ℎ at t=40 from 214.8 to 167.   

 

       Fig.11 detection residual in process faulty case 

From Fig.11, at t=40s, unlike sensor fault cases, the residual 

leaves zero and never goes back, this indicates that process 

fault occurs. For fast fault isolation and identification, we 

use the methodology of parameter interval filters developed 

in [11]. In [2], heat transfer coefficient ℎ changes between 

130.96 and 214.8, then ℎ is divided into 4 intervals as shown 

in table 2 and simulation results are shown in Fig.12. It can 

be seen at t=40s, only index for interval 150-170 goes to 

zero rapidly, then there is a fault in this interval. The faulty 

value is estimated by  ℎ̂𝐴 =
1

2
(ℎ𝑎𝐴 + ℎ𝑏𝐴) =

1

2
(150 +

170) = 160. We can see it is closely to actual faulty value 

167, and if more intervals are divided, the estimated value 

may be closer to the actual faulty value. 
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               Table 2 parameter filter intervals 

Interval NO. 1 2 3 3 

ℎ𝑎𝐴 130 150 170 190 

ℎ𝑏𝐴 150 170 190 214 

 

Fig.12 “non_containing fault” index sent by parameter filter 

5 Conclusion 

An integrated approach for fault diagnose in intensified 

heat-exchange/reactor has been developed in this paper. The 

approach is capable of detecting, isolating and identifying 

failures due to both sensors and parameters. Robustness of 

the proposed FDI for sensors is ensured by adopting a soft 

sensor with respect to parameter uncertainties. Ideal isola-

tion speed for process fault is guaranteed due to adoption of 

parameter interval filter. It should be notice that the pro-

posed method is suitable for a large kind of nonlinear sys-

tems with dynamics models as the studied system.  Appli-

cation on the pilot heat-exchange/reactor confirms the ef-

fectiveness and robustness of the proposed approach. 
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Abstract
This paper focuses on robust fault detection for
Linear Parameter Varying (LPV) systems using a
set-membership approach. Since most of models
which represent real systems are subject to mod-
eling errors, standard fault detection (FD) LPV
methods should be extended to be robust against
model uncertainty. To solve this robust FD prob-
lem, a set-membership approach based on an in-
terval predictor is used considering a bounded de-
scription of the modeling uncertainty. Satisfac-
tory results of the proposed approach have been
obtained using several fault scenarios in the pitch
subsystem considered in the wind turbine bench-
mark introduced in IFAC SAFEPROCESS 2009.

1 Introduction
The fault diagnosis of industrial processes has become an
important topic because of its great influence on the opera-
tional control of processes. Reliable diagnosis and early de-
tection of incipient faults avoid harmful consequences. Typ-
ically, faults in sensors and actuators and the process itself
are considered. In the case of the wind turbine benchmark,
a set of pre-defined faults with different locations and types
are proposed in [1] where the dynamic change in the pitch
system is treated. The procedure of fault detection is based
either on the knowledge or on the model of the system [2].
Model-based fault detection is often necessary to obtain a
good performance in the diagnosis of faults. The methods
used in model-based diagnosis can be classified according
if they are using state observers, parity equations and pa-
rameter estimation [3]. For linear time invariant systems
(LTI), the FD task is largely solved by powerful tools. How-
ever, physical systems generally present nonlinear behav-
iors. Using LTI models in many real applications is not
sufficient for high performance design. In order to achieve
good performance while using linear like techniques, Lin-
ear Parameter Varying systems are recently received con-
siderable attention [4]. Recently, many model-based appli-
cations using such systems and the subspace identification
method were published [5]. In model-based FD, a residual
vector is used to describe the consistency check between
the predicted and the real behavior of the monitored sys-
tem. Ideally, the residuals should only be affected by the
faults. However, the presence of disturbances, noises and
modeling errors yields the residual to become non zero. To
take into account these errors, the fault detection algorithm

Figure 1: Fault diagnosis with set estimator schema

must be robust. When modeling uncertainty in a determin-
istic way, there are two robust estimation methods: the first
method is the bounded error estimation that assumes the pa-
rameters are considered time invariant and there is only an
additive error [6]. On the other hand, the second approach
is the interval predictor that takes into account the variation
of parameters and which considers additive and multiplica-
tive errors [7], [8]. Here, the interval predictor is combined
with existing nominal LPV identification presented by [9],
allowing to include robustness and minimizing false alarms
(see Fig. 1) [10]. Thus, this paper contributes with a new
set-membership estimator approach that combines the in-
terval predictor scheme with the LPV identification through
subspace methods in one step. To illustrate the methodology
proposed in this work, the pitch subsystem of wind turbine
system proposed as a benchmark in IFAC SAFEPROCESS
2009 will be used. First, this subsystem is modeled as an
LPV model using the hydraulic pressure as the scheduling
variable. On the hypothesis that damping ratio and natural
frequency have an affine variation with hydraulic pressure,
this affine LPV model is estimated by means of the subspace
LPV estimation algorithm. Second, the residue is synthe-
sized to take into account the robustness against the uncer-
tainties in the parameters. This work is organized as fol-
lows: In Section 2, the LPV subspace estimation method is
recalled. In Section 3, the interval predictor approach com-
bined with the LPV subspace method is proposed as tool
for robust fault detection. In Section 4, the modeling of the
pitch system as a LPV model is introduced. Section 5 deals
with simulation experiments that illustrate the implementa-
tion and performance of the proposed approach applied to
the robust fault detection of wind turbine pitch system. Fi-
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nally, Section 6 gives some concluding remarks.

2 LPV Subspace Identification method
In the literature, there are two methods for LPV identifica-
tion: First, the ones based on global LPV estimation. Sec-
ond, the ones based on the interpolation of local models
[11], However, those approaches could lead to unstable rep-
resentations of the LPV structure while the original system
is stable [12]. That is why in this paper, we propose to
use a subspace identification algorithm proposed (see [9]
and [13]) to identify LPV systems which does not require
interpolation or identification of local models and avoid in-
stability problems.

2.1 Problem formulation
In the model used in identification in [9], the system ma-
trices depend linearly on the time varying scheduling vector
as follows:

xk+1 =

m∑

i=1

µ
(i)
k (A(i)xk + B(i)uk + K(i)ek) (1)

yk = Cxk + Duk + ek (2)

with xk ∈ Rn, uk ∈ Rr, yk ∈ Rl are the state, input and
output vectors and ek denotes the zero mean white innova-
tion process and m is the number of local model or schedul-
ing parameters:

µk =
[
1, µ

(2)
k , ..., µm

k ]
T

Eqs.(1) and (2) can be written in the predictor form:

xk+1 =
m∑

i=1

µ
(i)
k (Ã(i)xk + B̃(i)uk + K(i)yk) (3)

with
Ã(i) = A(i) − K(i)C

B̃(i) = B(i) − K(i)D

2.2 Assumptions and notation
Defining zk =

[
uT

k , yT
k

]T and using a data window of
length p to define the following vector:

z̄p
k =




zk

zk+1

.

.

.
zk+p−1




and introducing the matrix obtained using the Kronecker
product ⊗:

Pp/k = µk+p−1 ⊗ .... ⊗ µk ⊗ Ir+l

we can define

Np
k =




pp/k . . . 0
. pp−1/k+1

. .

. .
0 p1/k+p−1




Now, by defining the matrices U , Y and Z :

U = [up+1 , ..., uN ] (4)

Y = [yp+1 , ..., yN ] (5)

Z = [Np
1 z̄p

1 , ..., Np
N−p+1z̄

p
N−p+1

]
(6)

the controllability matrix can be expressed as:

κp = [lp , ..., l1]

with
l1 =

[
B̄(1) , ..., B̄(m)

]

and
lj =

[
Ã(1)lj−1 , ..., Ã(m)lj−1

]

If the matrix
[
ZT , UT

]
has full row rank, the matrix

Cκp and D can be estimated by solving the following linear
regression problem [14]:

min
Cκp,D

∥Y − CκpZ − DU∥2
F (7)

where ∥∥F represents the Frobenius norm. This problem
can be solved by using traditional least square methods as
in the case of LTI identification for time varying systems.
Moreover, the observability matrix for the first model is cal-
culated as follows:

Γp =




C

CÃ(1)

.

.

.

C(Ã(1))
p−1




with

κ̄k
p = [φp−1,k+1

⌣

Bk, ..., φ1,k+p−1

⌣

Bk+p−2,
⌣

Bk+p−1]

and
⌣

Bk = [B̃, Kk]

Then, Eq.(3) can be transformed into:

xk+p = φp,kxk + κ̄k
p z̄p

k

xk+p = φp,kxk + κpNp
k z̄p

k

where
φp,k = ÃK+p−1...Ãk+1Ãk

If the system (3) is uniformly exponentially stable the ap-
proximation error can be made arbitrarily small then:

xk+p ≈ κpNp
k z̄p

k

To calculate the observability matrix Γp times the state X ,
we first calculate the matrix Γpκp:

Γpκp =




Clp Clp−1 . . Cl1
0 CA(1)lp−1 . . CÃ(1)l1
. .
. .

0 C(Ã(1))
p−1

l1




Then, using the following Singular Value Decomposition
(SVD):

Γ̂pκpZ = [ υ υσ⊥ ]

[ ∑
n 0

0
∑

][
V
V⊥

]
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the state is estimated by:
⌢

X =
∑

n

V

Finally, C and D matrix are estimated using output equa-
tion (2) and A and B are estimated using the state equation
(1). This algorithm can be summarized as follows [9]:

• Create the matrices U , Y and Z using (4),(5) and (6),
• Solve the linear problems given in (7) ,
• Construct Γp times the state X ,
• Estimate the state sequence,
• With the estimated state, use the linear relations to ob-

tain the system matrices.

