

Fuzzy Algorithms: Applying Fuzzy Logic to the Golden Ratio Search to
Find Solutions Faster

Stephany Coffman-Wolph
West Virginia University Institute of Technology

405 Fayette Pike, Montgomery, West Virginia 25136
sscoffmanwolph@mail.wvu.edu

Abstract
Applying the concept of fuzzy logic (an abstract version of
Boolean logic) to well-known algorithms generates an ab-
stract version (i.e., fuzzy algorithm) that often results in
computational improvements. Precision may be reduced but
counteracted by gaining computational efficiency. The
trade-offs (e.g., small increase in space, loss of precision)
for a variety of applications are deemed acceptable. The
fuzzification of an algorithm can be accomplished using a
simple three-step framework. Creating a new fuzzy algo-
rithm goes beyond simply converting the data from raw data
into fuzzy data by additionally converting the operators and
concepts into their abstract equivalents. This paper demon-
strates: (1) how to apply the general framework by develop-
ing a fuzzy algorithm for a simple linear search algorithm
and (2) the success of this process through the development
of the Fuzzy Golden Ratio Section Search.

 Background
Fuzzy logic is a set of rules and techniques for dealing with
logic beyond a two-value (yes/no, on/off, true/false) sys-
tem. In other words, fuzzy logic is an abstraction of two-
value logic and allows for not only multiple values but also
an overlap of values between fuzzy sets. Therefore, fuzzy
logic can mimic a more human-like approach to decision
making. L. Zadeh introduced fuzzy logic in the 1960s as an
expansion of Boolean logic in his paper entitled “Fuzzy
Sets” (Zadeh 1965).
 Applying the concepts of fuzzy logic to an algorithm
essentially creates an abstract version of the original algo-
rithm. The abstract version allows for faster processing by
taking advantage of integer calculations, reduced search
trees, etc. A fuzzy algorithm can (potentially) find multi-
ple similar solutions while the non-fuzzy version of the
algorithm generates only one solution. Fuzzification of an
algorithm is extremely advantageous when components or

Copyright held by the author.

solutions naturally contain a high level of similari-
ty/symmetry or form natural groups/clusters.
 This process has already been successfully applied to the
following algorithms: (1) a concept-oriented fuzzification
for finding fuzzy patterns (Coffman-Wolph & Kountanis
2013c), (2) a fuzzification of both data and the operators
for a fuzzy process particle swarm optimization (FP2SO)
(Coffman-Wolph & Kountanis 2013a), (3) a fuzzification
of multiple algorithm components to find strategies for
adversarial situations from game theory (Coffman-Wolph
2013), and (4) a fuzzification of the simple simplex method
for the transportation problem (Coffman-Wolph & Coff-
man, Jr 2014). All of the above fuzzy algorithms were
generated using a simple three-step framework (Coffman-
Wolph & Kountanis 2013b). Similarly, other researchers
have used fuzzy logic controls with various evolutionary
algorithms (Sabzi, et al 2016). The author previously as-
serted that the general framework technique could be suc-
cessfully applied to many other algorithms to take ad-
vantage of the power of fuzzy logic. This paper demon-
strates the successful application of the framework to one-
dimensional search algorithms with the Golden Ratio Sec-
tion Search used to illustrate the process.

Fuzzification of Algorithms
There are three main categories of components within an
algorithm that can be fuzzified: (1) data, (2) operators, and
(3) concepts. As stated earlier, fuzzification is a method of
adding abstraction. The fuzzification of data is the process
of taking “raw”/non-fuzzy data and converting it into fuzzy
data. The fuzzification of operators is the process of con-
verting a mathematical, logical, or comparative operator to
its fuzzy counterpart, which operates on fuzzy sets instead
of pure numbers. The fuzzification of concepts, the most
difficult of the three, is the conversion of an idea into a

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

33

similar fuzzy idea. These three techniques, together, will
be used within the framework to create a fuzzy algorithm.

