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Abstract. Relations mined from texts and structured information from 
databases have been mapped to concepts defined in biomedical ontologies and 
to a predicate dictionary. Concepts and predicates are represented by nodes and 
edges in this graph and can be queried for relations between concepts. The 
graph combines relations extracted from Medline abstracts with relations 
obtained from the UMLS and databases as UniProt, EntrezGene, Comparative 
Toxicogemics Database, and from the datasets from the Linked Open Drug 
Data (Drugbank, DailyMed, and Sider).  

 
The approach was tested on 61 cerebral spinal fluid and 207 serum compounds 
of migraine patients. A cloud of all biomedical concepts related to the concept 
migraine in this graph was used to construct a set of cerebral spinal fluid 
compound concepts and a set of serum compound concepts. For each of the 
relations in the cloud provenance is available and provided. These sets were 
evaluated against two manually created sets of compounds.  

 
The evaluation showed that this graph based method retrieves relevant 
compounds with mean average precision values of 0.32 and 0.59, respectively. 
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1 Introduction 

Are we not all dreaming about a computer program that, based on all available 
publications and data in databases, suggests the most likely hypotheses worth 
investigating in our application domain? And would it not be perfect if the program 
also provided us with an argumentation? In this paper we will outline the steps we 
have taken to support scientists in better understanding the information that is already 
available and how that could be used to generate new hypotheses. 
 
The benefits and risks of the avalanche of information in the biomedical domain are 
widely recognized1. The potential value of all these data is that we are able to better 
understand the processes from the genetic level up to the disease or phenotype level. 



The risk of having all these data available is that we lose sight of how the data relate 
and can be combined to provide new insights. An integrative approach is desirable on 
two levels: on the technological level by integrating numerous biological databases 
into networks of knowledge sources, and on the conceptual level by integrating 
different fields of biomedicine into networks of concepts. This integration can support 
new approaches to inference and search. 
 
Swanson recognized the potential of relating disconnected fields of knowledge in 
biomedicine, in particular by discovering new associations between, as he called it, A 
and C terms, consisting of single words or short phrases (2-3 words). He developed a 
program, ArrowSmith2, to automatically find B terms that co-occur with A and C 
terms in Medline titles. If the A and C terms were never co-mentioned in a title, a new 
potential discovery was identified. Using this approach he was able to discover a 
connection between Raynaud’s disease (A) and fish oil (C) through blood coagulation 
(B), and between migraine (A) and magnesium (C) via blood clotting (B). These 
hypotheses were later on proven correct in experimental studies3,4,5.  
 
The value of this approach has been recognized by many scientists and a series of new 
research projects were started to improve on this. One method, explored by Blake and 
Pratt6, was to use concepts as defined by the Unified Medical Language System 
(UMLS)7, instead of separate terms. In the UMLS thesaurus, different terms that 
denote the same unit of thought have been normalized to a single concept. Weeber et 
al. were the first to mine concepts from both Medline titles as well as abstracts, by 
mapping terms to the UMLS thesaurus with the MetaMap concept recognizer8. 
Weeber et al. were also succesful in applying their system for a new discovery in drug 
research, suggesting thalidomide as a treatment for chronic hepatitis C, among 
others9.  
 
Swanson manually selected the B terms that he thought to be most relevant for further 
exploration. Many researchers have worked on approaches to automate the selection 
of the B terms. The concept-based approaches using UMLS have explored the use of 
the semantic types of the B concepts. Blake and Pratt used this approach to discard 
several semantic types and reported an 81% decrease of the number of B terms10. 
Srinivasan et al. applied a similar approach to filter out B terms based on semantic 
types11. If the relevant semantic types were precisely known, the set of terms could be 
reduced by as much as 91%; if only the obviously irrelevant semantic types were 
removed, the number of terms was reduced by an average of 31%. Gordon and 
Lindsay evaluated several ranking algorithms borrowed from the information retrieval 
field when they re-analyzed Swanson’s fish oil-Raynaud’s Disease discovery, such as 
Term Frequency-Inverse Document Frequency (TF-IDF)12. They reported 
reproduction of 10 of the 12 relevant B-terms for Swanson’s discovery in a list of 35 
terms.  
 
To rank the B-terms, Torvik and Smalheiser applied an ensemble algorithm that 
combined eight weighted variables, such as "B-term occurs in more than one paper 
within literature sets A and C", "B-term maps to at least one UMLS semantic 
category", "B-term first appears recently within Medline as a whole", etc.13 Swanson 



originally used a fixed order approach of first filtering uninformative terms using a 
stopword list, subsequently term categorization, and finally manual selection of B-
terms. Instead Torvik developed this ensemble algorithm to containing all steps of 
Swanson’s fixed order approach, having the advantage not to lose potentially relevant 
B terms in any of the intermediate steps.  
 