In the case of a very small p, we have in general a biased
estimate. However, when the bias is too large, it will be a
problem. That is why a large p would be chosen. In the
case of a very large p, this method suffers from the curse
of dimensionality [13] and the number of rows of Z grows
exponentially with the size of the past window. In fact, the
number of rows is given by:

ρZ = (r + ℓ)
∑p

j=1
mj

To overcome this drawback, the kernel method will be
introduced in the next subsection [15].

2.3 Kernel method
The equation (7) has a unique solution if the matrix[

ZT UT
]

has full row rank and is given by:
[

Ĉκp D̂
]

= Y
[

ZT UT
]
(

[
Z
U

][
ZT UT

]
)−1

When this is not the case, that will occurs when p is large,
the solution is computed by using the SVD of the matrix:

[
Z
U

]
= [ υ υ⊥ ]

[ ∑
m 0

0 0

] [
V T

V T
⊥

]

Then, the solution of the minimum norm is given by:
[

Ĉκp D̂
]

= Y V
∑−1

m
υT

To avoid computations in a large dimensional space, the
minimum norm results in:

min
α

∥α∥2
F (8)

with
Y − α

[
ZT Z + UT U

]
= 0

where α are the Lagrange multipliers and
[
ZT Z + UT U

]
is referred as the kernel matrix.
The matrix Γ times the state X can be constructed as fol-
lows:

ΓκpZ =




α
p∑

j=1

(Z1,j)
T
Z1,j

α
p∑

j=2

(Z2,j)
T
Z1,j

.

.

.

α
p∑

j=p

(Zp,j)
T
Z1,j




(9)

with

(Zi,j)T Z1,j = (
p−j∏
v=0

µT
Ñ+v+j−i

µÑ+v+j−1)(z
T
Ñ+j−i

zÑ+j−1)

ZT Z =
p∑

j=1

(Z1,j)Z1,j

(10)
Finally, the estimate sequence is obtained by solving the
original SVD problem.

The kernel method can be summarized as follows [9]:
• Create the matrices UT U using (4) and ZT Z and

(Zi,j)T (Zi,j) using (10),
• Solve the linear problem given in (8),
• Construct Γ times the state X using (9)and (10),
• Estimate the state sequence,
• With the estimated state, use the linear relation to ob-

tain the system matrices.

3 Interval predictor approach
To add robustness to the LPV subspace identification ap-
proach presented in the previous section, it will be combined
with the interval predictor approach [16]. The interval pre-
dictor approach is an extension of classical system identifi-
cation methods in order to provide the nominal model plus
the uncertainty bounds for parameters guaranteeing that all
collected data from the system in non-faulty scenarios will
be included in the model prediction interval. This approach
considers separately the additive and multiplicative uncer-
tainties. Additive uncertainty is taken into account in the
additive error term e(k) and modeling uncertainty is con-
sidered to be located in the parameters that are represented
by a nominal value plus some uncertainty set around. In the
literature, there are many approximation of the set uncertain
parameter Θ. In our case, this set is described by a zonotope
[10] :

Θ = θ0 ⊕ HBn = {θ0 + Hz : z ∈ Bn} (11)

where: θ0 is the nominal model (here obtained with the
identification approach, H is matrix uncertainty shape, Bn

is a unitary box composed of n unitary (B = [−1, 1]) inter-
val vectors and ⊕ denotes the Minkowski sum. A particu-
lar case of the parameter set is used that corresponds to the
case where the parameter set Θ is bounded by an interval
box [17]:

Θ = [θ1, θ1] × ...[θi, θi] × ...[θnθ
, θnθ

] (12)

where θi = θ0
i − λi and θi = θ0

i + λi with λi ≥ 0 and
i = 1, ..., nθ. In particular, the interval box can be viewed as
a zonotope with center θ0 and H equal to an nθ×nθ diagonal
matrix:

θ0 = (
θ1 + θ1

2
,
θ2 + θ2

2
, ...,

θn + θn

2
) (13)

H = diag(λ1, λ2, ..., λn) (14)

For every output, a model can be extracted in the following
regressor form:

y(k) = φ(k)θ(k) + e(k) (15)

where
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• φ(k) is the regressor vector of dimension 1× nθ which
can contain any function of inputs u(k) and outputs
y(k).

• θ(k) ∈ Θ is the parameter vector of dimension nθ×1.

• Θ is the set that bounds parameter values.

• e(k) is the additive error bounded by a constant where
|e(k)| ≤ σ.

In the interval predictor approach, the set of uncertain pa-
rameters Θ should be obtained such that all measured data
in fault-free scenario will be covered by the interval pre-
dicted output.

y(k) ∈ [ŷ(k) − σ, ŷ(k) + σ] (16)

where

ŷ(k) = ŷ0(k) − ∥φ(k)H∥1 (17)

ŷ(k) = ŷ0(k) + ∥φ(k)H∥1 (18)

and ŷ0(k) is the model output prediction with nominal pa-
rameters with θ0 =[θ1, θ2, ..., θnθ

]T obtained using the LPV
identification algorithm:

ŷ0(k) = φ(k)θ0(k) (19)

Then, fault detection will be based on checking if (16)
is satisfied. In case that, it is not satisfied a fault can be
indicated. Otherwise, nothing can be said.

4 Case study: wind turbine benchmark
system

In this work, a specific variable speed turbine is considered.
It is a three blade horizontal axis turbine with a full con-
verter. The energy conversion from wind energy to mechan-
ical energy can be controlled by changing the aerodynamics
of the turbine by pitching the blades or by controlling the
rotational speed of the turbine relative to the wind speed.
The mechanical energy is converted to electrical energy by
a generator fully coupled to a converter. Between the ro-
tor and the generator, a drive train is used to increase the
rotational speed from the rotor to the generator [18]. This
model can be decomposed into submodels: Aerodynamic,
Pitch, Drive train and Generator [19] [20]. In this paper,
we focus on faults in the pitch subsystem as explained in the
following subsection.

4.1 Pitch system model
In the wind turbine benchmark model, the hydraulic pitch
is a piston servo mechanism which can be modeled by a
second order transfer function [21] [1]:

β(s)

βr(s)
=

ω2
n

s2 + 2ζωns + ω2
n

(20)

Notice that βr refers to reference values of pitch angles.
The pitch model can be written in the following state space:

{
ẋ1 = x2

ẋ2 = −2ξwnx2 − wn
2x1 + wn

2u
(21)

with
x1 = β, x2 = β̇, u = βr

which can be discretised using an Euler approximation.
Then, the following system is obtained:

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(22)

with

A =

[
1 Te

−Tew
2
n −2Teξwn + 1

]

B =

[
0

Tew
2
n

]

C = [ 1 0 ]

4.2 LPV Pitch system model
The pitch parameters wn and ξ are variable with hydraulic
pressure P [1] [22]. Then, the pitch model can be written
as the following LPV model according to [23] using P as
the scheduling variable ϑ :

{
x(k + 1) = A(ϑ)x(k) + B(ϑ)u(k)

y(k) = Cx(k)
(23)

with

A(ϑ) =

[
1 Te

−Tew
2
n(P ) −2Teξ(P )wn(P ) + 1

]

B =

[
0

Tew
2
n(P )

]

y(k) = x1(k) = β(k)

4.3 Regressor form pitch system model
The pitch model can be transformed to the following regres-
sion form [24]:

y(k) = φ(k)θ(k) (24)

where, φ(k) is the regressor vector which can contain any
function of inputs u(k) and outputs y(k). θ(k) ∈ Θ is the
parameter vector. Θ is the set that bounds parameter values.

In particular
φ(k) = [ y(k − 2) y(k − 1) u(k − 2)]

θ = [ θ1 θ2 θ3]
T

θ1 = (−T 2
e w2

n + (2wnξTe − 1))

θ2 = −2wnξTe + 2

θ3 = T 2
e w2

n

5 Results
The pitch systems, which in this case are hydraulic, could
be affected by faults in any of the three blades. The con-
sidered faults in the hydraulic system can result in changed
dynamics due to a drop in the main line pressure. This dy-
namic change induces a change in the system parameters:
the damping ratio between 0.6 rad/s and 0.9 rad/s and the
frequency between 3.42 rad/s and 11.11 rad/s according
to [23]. In this work, a fault detection subspace estimator
is designed to determine the presence of a fault. To distin-
guish between fault and modeling errors, an interval predic-
tor approach is applied and a residual generation is used for
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Figure 2: Upper (red line) and lower (blue line) bounds

deciding if there is a fault. To illustrate the performance of
this robust fault detection approach:: ξ ∈[ 0.6 0.63 ] and
wn ∈[ 10.34 11.11 ] are considered. Then, a parameter
set Θ is bounded by an interval box:

Θ = [θ1, θ1] × [θ2, θ2] × [θ3, θ3] (25)

and for i = 1, · · · , 3

λi = (
θi − θi

2
) (26)

θ0
i = (

θi + θi

2
) (27)

using equations (17) and (18), the output bounds are calcu-
lated to be used in fault detection test which are given in
Fig. 2.ŷ0(k) is obtained by the use of the identification ap-
proach described in Section 2. To validate this algorithm
two cases are used:
- Case 1: In this case, the pressure varies after time 10000s
while parameters vary in the interval of parametric uncer-
tainties, that is, damping ratio varies between 0.6 rad/s
and 0.63 rad/s and the frequency between 10.34 rad/s
and 11.11 rad/s. These parameters are presented respec-
tively in Figures. 3 and 4. The pitch angle in this case is
given in Fig. 5 altogether with the prediction intervals.
For fault detection, the residual signal, based on the com-
parison between the measured pitch angle and the estimated
one at each sampling instance, is calculated and it is shown
in Fig. 6. For fault decision, a fault indicator signal is used
and the decision is taken in function of this indicator. If
the actual angle is not within the predicted interval given in
Eq.(16), the fault indicator is equal to 1 and the system is
faulty. Otherwise, it is equal to 0 and the system is fault-
free. The fault indicator signal given in Fig. 7 shows that
there is no fault despite the pressure variation. The parame-
ters variation is considered as a modeling error.
- Case 2: In this case, the pressure P varies between time
t = 10000s and t = 17000s outside its nominal value. In
this time interval, the damping ratio varies between 0.63
rad/s and 0.72 rad/s and the frequency varies between
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Figure 3: Damping ratio in non-faulty case
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Figure 4: Frequency in non-faulty case
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Figure 5: Pitch angle in non-faulty case
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Figure 6: Residual in non-faulty case
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Figure 7: Fault indicator in non-faulty case
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Figure 8: Damping ratio in faulty case
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Figure 9: Frequency in faulty case

8.03 rad/s and 10.34 rad/s. On the other hand, the damp-
ing ratio varies between 0.6 rad/s and 0.63 rad/s and the
natural frequency varies between 10.34 rad/s and 11.11
rad/s outside as shown in Figures 8 and 9. In this case,
the pitch angle is given in Fig. 10, while the residual and
fault indicator signals are presented in Fig. 11 and Fig. 12,
respectively.