Fuzzification of Data
The process of fuzzifying data (also known as fuzzifica-
tion of data) is a simple two-step process. The first is scal-
ing or normalizing the data. The second is assigning each
data point to a fuzzy set. When the process is complete the
data is ready to be used within a fuzzy algorithm.

Begin by scaling each of the data points. For easier
conversion from raw data to fuzzy data, scale or normalize
the data first. There are many ways to scale data. For ex-
ample, scale each data point xi, using the following stand-
ard normalization equation:

The Normalized value:
 xinorm = ((xi – min) / (max – min)),
Where:
 max is the maximum value of all data points
 min is the minimum value of all the data points

After the data is normalized, the fuzzification process

can begin. There are two important decisions that need to
be made during this phase: (1) the total number of fuzzy
sets and (2) the amount of overlap between the sets. The
higher the number of fuzzy sets and the smaller the over-
lap between the sets, the more precise the system is (i.e.,
less fuzziness). If each fuzzy set only represents one value
and there is no overlap, then the system is essentially the
same as the original non-fuzzy version. Often these two
values are left as user defined parameters in the final algo-
rithm.

There are numerous ways to define fuzzy sets. It is
common to define the fuzzy sets using an equation. It is
possible to have “uneven” fuzzy sets (i.e., the fuzzy set
size is not a constant or the overlap is not consistent).
However, the most common approach to create fuzzy sets
is to divide the range of values evenly with consistent over-
lap.

Fuzzification of Operators
Any calculation using fuzzy data requires that all operators
are also fuzzified. Changing all the operators from the
traditional version to the equivalent fuzzy version causes
the end calculation to be more abstract. The term operator
does not simply refer to mathematical operators, but also
logical and comparative operators.

Writing fuzzy operators can be challenging on a number
of levels and requires many decisions to be made. For ex-
ample, when defining the comparative operators, decisions
will need to be made regarding what makes two sets equal,
not equal, less than, greater than, etc. Additionally, a fuzzy

operator needs to deal with the overlap that can exist be-
tween fuzzy sets.

Within fuzzy logic there exists several predefined opera-
tors – the majority of them are logical operators. Each of
these well-defined fuzzy operators’ behavior is based on
the equivalent operators from traditional set theory. Op-
erators are most commonly associated with numbers, but in
the fuzzy world, operators can deal with a greater range of
data representations. Often the user needs to expand these
predefined operators into special operators specifically
defined for the context of the data.
 Fuzzy operators can either be written as an equation or
as a set of if/then rules. Both methods are common. Equa-
tions are computationally faster than if/then rules, provid-
ing greater speed advantages within an algorithm. On the
other hand, if/then rules are often easier to write, providing
an advantage design-wise.

Fuzzification of Concepts
The fuzzification of a given concept is the most challeng-
ing of the three presented in this paper mainly because a
concept can be difficult to define. A concept is an essential
element from the algorithm. Like the fuzzification of data
or an operator, the purpose is to create an abstract version
of the non-fuzzy “concept”. To identify concepts that are
candidates for the fuzzification process, look for places
where items could be represented by a set or look for items
that only differ by a small amount. Another way to identi-
fy concepts that would benefit from being fuzzified is to
notice repeated information or items that could be catego-
rized. Fuzzification (i.e., the creation of fuzzy sets) lends
itself well to these types of situations.

Fuzzy Algorithm
Many researchers refer to a “fuzzy algorithm” as one in
which the data has been fuzzified (for example: Ko-
teshwariah et al 2015). This paper excludes algorithms
where only the data has been fuzzified resulting in a more
strict definition of a fuzzy algorithm. Specifically, to be
considered fuzzy, an algorithm must go beyond simply
using fuzzy data. To truly make the algorithm fuzzy, either
the operators and/or the concepts within the algorithm need
to be fuzzified. When the algorithm is modified to in-
cludes a fuzzy concept, the algorithm is undeniable a fuzzy
algorithm. It is trickier to determine if the algorithm is
fuzzy when only the operators have been fuzzified because
of the fine line between a traditional operator and a fuzzy
operator – even when operating on fuzzy data. A fuzzy
operator is differentiated from the basic operator by being
re-written to accommodate the meaning of the fuzzy data.