Yetsigen-Yildiz et al. investigated different statistics to rank the B-terms14. Two of 
them were frequency-based association rules as tested by Hristovski15 et al., and two 
were probability based, including the Z-score, which creates literature subsets, and the 
mutual information score. The association rules were not evaluated against the 
Swanson sets, but they were analyzed on their predictions from a subset of Medline 
future published discoveries.  
 
Hristovski et al. were the first to test the added value of incorporating relation 
predicates into a literature-based discovery process16. They applied the UMLS 
semantic network and the SemRep text mining system to identify relationships 
between terms17. Predicates were used to identify discovery patterns: specific 
combinations of two predicates between three terms, which when combined would 
constitute a functional, biologically relevant association. Although the inclusion of 
predicates was considered to offer clear advantages, the lack of accuracy of the 
relationship extraction hampered practical application.   
In our group we developed the Anni discovery system18. For each concept, the co-
occurrences between that concept and other concepts in all Medline abstracts are 
computed and stored in a so-called concept profile. Concept profiles can be 
considered vectors in a high-dimensional vector space. The strength of the 
relationship between two concepts is expressed as a matching score between their 
concept profiles. Concepts can be grouped based on their semantic type and their 
concept profiles can be matched based on various algorithms: mutual information 
measure, log-likelihood, and dot product.19 The matching strategy takes into account 
all the B concepts contained in the concept profile, filters the resulting C concepts on 
the required semantic type(s) and ranks the result on matching score. This approach 
has been used by Jelier et al. in a study to match the concept profiles for genes from 
DNA microarray data with concepts that denote functions of the genes20. The same 
approach has been used by Van Haagen et al. to predict protein-protein interactions 
by computing the matching score between protein concept profiles at certain time 
intervals in Medline21. An extension of this approach has been developed by using 
Anni in mapping disease-disease relationships for knowledge discovery in multi-
morbidity research on somatic and psychiatric diseases22. 
 
The approach presented in this study is to combine relations obtained from literature 
with those available in databases and ontologies. The subject and object of each 
relation are mapped to a concept as defined in our ontology (mainly the UMLS with 
extensions for genes, proteins and chemicals). The predicates obtained from the text 
are mapped to a set of standardized predicates. The mapping process is partly 
supported by our text mining software and partly by manual mapping of database 
schemas to concepts and predicates.  



2 Methods 

Our approach combines relations extracted from Medline abstracts with relations 
obtained from the UMLS and databases UniProt, EntrezGene, Comparative 
Toxicogemics Database23, and from the datasets from the Linked Open Drug Data24 
(Drugbank, DailyMed, and Sider) into a semantic graph database. From these 
different sources we identified 2,669,792 individual concepts, together with about 71 
million relations between them. The relations are based on the 54 relationship types 
defined in the UMLS semantic network and the predicates defined by Halil and used 
in the Semantic Medline25. In total, 171 different predicates were defined. A concept 
consists of a set of terms (synonyms) that denote the concept, and identifiers that link 
to the various databases. Each concept is connected to one or more semantic type 
nodes in the graph database, a database that primarily consists of nodes and 
connections between nodes. Semantic types in turn are categorized in semantic 
groups26. 
 
The mapped relations are stored in our graph database. The graph database has been 
implemented in the Neo4J graph database, version 1.8.327. We implemented a layer 
on top of Neo4J that implements the notion of concepts, labels, relations, semantic 
types, semantic groups, and provenance. Each relation − edge − between two concepts 
– nodes − has one or more of the semantic predicate labels and provenance 
information that indicates the source of the relation. Semantic predicates contain a 
direction and for both directions a set of labels is provided, typically the active and 
passive form of a verb. Neo4J has built in functionality to find paths between two 
nodes. We extended this functionality so that extra information − such as references 
to scientific articles that support the relation − can be included in evaluating the 
various paths. 

2.1 Semantic Integration 

We started building our graph database by incorporating the UMLS 2012AA 
(Metathesaurus and Semantic Network). We then proceeded by integrating Semantic 
Medline28. This source was easy to map to the UMLS concepts and to the semantic 
relations.  
 
As an example of integrating a database we will outline how the mapping of UniProt 
to the graph database was done. A schematic representation of the database schema of 
UniProt is provided in Figure 1.   
 



 

 
Fig. 1. Overview of the database schema of UniProt. The figure shows how the different 
aspects of the UniProt schema are mapped to a semantic relation and a UMLS concept. 

 
The challenge of integrating UniProt entries lies in mapping the annotation fields to 
the corresponding UMLS concepts. We used our concept identification tool 
Peregrine29 to find UMLS concepts in the free-text UniProt annotation fields. The 
mapping of the implicit relations defined in the UniProt schema to the proper 
semantic predicates is manual work and requires some understanding of the biological 
meaning of the data. 
 
This mapping process has been repeated for all sources integrated thus far. We 
maintain a mapping database that indicates how identifiers from one coding system 
map to another coding system. These mappings make it easier to integrate a new 
resource if some of the fields are coded. 