Fig. 12 shows that the fault indicator signal changes its
signature between time 10000s and 17000s which induce
that the parameters vary larger than the modeling range due
to actuator fault in wind turbine benchmark system between
instants t = 10000s and 17000s.

6 Conclusions
The proposed approach is based on an LPV estimation ap-
proach to generate a residual as the difference between the
real and the nominal behavior of the monitored system.
When a fault occurs, this residual goes out of the inter-
val which represents the uncertainty bounds in non faulty
case. These bounds are generated by means of an inter-
val predictor approach that adds robustness to this fault de-
tection method, by means of propagating the parameter un-
certainty to the residual or predicted output. The proposed

Proceedings of the 26th International Workshop on Principles of Diagnosis

266



1.6608 1.6608 1.6608 1.6608 1.6608 1.6608 1.6608

x 10
4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Time(s)

pi
tc

h 
an

gl
e 

in
 fa

ul
ty

 c
as

e

 

 
Mesaured
Max 
Min 

Figure 10: Pitch angle in faulty case
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Figure 11: Residual signal
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Figure 12: Fault indicator

approach is illustrated by implementing a robust fault de-
tection scheme for a pitch subsystem of the wind turbine
benchmark. Simulations show satisfactory fault detection
performance despite model uncertainties.
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Abstract
Machine learning such as data based classification
is a diagnosis solution useful to monitor complex
systems when designing a model is a long and ex-
pensive process. When used for process monitor-
ing the processed data are available thanks to sen-
sors. But in many situations it is hard to get an ex-
act measure from these sensors. Indeed measure
is done with a lot of noise that can be caused by
the environment, a bad use of the sensor or even
the conversion from analogic to numerical mea-
sure. In this paper we propose a framework based
on a fuzzy logic classifier to model the uncertainty
on the data by the use of crisp (non fuzzy) or fuzzy
intervals. Our objective is to increase the num-
ber of good classification results in the presence
of noisy data. The classifier is named LAMDA
(Learning Algorithm for Multivariate Data Anal-
ysis) and can perform machine learning and clus-
tering on different kind of data like numerical val-
ues, symbols or interval values.

1 Introduction
Data classification is the process of dividing pattern space
using hard, fuzzy or probabilistic partitions into a number
of regions [1]. Classification algorithms are more and more
used nowadays in a world where it is not always simple to
get a model of complex process. On the opposite it is easier
to get data on systems by monitoring and store it. Differ-
ent types of classifiers can be used depending on the sit-
uation. The principal ones described in the literature are
artificial neural networks, k-nearest neighbors, support vec-
tor machine, decision trees, fuzzy classifiers and statistical
methods.

Most of the time, data are issued from sensor measure-
ments and are corrupted by noise. This noise can have dif-
ferent origins, for example environment disturbances, bad
use of the sensor, hysteresis effect or numerical conversion
and representation of the data. Many domains of applica-
tion have to deal with noise problems like medical diagno-
sis [2], biologic identifications [3] or image recognition [4].
Uncertainty can be understood in two ways: the first is the
uncertainty directly present in the data like noise and the
second can be assimilated as the reliability of a feature in-
side a class. In this paper we consider only the first case. To
avoid noise problems in classification some solutions have
been provided previously, for example the transformation of

data [5] [6] [7], the use of fuzzy logic type-1 or type-2 [3]
or statistical models.

Fuzzy logic is a multi-valued logic framework intro-
duced by Zadeh [8] that is known to be more efficient for
representating uncertainty and impreciseness than binary
logic. In previous work, a fuzzy classifier named Learning
Algorithm for Multivariate Data Analysis (LAMDA)
has been proposed by Aguilar [9]. This classifier can
originally process simultaneously two different types
of data: quantitative data and qualitative data. A real
number contains an infinite amount of precision whereas
human knowledge is finite and discrete, thus LAMDA is
interesting because there is no solution proposed in the
literature to process in a uniform way heterogeneous data
and to handle in a same problem quantitative data and
qualitative data is often a complex subject. A new type
of data, the interval, has been introduced by Hedjazi [10]
to model uncertainties by means of crisp intervals. In this
paper we propose an extention to fuzzy intervals in order to
improve its application to process noisy data measurements
but with the capacity to handle others features types like
“clean” data or qualitative features. Moreover the algorithm
should stay low cost in term of memory and computation
time to enable the method to be embedded on small systems.

In the first part of the paper the LAMDA algorithm is
shortly presented then in a second time a method to use the
algorithm to classify noisy data is introduced. This method
is in two parts: the first presents a general solution to model
uncertainty on data with crisp intervals based on confidence
intervals and the second shows an improvement to model
Gaussian noise with fuzzy intervals. In both cases examples
of application are introduced to show the improvement of
the method compared to the use of the data without trans-
formation.

2 LAMDA algorithm (Learning Algorithm
for Multivariate Data Analysis)

This section presents the principle of the LAMDA algo-
rithm.

2.1 General principle
LAMDA is a classification algorithm based on fuzzy logic
created on an original idea of Aguilar [9] and can achieve
machine learning and clustering on large data sets.

The algorithm takes as input a sample x made up of N
features. The first step is to compute for each feature of x, an
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Figure 1: Summarized scheme of the LAMDA algorithm

adequacy degree to each class Cj , j = 1..J where J is the
total number of class. This is obtained by the use of a fuzzy
adequacy function. So J vectors of N adequacy degrees
are computed, these vectors are called Marginal Adequacy
Degree vectors (MAD). At this point, all the features are in
a common space. Then the second step is to take all the
MADs and aggregate them into one global adequacy degree
(GAD) by means of a fuzzy aggregation function. Thus the
J MAD vectors (composed of N MADs) become J scalar
GADs, the higher the GAD, the better the adequacy to the
class. The simplest way to assign the sample x to a class is
to keep as result the class with the biggest GAD.

All the process is summarized in Fig. 1.

2.2 Fuzzy membership computation
During the learning step, the algorithm creates prototype
data for each class and for each feature. These data are
called classe descriptors or prototypes; they can be for ex-
ample means or variances. We define as Cj,n the class pro-
totype of the n-th feature for the class j.

As previously mentioned the first step of the algorithm
is a comparison between the sample vector x and all the
Cj,n. This operation is performed with membership func-
tions and gives as result a membership adequacy degree.
Thus MADj,n is the MAD for the j-th class and the n-
th feature. As the framework is based on fuzzy logic, all
memberships are numbers in the [0,1] interval. The general
membership function is:

MADj,n = f(Cj,n, xn) (1)
The class prototype Cj,n depends on two things: the type

of data and the function used. Some functions may require
only one data into Cj,n whereas others need a list of param-
eters.

In the following section, some examples of membership
functions are presented.
• Quantitative data:

Many functions are available for this kind of data. For
example the Gaussian:

f(xn) = e
−

(xn − ρj,n)2

2σ2
j,n (2)

or the binomial function:

f(xn) = ρxn
j,n.(1− ρj,n)1−xn (3)

Where xn is the n-th feature of the sample x, ρj,n is
the mean of the n-th feature for the class j and σj,n is
the standard deviation of the n-th feature for the class j.

• Qualitative data:

Qualitative can take values in a set of modalities. The
membership function of qualitative data returns the fre-
quency of modality taken by the feature into the class
during the learning phase. We introduce a qualitative
variable with K modality {Q1, ..., QK} and the fre-
quency Φk

j of the modality Qk for the class j. The
membership is described by:

f(xn) = (Φ1
j,n)q1 ∗ ... ∗ (ΦK

j,n)qK (4)

with
{
qk = 0 if xn 6= Qk

qk = 1 if xn = Qk

• Intervals:

The membership function for interval data is a function
which tests the similarity between two fuzzy intervals.
In this case similarity is defined by two components:
the distance between the intervals and the surface that
these intervals have in common. Indeed the class pro-
totype for crisp interval data is a mean interval. The
similarity function is:

S(A,B) =
1

2
(

∫
V
µA∩B(ξ)dξ∫

V
µA∪B(ξ)dξ

+ 1− ∂[A,B]

$[V ]
) (5)

where µX(x) is the value of x in the fuzzy set X ,
∂[A,B] is the distance between intervals A = [a−, a+]
and B = [b−, b+]and $[X] is the size of a fuzzy set
into a V universe. This is described by:

$[X] =

∫

V

µX(ξ)dξ (6)

In the case of crisp intervals and in a universe between
0 and 1:

S(A,B) =
1

2
(
$[A ∩B]

$[A ∪B]
+ 1− ∂[A,B]) (7)

where $[X] in this case can be replaced by the length
of the interval:

$[X] = upperbound(X)-lowerbound(X) (8)

and distance ∂[A,B] is defined as:
∂[A,B] = max[0,max(a−, b−)−min(a+, b+)] (9)

In the case where an interval feature is used the pro-
totype for a class j is given by [ρn−j , ρn+j ] where ρn−j ,
respectively ρn+j represents the mean value of lower
bounds (respectively upper bounds) of all the elements
belonging to class j for this feature.
Once the MAD are computed whatever the feature
type, it is possible to perform any type of processing
as described on Fig. 2
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Figure 2: Projection principle for heterogeneous feature
types

2.3 Marginal adequacy degree merging
Once all the features are grouped into the membership space
the next step of the algorithm is to transform the MAD vec-
tors into a set of single value which depicts the global mem-
bership of the sample to a class. These values were intro-
duced in section 2.1 and are called GAD. To perform this
transformation a fuzzy aggregation function Ψ is used.