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

34

Fuzzy Algorithm Framework
The following describes the general framework for the
fuzzfication of any algorithm and provides the steps to
convert any algorithm from a traditional non-fuzzy version
to a fuzzy version. The framework is written as a general
procedure so it can be applied to a broad spectrum of algo-
rithm types.

The three steps of the framework:
1. Decide what can/should be fuzzified and determine

the category of each piece to be fuzzified
2. Fuzzify each piece (identified in step 1) based on the

category
a. Scale/normalize the data, then fuzzify the data
b. Fuzzify the operators
c. Fuzzify the concepts

3. Defuzzification (if needed/applicable)

The first step is to make an in-depth examination of the

algorithm (which is to be fuzzified) and decide which ele-
ments to fuzzify. It is helpful to determine what the solu-
tion will look like in the fuzzy form. This will lay the
foundation for the entire fuzzified algorithm. Therefore, it
can be helpful to work backwards through the algorithm to
determine what elements (data, operators, or concepts)
need to be changed in order for the solution to be pro-
duced.

As mentioned in previous sections, data, operators, and
concepts can be fuzzified. Simply fuzzifying the data is
not necessarily a complete fuzzification of an algorithm.
Conversely, not everything needs to be fuzzified. The
challenge is selecting which elements should be fuzzified
and which elements should not. Almost everything numer-
ic could be fuzzified (by the process provided in the sec-
tion on fuzzification of data). Elements that are essential
to the fundamentals of the algorithm are generally not
fuzzified. For example, in an algorithm for finding the
shortest path from a starting location to a destination loca-
tion, the starting and ending locations should not be fuzzi-
fied. However, the distances between locations could be
fuzzified and, additionally, the concept of ordering might
be fuzzified. Of course, these decisions may depend great-
ly on the application of the algorithm.
 The final optional step is defuzzification. Defuzzifica-
tion, the opposite of fuzzification, is used to convert the
result back to a non-fuzzy result. In some cases, this step
might be unnecessary. The determination of needing de-
fuzzification is both problem dependent and usage depend-
ent. If the algorithm is being used to narrow the solution
space and the information will be fed into a non-fuzzy al-
gorithm, then it is important to develop a method of de-
fuzzification. Defuzzification can be applied to data or
concepts.

The Golden Ratio Section Search
In this paper, the Golden Ratio Section Search will be
fuzzified. The Golden Ratio Section Search belongs to a
class of problems known as the one-dimensional search
algorithms. One-dimensional search methods are used to
find the minimum or maximum of a function within a par-
ticular interval. Other similar searches include: Dichoto-
mous Search (bisection method), Uniform Search Method,
Equal Interval Method, Fibonacci Search Method, Quad-
ratic (or polynomial) Interpolation, and Newton’s Method.
The Golden Ratio Section Search has the advantage of
faster convergence than most simple algorithms without
requiring function derivatives making the method more
versatile.
 For this paper, two problems will be run on both a fuzzy
and traditional version of the Golden Ratio Section Search.
The two versions will be compared in terms of computa-
tion complexity, number of iterations, and an evaluation of
advantages and disadvantages. A walkthrough will be
provided so the reader and compare the fuzzy and non-
fuzzy versions of the algorithm.