2.2 Inferencing 

To use the graph database, we implemented a web service around it that provides 
basic functionality. In particular, for inferencing we implemented a path-finding 
algorithm based on Neo4J’s functionality. This simple, path-finding type of 
inferencing is not following the main, logic-based inferencing approaches such as 
implemented with OWL-DL and formal reasoners. The extension of Neo4J’s path-
finding function allows one to specify a set of relations that restricts the set of edges 
that can be explored to find a path between the source and target concepts. The paths 



lengths are currently limited to a maximum of five edges. The path function can be 
modified and can take into account additional information that may influence the 
selection of edges, e.g., provenance information (the sources that support the 
relation).  
 
In the remainder we will describe a knowledge discovery application that we 
developed. Experience with this application made clear that the inferencing should be 
tailored to the specific needs of the application domain. As mentioned by others30 the 
user’s semantic view is important for users of the graph database. The semantic view 
allows one to define the level of detail for particular groups of concepts. For example, 
a clinical researcher may not be so much interested in the fine-grained differences 
between a set of related chemical compounds but rather may want information at a 
higher abstraction level.  

3 Results  

We applied the graph database to a number of application domains. In this paper we 
selected the finding of new compounds marking the imminence of a migraine attack 
to demonstrate the use of the approach.  
 
We obtained a set of 61 compounds that have been reported in the literature to be 
measurable in the cerebral spinal fluid, and a set of 207 compounds reported to be 
measurable in the serum of migraine patients. Both sets were manually constructed by 
a manual review process of a corpus of articles retrieved with PubMed., EMBASE 
and Web of Science. The objective was to test whether a graph database could be 
used to identify a set of linking concepts, similar to the linking B-terms, between 
these compounds and migraine. The question was whether this set of linking concepts 
with their interconnectivity could be used to identify (1) the original set of 
compounds, and (2) new compounds of interest. The two sets of compounds were fed 
to the graph database to obtain the paths between these compounds and migraine. 
These paths were analyzed for characteristics (number of publications, range of 
publication dates, path length, etc.). Additional compounds that were not part of the 
initial set have been viewed as potentially new discovered compounds.  
 
The final result of this study was a set of concepts found in the paths linking migraine 
to these sets of compounds. A selection of this set of linking B-concepts was made on 
basis of the semantic types. Using this selected B-concept set we used the number of 
different connections between a compound and the B-concept set for reconstructing 
the initial given set of compounds and secondly to identify potential new compounds 
(see Figure 2). Several ranking statistics were evaluated and overall there was only 
very little difference. From the cerebral spinal fluid set of 61 compounds directly 
connected to mirgraine 1 could not be identified and from the serum set of 207 
compounds directly connected to migraine 23 could not be identified using this 
approach. We computed a weighted mean average precision of 0.32 for the cerebral 
spinal fluid set and 0.59 for the serum set. 
 



 
Fig. 2. Selection from the graph database showing the cloud of concepts linked to 

Migraine and the relations from this cloud to a number of compounds.	
  

4. Discussion  

As mentioned in the introduction when discussing the Swanson approach, the ranking 
and filtering of the B-terms determines to a large extent the success of the knowledge 
discovery method. A similar issue can be raised about the ranking and relevance of 
the connecting paths that our method constructs in a multi-source graph database. 
With increasing path lengths, at some point each pair of concepts in the graph 
database will be connected. It will therefore be important to investigate approaches 
that can differentiate between useful and sound discovery paths and those that are 
noisy and redundant. The platform is powerful in its potential to implement discovery 
patterns that combine a rich feature set consisting of semantic types, semantic groups, 
semantic predicates, connectivity, and amount of provenance stemming from different 
sources. 
 
From our experiments thus far it became clear that a more formal framework to the 
relations or semantic predicates would be helpful. Similar to semantic types and 
groups, which denote the specific properties of concepts, we may imagine that logic 
classes on top of the predicates would indicate specific properties of the predicates, 
such as transitiveness. A framework that follows a more logic-based foundation is the 
OpenBEL framework31. In future work we will assess whether our semantic 
predicates can be mapped to this framework. 
 
For this application we did not restrict the discovery connection paths on basis of the 
combination of a particular semantic groups or types of concepts with a set of 
particular predicates. Our first experience is that such a selection might help in 



finding more relevant connections. The flexibility of the graph database to support 
various types of selections has been used in an application in the field of adverse drug 
reactions and in food safety. We will further investigate in how far these selections 
are depending on an application and can be formalized in a guideline on how to use a 
graph database for discovery. 

5. Conclusions  

The graph database that we constructed combines information extracted from 
biomedical texts with information obtained from biological databases. We have 
demonstrated in this paper that relations from texts and structured databases can be 
effectively combined in a single graph database. Our inferencing approach illustrated 
in this paper shows that relevant compounds can be retrieved with a fairly high recall. 
Furthermore, our approach shows that the connectivity to a set of other concepts has 
potential. The flexibility of the graph database makes it possible to apply the approach 
to other discovery applications and evaluate other approaches to combine graph 
statistics and filters on semantic groups and predicates..  
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