The aggregation function is the following:

Ψ(MAD) = α.γ(MAD) + (1− α).β(MAD) (10)

where γ is a fuzzy T-norm and β is a fuzzy T-conorm.
α parameter is called exigency indicator. It enables to give
more or less significance to the union operation and the in-
tersection operation. Two fuzzy T-norm and T-conorm are
currently implemented in the algorithm, the min-max and
the probabilistic. For example if min-max is used, (10) be-
comes:

Ψ(MAD) = α.min(MAD)+(1−α).max(MAD) (11)

When all GAD are computed they give the membership
of the data x to each class. The final result depends on the
application but the simplest way to give a result is to class
the sample in the class which has the highest GAD. A limit
membership can also be fixed: if no GAD is higher than the
limit, the sample is defined as unclassifiable.

3 Uncertainty modeled with crisp intervals
3.1 Method presentation
Every data measurement is performed with noise. In some
cases noise has enough bad effect to increase the error of
classification. Thus the point is to model the imprecision of
the data to decrease the number of bad classifications.

A technique used in several fields of application is the
use of intervals to symbolize data uncertainty [11] [12]. So
we are suggesting a framework where numerical data are
transformed into intervals to model imprecision.

In a situation where the probability law followed by the
noise on a variable is unknown, it may be possible to ob-
tain a confidence interval. It is an interval in which the
real value of the measure is present with a certain amount

of confidence (for example a confidence interval of 95% is
an interval in which the exact value of the measure can be
found with a probability of 95%). Introducing x̂ the mea-
sured value and l the length of a centered on zero confi-
dence interval based on the measurement error, the interval
used by the algorithm is calculated: X = [x̂− l

2 ; x̂+ l
2 ].

The main aim of the transformation is to improve the clas-
sification on the transition zones where data is really sensi-
tive to noise and a small change can modify the output of the
classifier. The use of intervals to model uncertainty is effec-
tive only if the “clean” data is relevant for the classification
problem. If it is not the case a better solution is to remove
the irrelevant feature. It will in most cases provide better
output results. This expresses the fact that if the “clean”
data is difficult to classify it is not improved by using confi-
dence intervals.

3.2 Experiments
A set of data has been created for an application test which
can be interpreted as sensors time evolution of a continuous
process. This set of data is composed by three quantitative
(numerical) features of 101 samples that are shown on the
Fig. 3. Three classes are specified and used as targets for
the classifier. These classes are chosen arbitrarily to repre-
sent different behaviors of a system that could be healthy
or failure modes. Nevertheless the classes are built to make
all the data relevant for the system monitoring which means
the three features do not have a global negative impact on
the classification results.

The three features x, y and z are defined by the following
time functions:

• x = e
−t
2

• y = 1
2 · e

t
4 − 1

• z = tanh(t− 5)

Figure 3: Data used to test the intervals method

This example is used to measure the improvement in the
classification results in the case of all data are noisy. Artifi-
cial noise is added by the following: x is the ideal variable
without noise and x̂ the noisy variable, x̂ = x + Y with
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Figure 4: An example of data corrupted with a noise in the
interval [-0.5 ; 0.5]

Y a random variable following a uniform distribution on an
interval I .

The experiment has been performed with these condi-
tions: α parameter of (10) is set at 0.8 with the [min,max]
functions to compute the fuzzy aggregation and the mem-
bership function used for quantitative data is the bino-
mial.[min, max] aggregation is chosen because experiments
on the algorithm showed that this kind of aggregation pro-
vides better results on noisy data that the probabilistic one.
A first classification without any noise gives a result of 91%
of good classification. Then the experiment is repeated a
great many times to avoid statistical mistakes. In this case,
the experiment has been run fifty thousand times, x̂ is re-
computed at each new run. Results are given on table 1.

Interval for ran-
dom data

[-0.3 ; 0.3] [-0.5 ; 0.5] [-2 ; 2]

Mean success
percentage
with binomial
function

89.9% 84.7% 79.6%

Mean success
percentage with
interval function

91.9% 89.8% 70.3%

Table 1: Table of results for the crisp intervals method

As it can be seen, this method provides an improvement
on the results in the two first cases where noise deteriorates
the classification with the quantitative method but when the
data is still globally consistent. In these cases, the intervals
method gives better results than binomial method 82% of
the time. But when noise amplitude is much higher than the
data like in the [−2; +2] error interval, the interval method
does worse in general than the binomial function.

Figure 5: Example of approximation of a Gaussian fuzzy
interval by a triangular fuzzy interval

4 Modeling Gaussian noise with fuzzy
intervals

4.1 Fuzzy interval method presentation
Most of the time, noise on physical measure follows a Gaus-
sian distribution centered on the real value. Thus it is inter-
esting to model this specific kind of uncertainty. Neverthe-
less, it is difficult to handle fuzzy intervals with an exact
Gaussian shape. That is why we suggest approximating the
Gaussian with a triangular fuzzy interval. This interval is
described with a lower boundary x− and an upper boundary
x+: X = [x−;x+] which leads to a similar description as
crisp intervals. So:
µX(x−) = 0 and µX(x+) = 0 and µX(x++x−

2 ) = 1

with µX(x) the fuzzy value of x into the fuzzy set X . As
a Gaussian of ρ mean is centered on the true measure value
the maximum fuzzy value of the triangle x++x−

2 is equal to
ρ. To compute x− and x+ we propose to use the full width
at half maximum (FWHM) that can be calculated this way:

FWHM = 2
√

2ln(2) · σ (12)
with σ that is the standard deviation of the measure.

Thus for a Gaussian function that has a mean value ρ and a
standard deviation σ the approximated interval X is defined
by X = [ρ− 2

√
2ln(2) ·σ; ρ+ 2

√
2ln(2) ·σ]. An example

of this approximation is given on Fig. 5.

Until now all the implementations of the LAMDA algo-
rithm were using only crisp intervals despite the fact that
the general method was introduced. The class prototype is
now a triangle interval computed with the means of upper
and lower boundaries of the data used to train the algorithm.
Thus the membership function is still a similarity measure
between two fuzzy intervals like in (5) but it is necessary to
redefine the distance function between the intervals. A solu-
tion has been proposed to measure a distance with the center
of gravity of triangular fuzzy intervals [13]. In the present
situation:

∂[A,B] = |a+ + a−
2

− b+ + b−
2

| (13)
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with A = [a−; a+] and B = [b−; b+], A and B being
triangular fuzzy intervals like described in this section.

The intersectionA∩B needed in (5) is calculated with an
analytical solution based on geometry and trigonometry. It
avoids numerical integration that could be less precise and
longer to compute.

4.2 Experiments
As we did previously with the crisp method, a test is per-
formed with a Gaussian noise on the same data set (Fig. 3).
The test is done in the same conditions as in the previous
section. The difference is on the construction of the noisy
data x̂ = x+ Y . Y is now a random variable that follows a
normal distribution of standard deviation σ and centered on
0. Results of the simulation are given on the table 2.

σ 0.2 0.5 0.7 1
Mean success
percentage
with binomial
function

83.2% 79.8% 79.8% 79.6%

Mean success
percentage with
crisp interval
function

86.8% 82.5% 77.2% 71.3%

Mean success
percentage with
fuzzy interval
function

93.1% 84.5% 79.3% 74.8%

Table 2: Table of results for the fuzzy intervals method

Similarly to the previous test, the interval method in-
creases the rate of good classifications until the standard de-
viation σ becomes too high and the binomial function pro-
vides better results. This point is reached here for σ = 0.7
which corresponds to a signal to noise ratio (SNR) of 6 dB
for the signal with the smallest amplitude. Also it is im-
portant to notify that in all cases the fuzzy interval provides
better results than the crisp interval method.

4.3 Experiments on iris dataset
As a second example we use the classical iris dataset[14].
This dataset contains four features: sepal length in cm,
sepal width in cm, petals length in cm and petal width
in cm. All these features are measured for three types of
flower: iris Setosa, iris Versicolour and iris Virginica which
constitute three classes. It is easy to classify without any
error the iris dataset by using only the petals information
that are in general most relevant that the sepals ones. Thus
only the sepal sizes are kept in this test to simulate the
noise. The figure 6 shows the repartition of the data in the
2D space of the sepal features.

We assume that the data follow a normal distribution
centered on a mean µj,n and with a standard-deviation σj,n.
This hypothesis can be verified by using a statistical test.
The Kolmogorov-Smirnov test has been used for each class
with a 5% significance level, it shows that the hypothesis is
true for the iris Setosa and the iris Versicolour but not for
the iris Virginica. Nevertheless all the data are processed as
if they follow a normal distribution.

Figure 6: Representation of iris data by class

The classifications are performed using the cross-
validation method. The percentages of well classified data
for the two methods are:

• using binomial function (scalar): 81.3%

• using fuzzy triangular intervals: 94.0%

Once again the classification rate is increased by the use
of the fuzzy interval method instead of the binomial one.

5 Conclusion
We presented in this article two methods to model uncer-
tainty for classification applications. An example showed
that these methods can improve classification results even
when the signal to noise ratio is high. The second method
based on fuzzy intervals demonstrated that try to model
more precisely the probability law of the noise can pro-
vide better results than use confidence intervals modelled
by crisp intervals. However this process to model uncer-
tainty reveals limits when the SNR reaches a low level. A
future important work is to limit the classification error of
the interval method at the level of the numerical method.

These methods will now be tested on data out coming
from a real industrial process.

Another way to manage uncertainty on classifiers like
LAMDA could be to use type-2 fuzzy functions [15]. This
is an expansion of classical fuzzy logic where the member-
ship functions give in output a fuzzy interval which can be
used to model variance of the data.

To provide a better solution to manage uncertainty in the
LAMDA classifier it can be useful to extend the problem to
the qualitative features. It is often difficult to determine if a
qualitative element is close to another, for example the color
"orange" is closer to "red" than "blue". But on small training
dataset consider this kind of information can improve final
classification results. This could be done by using similarity
matrix which are already used in some artificial intelligence
problems.

LAMDA algorithm can work with a feature selection al-
gorithm named MEMBAS (Membership Margin Based Fea-
ture Selection) [16]. This algorithm uses LAMDA classes
definitions and its membership functions to provide an ana-
lytical solution for the feature selection. A future work will
be to measure the impact of the interval use on MEMBAS
algorithm to perform selection on noisy data.
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Abstract
This paper presents a random generator of dis-
crete event systems that are by construction k-
diagnosable. The aim of this generator is to pro-
vide an almost infinite set of diagnosable systems
for creating benchmarks. The goal of such bench-
marks is to provide a solid set of examples to test
and compare algorithms that solve many prob-
lems around diagnosable discrete event systems.

1 Introduction
For many years, the problem of fault diagnosis in discrete
event systems has been actively addressed by different sci-
entific communities such as DX (AI-based diagnosis) [1;
2], FDI (Fault Detection and Isolation), DES (Discrete
Event Systems) [3]. Depending on the community, many
differents aspects of the same problem have been addressed
such as the design of efficient diagnosers, the checking of di-
agnosability properties, the effective modelling of real sys-
tems. When dealing with performance, most of the contri-
butions present experimental results on specific examples of
their own usually inspired or based on real world systems.
The main problem about these contributions is that they are
not really comparable as they are not applied on the same
benchmarks. Moreover, used benchmarks may not be al-
ways completly defined in a paper due, most of the time, to
confidential data that cannot be published so other academic
contributors cannot use them for comparison purposes. In
order to analyse and boost the effective performance of algo-
rithms addressing the fault diagnosis problem in DES, com-
mon and fully available benchmarks become a necessity.

This paper addresses the random generation of k-
diagnosable systems. We here propose the possibility to
generate (and store on a web page) k-diagnosable systems
that have been generated without any kind of bias that would
come from a specific diagnosis/diagnosability method. By
doing so, we propose to design a random category for
benchmarks as the SAT community proposed for SAT prob-
lems and to get the same advantages by comparing different
diagnosis/diagnosability approaches on the same but ran-
dom systems. The choice of generating k-diagnosable sys-
tems is motivated by the fact that they can be used as exam-
ples for:

1. diagnosis algorithms: given a fault f , we know by con-
struction that the most precise algorithm will determine
its occurrence with certainty within the next k observa-
tions after the occurrence of f ;

2. diagnosability algorithms: the fact that a fault f is k-
diagnosable is usually the worst case for this type of
algorithms (as they all look for the existence of an am-
biguous scenario to conclude the system is not diag-
nosable).

The paper is organised as follows. After formally re-
calling the problem that motivates the generation of bench-
marks, we describe the fundamental property which is being
used for the effective generation of systems where a given
fault f is k-diagnosable. Then the description of the algo-
rithm of the generator is provided as well as some details
about its effective implementation.

2 Background
This paper addresses the random generation of benchmarks
for the problem of the fault diagnosis of discrete event sys-
tem. This problem is briefly recalled in this section. We
assume that the reader is familiar with the notations of the
language theory (notion of Kleene closure, prefixes,...).

2.1 Modelling
We suppose that the system under monitoring behaves as an
event generator that can be modelled as an automaton.
Definition 1 (System description). The model (system de-
scription) SD of a discrete event system S is a finite state
automaton SD = (Q,Σ, T, q0) where:

• Q is a finite set of states;

• Σ is a finite set of events;

• T ⊆ Q× T ×Q is a finite set of transitions;

• q0 is the initial state of the system.

Σ is the set of events that the system can produce. Among
Σ we distinguish events that are observable Σo ⊆ Σ and
events that are not observable. When the system operates,
its effective behaviour is represented by a trace of the au-
tomaton (also called a run).
Definition 2 (Trace). A trace τ ∈ Σ∗ of the system is a finite
sequence of events associated with a transition path from the
initial state q0 to a state q in the model of the system.

The set of traces of the system is the language generated
by its model and is denoted L(S) (so the automaton SD
generates the language L(S)). Let PΣ′(τ) be the classical
projection of a sequence τ of Σ∗ on the alphabet Σ′ recur-
sively defined as follows:

1. PΣ′(ε) = ε;
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2. PΣ′(τ.e) = PΣ′(τ) if e 6∈ Σ′;

3. PΣ′(τ.e) = PΣ′(τ).e if e ∈ Σ′.

Based on this notion of projection, we can associate with
any trace of the system its observable part.

Definition 3 (Observable trace). Let τ be a trace of the sys-
tem, the observable trace στ is the projection of τ over the
set of observable events Σo:

στ = PΣo
(τ).

2.2 Diagnosis problem and solution
Now we are ready to define the classical Fault diagnosis
problem on DES.

Definition 4 (Fault). A fault is a non-observable event f ∈
Σ.

A fault is represented as a special type of non-observable
event that can occur on the underlying system. Once the
event has occurred, we say that the fault is active in the sys-
tem, otherwise it is inactive. We consider here the problem
of permanent faults as initially introduced in [4].

Definition 5 (Diagnosis problem). A diagnosis problem is
a triple (SD,OBS,FAULTS) where SD is the model of
a system, OBS is the sequence of observations of Σ?o and
FAULTS is the set of fault events defined over SD.

Informally speaking, (SD,OBS,FAULTS) represents
the problem of finding the set of active faults from FAULTS
that have occurred relying on the model SD and the se-
quence of observations OBS.

Definition 6 (Diagnosis Candidate). A diagnosis candidate
is a couple (q, F ) where q is a state of SD (q ∈ Q) and F is
a set of faults.

A diagnosis candidate represents the fact that the under-
lying system is in state q and the set F of faults has occurred
before reaching state q.

Definition 7 (Solution Diagnosis). The solution ∆ of the
problem (SD,OBS,FAULTS) is the set of diagnosis can-
didates (q, F ) such that there exists for each of them at least
one trace τ of SD such that:

1. the observable trace of τ is exactly the sequence
OBS = o1 . . . om and the last event of τ is om;

2. the set of fault events that has occurred in τ is exactly
F ;

3. the final state of τ is q.

Informally, candidate (q, F ) is part of the solution if it is
possible to find out in SD a behaviour of the system satisfy-
ing OBS which leads to the state q after the last observation
of OBS and in which the faults F have occurred.

2.3 Diagnosability
Diagnosability is a property of the system that asserts
whether a fault f of a system S can be always diagnosed
with certainty after the observation of a finite set of obser-
vations [4]. In other words, once the fault f has occurred in
S, it is sufficient to wait a certain amount of observations to
ensure that any candidate (q, F ) of the solution contains f
(f ∈ F ).

Definition 8 (Diagnosability). The fault f is diagnosable in
a system S if:

∃n ∈ N+,Diagnosable(n)

where Diagnosable(n) stands for:

∀τ1.f ∈ L(S),∀τ2 : τ1.f.τ2 ∈ L(S)

|PΣo(τ2)| ≥ n⇒
(∀τ ∈ L(S), (PΣo

(τ) = PΣo
(τ1.f.τ2)⇒ f ∈ τ)).

Definition 9 (k-Diagnosability). The fault f is k-
diagnosable, k ∈ N+, in a system S if:

Diagnosable(k) ∧ ¬Diagnosable(k − 1).

Diagnosability is a property that relies on the liveness
of the observability of the system which means that, to be
(k)-diagnosable, a system must not generate unbounded se-
quences of unobservable events (no cycle of unobservable
events in SD). Throughout this paper, we consider that the
observability of the system is live.

3 Random Generator
The aim of this section is to present the algorithm that is
being used to randomly generate a discrete event systems
where a fault f is k-dignosable and that has been imple-
mented inside the Diades software. We focus on the gener-
ation of a system with one fault only. (see th conclusion for
the generation for n, n > 1 faults).

3.1 Signatures and fault ambiguity
The algorithm that generates a k-diagnosable system relies
on the notion of signatures. Let f be a faulty event, the sig-
nature of f is the set of observable traces resulting from the
projection of system traces that contain at least one occur-
rence of an event f before the last observation of the trace.
Definition 10 (Signature). The signature of an event f into
a system S is the language Sig(f) ⊆ Σ?o such that

Sig(f) ={στ |τ = τ1.o.τ2 ∈ L(S),

f ∈ τ1, o ∈ Σo, τ2 ∈ Σ?, στ = PΣo
(τ)}.

In the following, we will also denote by Sig(¬f) the set
of observable traces associated with the traces of the sys-
tem that do not contain any fault f before the last obser-
vation. Intuitively speaking, as long as the current observ-
able trace is in Sig(¬f)∩Sig(f), we know that the system
may have produced a faulty trace or a non-faulty trace be-
fore the last observation. k-diagnosability ensures that the
ambiguity can last at most for k observations. The principle
of the generator relies on the following result that formal-
izes this intuition. Let LARGESTPREFIXES(τ, n) = {τ ′i :
τ = τ ′iτi, |τi| = i, i ∈ {0, . . . , n − 1}} be the set of the n
largest prefixes of τ (τ being a prefix of itself).
Theorem 1. In the system S, the event f is k-diagnosable
if and only if:

1. For any observable trace σ in Sig(¬f)∩Sig(f), there
exists n < k such that LARGESTPREFIXES(σ, n) ⊆
Sig(¬f) ∩ Sig(f) and LARGESTPREFIXES(σ, n +
1) 6⊆ Sig(¬f) ∩ Sig(f).

2. There exists at least one observable
trace σ in Sig(¬f) ∩ Sig(f) such that
LARGESTPREFIXES(σ, k − 1) ⊆ Sig(¬f) ∩ Sig(f)
and an observable o such that σo ∈ Sig(f).
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Proof: (⇒)Let τ1.f be a trace of the system S. As S is
k-diagnosable, there exists m ≤ k such that ∀τ2 : τ1.f.τ2 ∈
L(S), |PΣo

(τ2)| ≥ m ⇒ (∀τ ∈ L(S), (PΣo
(τ) =

PΣo
(τ1.f.τ2) ⇒ f ∈ τ)). Consider one of these

trace τ1.f.τ2 such that τ2 contains exactly m observa-
tions (PΣo

(τ2) = o1 . . . om). k-diagnosability implies
that there exists a minimal integer n ∈ {1, . . . ,m − 1}
such that PΣo

(τ1.f).o1 . . . on+1 ⇒ f ∈ τ as soon as
τ ∈ L(S) and PΣo

(τ) = PΣo
(τ1.f).o1 . . . on+1, there-

fore PΣo(τ1.f).o1 . . . on+1 ∈ Sig(f) \ Sig(¬f) and ∀i ∈
{1, . . . , n}, PΣo(τ1.f).o1 . . . oi ∈ Sig(f) ∩ Sig(¬f). So
LARGESTPREFIXES(PΣo(τ1.f).o1 . . . on, n) ⊆ Sig(¬f) ∩
Sig(f). So for any τ1.f there exists n < k
such that LARGESTPREFIXES(PΣo

(τ1.f).o1 . . . on, n) ⊆
Sig(¬f) ∩ Sig(f). Now, remark that for any observ-
able sequence σ that belongs to Sig(¬f) ∩ Sig(f), there
must exist a trace τ1.f.τ2 of the system, with τ2 con-
taining at least one observable event, such that σ =
PΣo

(τ1.f.τ2), so there must exist n < k such that σ ∈
LARGESTPREFIXES(PΣo

(τ1.f).o1 . . . on, n) ⊆ Sig(¬f) ∩
Sig(f) so, for any σ that belongs to Sig(¬f) ∩ Sig(f),
there is no set LARGESTPREFIXES(σ, n+ 1) that only con-
tains ambiguous signatures.

Finally, as S is k-diagnosable, we know that there exists
at least one trace τ.f.τ1.o1, such that τ is a trace of the sys-
tem that does not contain f , τ1 is a finite continuation of τ.f
that is unobservable and o1 is observable and there is a fi-
nite continuation τ2o2τ3o3 . . . τkok with PΣo

(τi) = ε such
that for any i ∈ {1, . . . , k − 1}, PΣo

(τ.f.τ1.o1 . . . τioi) ∈
Sig(¬f) ∩ Sig(f) PΣo

(τ.f.τ1.o1 . . . τkok) ∈ Sig(f) \
Sig(¬f) which implies the condition 2 with σ =
PΣo

(τ.f.τ1.o1 . . . τk−1ok−1).
(⇐) Suppose now that conditions 1 and 2 hold. Consider
an observable trace σ that is ambiguous (σ ∈ Sig(f) ∩
Sig(¬f)). Condition 1 states that there exists n < k such
that LARGESTPREFIXES(σ, n) ⊆ Sig(¬f) ∩ Sig(f) and
LARGESTPREFIXES(σ, n+ 1) 6⊆ Sig(¬f) ∩ Sig(f). Con-
sider now any largest observable trace σ′ such that |σ′| −
|σ| = m and σ ∈ LARGESTPREFIXES(σ′,m) ⊆ Sig(¬f)∩
Sig(f), it follows that LARGESTPREFIXES(σ′,m + n) ⊆
Sig(¬f) ∩ Sig(f) and LARGESTPREFIXES(σ′,m + n +
1) 6⊆ Sig(¬f) ∩ Sig(f). As σ′ is one of the largest ob-
servable trace holding this condition, any observable trace
σ′o, o ∈ Σo, is either in Sig(f) or in Sig(¬f) but not in
both of them. Condition 1 states that m + n < k, so k ob-
servations at least are required to solve the ambiguity. Con-
dition 2 states that there exists at least such an observable
trace σ′ with m + n = k − 1 and an observation o so that
σ′o is definitively in Sig(f) so f can be diagnosed with
certainty in this case with exactly k observations. Hence the
result.

3.2 Algorithm

The principle of the random generator is depicted in Al-
gorithm 1. Given a parameter k and a fault event f , the
algorithm randomly generates a system S where the event
f is k-diagnosable by construction. We also provide an-
other parameter deg which is the maximal number of output
transitions that is allowed per state during the generation of
the system. Parameter deg is important for the creation of
benchmarks as the output degree has a strong influence on
the diagnosis/diagnosability computations.

Algorithm 1 General algorithm for the random generation
of k-diagnosable systems.

Input: k ∈ N, k ≥ 1
Input: f an event
Input: deg maximal output degree
(Σo,Σ)← GENERATEEVENTS()
S ← ∅
AmbSig(f)← GENERATEAMBSIGNATURE(k,Σo, deg)

/* AmbSig(f) = (Q,Σo, T, q0, A) a deterministic au-
tomaton */
MF[q0]← GENERATESTATES()
MNF[q0]← GENERATESTATES()
for all q ∈ Q in Breadth-First Order from q0 do

(Σfo ,Σ
¬f
o )← RANDOMSPLIT(Σo, q)

S ← S∪ GENFAULTEXTS∗(MF[q],Σfo ,deg)
S ← S∪ GENNOMEXTS∗(MNF[q],Σ¬fo ,deg)
for all q o−→ q′ ∈ T do

if MF[q′] = ∅ then
MF[q′]← GENERATESTATES()
MNF[q′]← GENERATESTATES()

end if
S ← S∪
GENNOMEXTS(MNF[q],MNF[q′],o,deg)
if q′ 6∈ A then
S ← S∪ GENNOMEXTS(MF[q],MF[q′],o,deg)

else
if q ∈ A then
S ← S∪ GENEXTS(MF[q],MF[q′],o,deg)

else
S ← S∪
GENFAULTEXTS(MF[q],MF[q′],o,deg)

end if
end if

end for
end for
Output: S where f is k-diagnosable.

The generation is composed of two steps. The first one
is the generation of the ambiguous signature with GENER-
ATEAMBSIGNATURE. The result of this function is a de-
terministic automaton AmbSig(f) = (Q,Σo, T, q0, A) that
actually generates the language Sig(f)∩Sig(¬f) (any tran-
sition path from state q0 to an accepting state of A rep-
resents a sequence of Sig(f) ∩ Sig(¬f)). The automa-
ton AmbSig(f) is generated with respect to the conditions
1 and 2 that are defined in Theorem 1 to ensure the k-
diagnosability of the resulting system S. The second step of
the generation is the effective generation of S based on the
ambiguous signature AmbSig(f). The idea is to map every
state q of AmbSig(f) with two sets of states in S denoted
MF [q] andMNF [q]. Given any path σ ofAmbSig(f) that
leads to state q with, as a last observation, the event o, any
state of MF [q] (resp. MNF [q]) will be reached by at least
one transition path τ of S starting from a state of MF [q0]
(resp. MNF [q0]) that ends with a transition labelled with o
and the observable projection of τ is exactly σ. The differ-
ence between MF and MNF is that any underlying path
of S leading to a state of MF [q] (resp. MNF [q]) has an
observable projection which is a prefix of Sig(f) (resp. a
prefix of Sig(¬f)). To generate S we explore AmbSig(f)
from its initial state in a breadth-first search manner. For a
given state q, we have to consider three types of transition
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generations going out of any state ofMF [q],MNF [q]. The
first ones are the transition paths that will lead to an observa-
tion o that belongs to AmbSig(f), the second one is the set
of transition paths that do not lead to an observation o that
belongs to AmbSig(f) but lead to an observation o′ that
belongs to Sig(f) only and the third one is the set of transi-
tion paths that do not lead to an observation o that belongs
to AmbSig(f) but lead to an observation o′′ that belongs to
Sig(¬f) only.

The second and third cases are handled by randomly split-
ting Σo into two subsets (Σfo ,Σ

¬f
o ) each of them only con-

taining observable events that are not output event of q in
AmbSig(f) (RANDOMSPLIT(Σo, q)). Then given Σfo , we
randomly generate faulty extensions for a subset of Σfo (the
selection of the subset is also random and might even be
empty if q has no output events in AmbSig(f), indeed if q
has no output events, it must be extended to ensure that the
observability of the system is live). An extension is a set of
acyclic and unobservable transition paths that lead to a tran-
sition labeled with an observable event from Σfo . A faulty
extension ensures that an event f has at least occurred on
any generated transition path before the observable transi-
tion (GENFAULTEXTS). Given Σ¬fo , we proceed the same
way to generate non-faulty extensions (GENNOMEXTS).
As, in these two cases, the traces generated by these ex-
tensions are not associated with observable traces involved
in AmbSig(f) any more, it is sufficient to generate further
extensions on these traces and guarantee that the observ-
able language associated with these further extensions is live
(this procedure is denoted by the ∗ in GENNOMEXTS∗ and
GENFAULTEXTS∗).

The last case to handle now is the case where the observ-
able event o is an output event of q in AmbSig(f), which
means that there exists one and only one transition q o−→ q′

in AmbSig(f). If q′ has never been visited, the set of states
MF [q′] and MNF [q′] are generated first. A nominal ex-
tension is generated from MNF [q] to MNF [q′]. Depend-
ing on the status of q′, the extension between MF [q] and
MF [q′] is different. If q′ 6∈ A, it means that any prefix
generated by AmbSig(f) with paths from q0 to q′ are pre-
fixes of sequences in Sig(f) ∩ Sig(¬f) but they are not in
Sig(f) ∩ Sig(¬f), they can therefore be only in Sig(¬f):
extensions between MF [q] and MF [q′] are then nominal
extensions. Now, if q′ ∈ A, there are two cases. If q 6∈ A,
it means the system must become faulty between the states
ofMF [q] andMF [q′] so that paths of the system that reach
any state of MF [q′] is associated with an observable trace
that belongs to Sig(f) (GENFAULTEXTS). If q ∈ A, any
path that reaches a state of MF [q] is already faulty (its ob-
servable trace is already in Sig(f)), any type of extension
from MF [q] to MF [q′] is therefore possible (faulty or not),
hence the use of GENEXTS.

3.3 Implementation
Algorithm 1 is implemented with the help of the Diades
library package [5]. Diades is a set of C++ libraries
that implement discrete event systems in a component-
based way, different diagnosis algorithms as defined in
the spectrum of [6] (from component-based algorithms
to diagnoser-based algorithms). DIADES also imple-
ments a diagnosability checker as well as an accuracy
checker. The generator results in a Linux terminal command
dd-diagnosable-des-generate with a set of pa-

rameters like the number of (un)observable events the output
degree of transitions, the parameter k, the minimal number
of observable events involved in the ambiguous signature,
the number of states (still experimental). One particular pa-
rameter is the seed parameter that allows the generation of
the same system (the seed ensures the same generation of
random numbers). By construction, the algorithm is linear
in the number of states. A set of pre-computed benchmarks
as well as the implemented generator are available at the
following url:
http://homepages.laas.fr/ypencole/benchmarks

4 Conclusions
To test and compare diagnosis and/or diagnosability algo-
rithms, fully detailed and available benchmarks are a ne-
cessity. In order to test how generic is an algorithm, we
propose here an algorithm that randomly generates systems
where a fault f is k-diagnosable. We also propose an im-
plementation within the DIADES framework. Extension to
generate systems with n k-diagnosable faults is easy, it re-
quires to repeat the generation of the ambiguous signatures
for the n faults and explore them in parallel to generate the
k-diagnosable system. Our short-term perspective is to im-
prove the generator to allow a better control of the number
of generated states. A fixed number of generated states re-
quires to add new constraints in the generation that prop-
agate during the generation process. Without any control
about this propagation, the generation may just fail as it
could become an over-constrained problem. Our perspec-
tive is to also go one step further by generating diagnosable
systems that are component-based in order to scale up the
size of the generated system. The DIADES framework al-
ready has a tool to generate component-based systems [5]
which ensures that any component is globally consistent, but
adding the constraint of diagnosability makes the generation
far more complex to implement.
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Abstract
HYDIAG is a software developed in Matlab by
the DISCO team at LAAS-CNRS. It is currently
a software designed to simulate, diagnose and
prognose hybrid systems using model-based tech-
niques. An extension to active diagnosis is also
provided. This paper aims at presenting the na-
tive HYDIAG tool, and its different extensions to
prognosis and active diagnosis. Some results on
an academic example are given.

1 Introduction
HYDIAG is a software developed in Matlab, with Simulink.
The development of this software was initiated in the
DISCO team with contributions about diagnosis on hybrid
systems [1]. It has undergone many changes and is cur-
rently a software designed to simulate, diagnose and prog-
nose hybrid systems using model-based techniques [2; 3; 4].
An extension to active diagnosis has been also realized [5;
6]. This article aims at presenting the native HyDiag tool
and its different extensions to prognosis and active diagno-
sis.

Section 2 recalls the hybrid formalism used by HYDIAG.
Section 3 presents the native HYDIAG tool that simulates
and diagnoses hybrid systems. Section 4 explains how HY-
DIAG has been extended in HYDIAGPRO to prognose and
diagnose hybrid systems. Section 5 presents the extension
to active diagnosis. Experimental results of HYDIAG and its
extension HYDIAGPRO are finally presented in Section 6.

2 Hybrid Model for Diagnosis
HYDIAG deals with hybrid systems defined in a monolithic
way. Such a system must be modeled by a hybrid automaton
[7]. Formally, a hybrid automaton is defined as a tuple S =
(ζ,Q,Σ, T, C, (q0, ζ0)) where:

• ζ is a finite set of continuous variables that comprises
input variables u(t) ∈ Rnu , state variables x(t) ∈
Rnx , and output variables y(t) ∈ Rny .

• Q is a finite set of discrete system states.

• Σ is a finite set of events.

• T ⊆ Q × Σ → Q is the partial transition function
between states.

• C =
⋃

q∈Q Cq is the set of system constraints linking
continuous variables.

• (ζ0, q0) ∈ ζ ×Q, is the initial condition.

Each state q ∈ Q represents a behavioural mode that is
characterized by a set of constraints Cq that model the lin-
ear continuous dynamics (defined by their representations
in the state space as a set of differential and algebraic equa-
tions). A behavioural mode can be nominal or faulty (antic-
ipated faults). The unknown mode can be added to model
all the non anticipated faulty situations. The discrete part of
the hybrid automaton is given by M = (Q,Σ, T, q0), which
is called the underlying discrete event system (DES). Σ is
the set of events that correspond to discrete control inputs,
autonomous mode changes and fault occurrences. The oc-
currence of an anticipated fault is modelled by a discrete
event fi ∈ Σf ⊆ Σuo, where Σuo ⊆ Σ is the set of unob-
servable events. Σo ⊆ Σ is the set of observable events.
Transitions of T model the instantaneous changes of be-
havioural modes. The continuous behaviour of the hybrid
system is modelled by the so called underlying multimode
system Ξ = (ζ,Q,C, ζ0). The set of directly measured vari-
ables is denoted by ζOBS ⊆ ζ.

An example of a hybrid system modeled by a hybrid au-
tomaton is shown in Figure 1. Each mode qi is characterized
by state matrices Ai, Bi, Ci and Di.

σ12 
u 

y 

Hybrid system 

… 

σ21 

σ1i 
σ 

x1(n+1)=A1x1(n)+B1u(n)  
Y1(n)=C1x1(n)+D1u(n) 

q1 

C1 

xi(n+1)=Aixi(n)+Bu(n)  
Yi(n)=Cixi(n)+Diu(n) 

qi 

Ci 

x2(n+1)=A2x2(n)+B2u(n)  
Y2(n)=C2x2(n)+D2u(n) 

q2 

C2 

Figure 1: Example of an hybrid system

3 Overview of the native HYDIAG diagnoser

The method developed in [1] for diagnosing faults on-line
in hybrid systems can be seen as interlinking a standard di-
agnosis method for continuous systems, namely the parity
space method, and a standard diagnosis method for DES,
namely the diagnoser method [8].
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3.1 How to use HYDIAG ?
Step 1: hybrid model edition
HYDIAG allows the user to edit the modes of a hybrid au-
tomaton S as illustrated in Figure 1. To model the system,
the user must first provide in the Graphical User Interface of
the HYDIAG software the following information: the num-
ber of modes, the number of discrete events that can be ob-
servable or unobservable, and the sampling period used for
the underlying multimode system (defined by the set of state
matrices of the state space representation of each mode).

There are optional parameters that are helpful to initialize
the mode matrices automatically before editing them: the
number of entries for the continuous dynamics, the number
of outputs for continuous dynamics, the dimensions of each
matrix A. The number of entries (resp. outputs) must be the
same for all the modes.

The simulator of the edited model has no restrictions on
the number of modes or the order of the continuous dynam-
ics, it is generically designed. Online computations are per-
formed using Matlab / Simulink. Results provided by Mat-
lab can be reused if a special need arises. Figure 2 shows an
overview of the software interface.

Figure 2: HYDIAG Graphical User Interface

Step 2: building the diagnoser
HYDIAG automatically computes the analytical redundancy
relations (ARRs) by using the parity space approach [9].
Details of this computation can be found in [10].

The idea of HYDIAG is to capture both the continuous
dynamics and the discrete dynamics within the same math-
ematical object. To do so, the discrete part of the hybrid
system M = (Q,Σ, T, q0) is enriched with specific observ-
able events that are generated from continuous information.
The resulting automaton is called the Behaviour Automaton
(BA) of the hybrid system. HYDIAG then builds the diag-
noser of the Behaviour Automaton (see [8]) by using the
DIADES1 software also developed within the DISCO team
at LAAS-CNRS (see an example of diagnoser in Figure 7).

Step 3: system simulation and diagnosis
Given the built hybrid diagnoser, HYDIAG then loads a set
of timed observations produced by the system and it pro-
vides at each observation time an update of the diagnosis

1http://homepages.laas.fr/ypencole/DiaDes/

of the system by triggering the current transition of the hy-
brid diagnoser that matches the current observation. It is
possible to define in HYDIAG a simulation scenario for the
modeled system with a duration and a time sample defined
by the user.

3.2 Software architecture with extensions
The general architecture of HYDIAG and its two extensions
(see the next sections for their description) is presented on
Figure 3. Ellipses represent the objects handled by the soft-
ware, rectangles with rounded edges depict HYDIAG func-
tions and rectangles with straight edges correspond to exter-
nal DIADES packages. The behaviour automaton is at the
heart of the architecture as HYDIAG and both its extensions
rely on it to perform diagnosis, active diagnosis and prog-
nosis.

Model display

HyDiag

Enriched
hybrid
model

Behaviour
AutomatonARRs computation Diades

Diagnoser
diagnosis

Additional
Signature 
event

Diagnoser display
Behaviour

Automaton display

Prognoser
prognosis

diagnosis

prognosis

Diagnosis display

Prognosis display

AO* Algorithm
Specialized
Active 

diagnosers

AND/OR 
Graph

Conditional
planActDiades

Conditional plan 
display

ActHyDiag

HyDiagPro

Figure 3: HYDIAG architecture with its extensions HYDI-
AGPRO and ACTHYDIAG.

4 HYDIAGPRO : an extension for Prognosis
HYDIAG has been extended in order to provide a progno-
sis functionality to the software [4]. The prognosis function
computes (1) the fault probability of the system in each be-
havioural mode, (2) the future fault sequence that will lead
to the system failure, (3) the Remaining Useful Life (RUL)
of the system.

In HYDIAGPRO, the initial hybrid model is enriched
by adding for each behavioural mode a set of aging laws:
S+ = (ζ,Q,Σ, T, C,F , (q0, ζ0)) where F = {F q, q ∈ Q}
and F q is a set of aging laws one for each anticipated fault
f ∈ Σf in mode q. The aging modeling framework that
is adopted in HYDIAGPRO is based on the Weibull proba-
bilistic model [11] (see more details in [4]). The Weibull
fault probability density function W (t, βq

j , η
q
j , γ

q
j ) gives at

any time the probability that the fault fj occurs in the sys-
tem mode q. Weibull parameters βq

j and ηqj are fixed by the
system mode q and characterise the degradation in mode q
that leads to the fault fj . Parameter γqj is set at runtime to
memorize the overall degradation evolution of the system
accumulated in the past modes [11].

The prognoser uses the aging laws in S+ to predict fault
occurrences (see Figure 3). The prognoser uses the cur-
rent diagnosis result to update on-line these aging laws (the
parameters γqj ) according to the operation time in each be-
havioural mode. For each new result of diagnosis, the prog-
nosis function computes the most likely sequence of dated
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faults that leads to the system failure. From this sequence is
estimated the system RUL [4].

5 ACTHYDIAG: Active Diagnosis
The second extension of HYDIAG provides an active diag-
nosis functionality to the software (see Figure 3). The inputs
are the same as for HYDIAG but an additional file indicates
the events of S that are actions, as well as their respective
cost. Based on the behaviour automaton, we compute a set
of specialised active diagnosers (one per fault): such a diag-
noser is able to predict, based on the behaviour automaton,
whether a fault can be diagnosed with certainty by applying
an action plan from a given ambiguous situation [6]. From
these diagnosers, we also extract a planning domain as a
AND/OR graph.

At runtime, when HYDIAG is diagnosing, the diagno-
sis might be ambiguous. An active diagnosis session can
be launched as soon as a specialised active diagnoser can
analyse that the current faulty situation is discriminable by
applying some actions. If the active diagnosis session is
launched, an AO∗ algorithm starts and computes a condi-
tional plan from the AND-OR graph that optimises an ac-
tion cost criterion. It is important to note that in the case
of a system with continuous dynamics, only discrete actions
are contained in the active diagnosis plan issued by ACTHY-
DIAG. In particular, it is assumed that if it is necessary to
guide the system towards a value on continuous variables,
the synthesis of control laws must be performed elsewhere.

6 HyDiag/HyDiagPro Demonstration
Water tank system model

Pump P1 Pump P2 

hmax 

h2 

h1 h 

Figure 4: Water tank system

HYDIAGPRO has been tested on a water tank system
(Figure 4) composed of one tank with two hydraulic pumps
(P1, P2). Water flows through a valve at the bottom of the
tank depending on the system control. Three sensors (h1,
h2, hmax) detect the water level and allow to set the control
of the pumps (on/off). It is assumed that the pumps may
fail only if they are on. The discrete model of water tank
and the controls of pumps are given in Figure 5. Discrete
events in Σ = {h1, h2s, h2i, hmax, f1, f2} allow the sys-
tem to switch into different modes. Observable events are
Σo = {h1, h2s, h2i, hmax}. Two faults that correspond to
the pump failures are anticipated Σf = {f1, f2} and are not
observable.The Weibull parameter values of aging models
F = {F qi} are reported in Table 1.

The underlying continuous behaviour of every discrete
mode qi for i ∈ {1..8} is represented by the same state

pump
Pump1 Pump 2

1 ON ON

pump
mode

1 ON ON

2 ON OFF

3 OFF OFF

4 F il ON4 Fail ON

5 ON Fail

6 Fail OFF

7 OFF Fail

8 Fail Fail8 Fail  Fail

Figure 5: Water tank DES model

Table 1: Weibull parameters of aging models
Aging laws β η Aging laws β η

F q1 fq1
1 1.5 3000 F q2 fq2

1 2 3000
fq1
2 1.5 4000 fq2

2 1 7000
F q3 fq3

1 1 8000 F q4 fq4
1 NaN NaN

fq3
2 1 7000 fq4

2 2 4000
F q5 fq5

1 2 3000 F q6 fq6
1 NaN NaN

fq5
2 NaN NaN fq6

2 1 7000
F q7 fq7

1 1 8000 F q8 fq8
1 NaN NaN

fq7
2 NaN NaN fq8

2 NaN NaN

space:
{
X(k + 1) = AX(k) +BU(k)
Y (k) = CX(k) +DU(k)

(1)

where the state variable X is the water level in the tank,
continuous inputs U are the flows delivered by the pumps
P1, P2 and the flow going through the valve, A = (1), B =(
eTe/S
eTe/S
eTe/S

)
with Te the sample time, S the tank base area

and ei = 1 (resp. 0) if the pump is turned on (resp. turned

off), C = (1) and D =

(
0
0
0

)
.

HYDIAG results
Figure 6 presents the set of results obtained by HYDIAG and
HYDIAGPRO on the folllowing scenario. The time hori-
zon is fixed at Tsim = 4000h, the sampling period is
Ts = 36s and the filter sensitivity for the diagnosis is set
as Tfilter = 3min. The residual threshold is 10−12. The
scenario involves a variant use of water (max flow rate =
1200L/h) depending on user needs during 4000h. Pumps are
automatically controlled to satisfy the specifications indi-
cated above. Flow rate of P1 and P2 are respectively 750L/h
and 500L/h.

The diagnoser computed by HYDIAG is given in Figure 7.
Each state of the diagnoser indicates the belief state in the
model enriched by the abstraction of the continuous part of
the system, labelled with faults that have occurred on the
system. This label is empty in case of nominal mode. In the
scenario, fault f1 was injected after 3500h and fault f2 was
not injected.
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Figure 6: Scenario: Diagnoser belief state (left), Prognosis results of degradations df1 and df2 (middle), System RUL (right).

Figure 7: Diagnoser state tracker

Left hand side of Figure 6 shows the diagnoser belief state
just before and after the fault f1 occurrence. Results are
consistent with the scenario: before 3500h, the belief states
of the diagnoser are always tagged with a nominal diagnosis.
After 3500h, all the states are tagged with f1.

Middle of Figure 6 illustrates the predicted date of fault
occurrence (df1 and df2 ). At the beginning of the process,
the prognosis result is: Π0 = ({f1, 4120}, {f2, 5105}). It
can be noted that the predicted dates df1 and df2 of f1 and
f2 globally increase. Indeed, the system oscillates between
stressful modes and less stressful modes. To make it simple,
we can consider that in some modes, the system does not
degrade, so the predicted dates of f1 and f2 are postponed.
Before 3500h, the predicted date of f1 is lower than the one
of f2. After 3500h, the predicted date of f2 is updated,
knowing that the system is in a degraded mode. Finally, the
prognosis result is Π3501 = ({f2, 5541}). Figure 6 shows
the evolution of the RUL of the system. At t = 3501, as the
fault f2 is estimated to occur at t = 5541, the system RUL
at t = 3501 is 5541− 3501 = 2040h.

7 Conclusion
HYDIAG is a software developed in Matlab, with Simulink,
by the DISCO team, at LAAS-CNRS. This tool has been
extended into HYDIAGPRO to simulate, diagnose and prog-
nose hybrid systems using model-based techniques. Some

results on an academic example are exposed in the paper.
An extension to active diagnosis is also presented. The ac-
tive diagnosis algorithm is currently tested on a concrete in-
dustrial case. HYDIAG and its user manual will be soon
available on the LAAS website.
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Pulido Belarmino 59

R
Ribot Pauline 83, 281
Roux Elisa 19
Roychoudhury Indranil 201



S
Saha Bhaskar 209
Santos Simón Jorge 153
Schmitz Thomas 3
Serbak Vladimir 235
Shchekotykhin Kostyantyn 3
Shinitzky Hilla 113
Simon Laurent 51
Steinbauer Gerald 153
Stern Roni 113, 247
Struss Peter 91
Subias Audine 241

T
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