Application of One-dimensional Search Algo-
rithms
There are many types of problems that can be formulated
so that searching for a minimum or maximum of a function
yields the desired result. Thus, this type of search has far
reaching applications. One example is finding the roots of
a polynomial, which can be challenging if n>3. One-
dimensional searches are used to find the “fixed point” of a
function (i.e., given a function f(x), then a fixed point c is a
point that satisfies f(c) = c). Similarly, it can be used to
find the “zeros” of a function (i.e., given a function f(x),
then a zero of the function is any point where f(x) = 0). In
non-linear constrained or unconstrained optimization, one-
dimensional search algorithms are used to find the step size
to move in the “improving” direction (e.g., in steepest de-
scent, the improving direction is the gradient).

The (Non-Fuzzy) Algorithm
Golden Ratio Section Search works similar to most bi-
section searches but there is more than one internal point.
(And, thus, more than two segments). One common appli-
cation of this algorithm is to find the absolute minimum (or
maximum) of a mathematical function. The algorithm
begins by finding (or calculating) the upper and lower
bounds of the area that contains the minimum (or maxi-
mum) value. Calculate the two interior points using the
bounds forming three sub-segments. The algorithm then
decides which sub-segment contains the minimum (or
maximum) value. The upper and lower bounds are nar-
rowed and the process is repeated until the minimum (or

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

35

maximum) value is located within a specific tolerance. The
Golden Ratio is defined as follows:

 Golden Ratio = φ = ≈ 1.6180339

 The Golden Ratio Section Search uses τ:
 τ = ≈.6180339
 (Which is the Golden Ratio minus one)

 This value, τ, will be used to subdivide the line such that
the ratio of the lengths of the segments is the Golden Ratio.
With a lower bound of LB and an upper bound of UB, cal-
culate the two points x1 and x2 that subdivide the line into
three segments. The general formulas for this are:
 x1 = LB + (1 - τ)(UB-LB)
 x2 = LB + τ(UB-LB)

The Fuzzy Algorithm
As mentioned in an earlier section, the preliminary re-
search for fuzzy algorithms began with a fuzzy PSO for
solving the Traveling Salesperson problem (Coffman-
Wolph & Kountanis 2013a) and continued in the author’s
dissertation (Coffman-Wolph 2013). This research contin-
ues exploring what algorithms can benefit from being fuzz-
ifed using the framework.

To fuzzify the Golden Ratio Search, we must consider
what should and should not be fuzzified. A fuzzy algo-
rithm produces a fuzzy solution (unless a defuzzification
process is applied to the solution). The fuzzy solution for
this type of problem is a fuzzy minimum (or maximum).
Thus, we must ask ourselves if a precise minimum (or
maximum) is required. Often, a precise minimum (or max-
imum) is not required. Generally, the Golden Ratio Search
(and other bi-sectioning algorithms) are used as a feeder
into other algorithms (e.g., curve fitting, finding minimum
of a polynomial) and do not require the absolute best solu-
tion – a “good enough” solution is all that is required. In
some cases, the fuzzy version of an algorithm can be used
to eliminate a significant portion of the search space and
then be used as a starting range in a precise non-fuzzy al-
gorithm to find the absolute minimum (or maximum). We
can conclude that the concept of fuzzy minimum (or max-
imum) is an appropriate concept to be fuzzified for the
algorithm.
 The next concept to consider for fuzzification is the cal-
culated points. For the traditional Golden Ratio Section
Search, we calculate 2 precise points (and thus create 3
exact segments). In the fuzzified version, these 2 precise
points would be represented by 2 fuzzy sets (and 3 fuzzy
segments). These sets are not necessarily distinct and may
contain overlap. Earlier, the crisp calculations were pro-
vided to find the 2 precise points. These formulas, opera-
tors, and values will be converted to an abstract fuzzified

version. (A subscript f will be used to denote a fuzzified
value or operator. Note that 1f is a “fuzzy” 1 and is actual-
ly a set). The value of φ and τ will remain crisp and non-
fuzzified as these values are essential to the algorithm.

 Golden Ratio = φ = ≈ 1.6180339
 τ = ≈.6180339
 x1f =f LBf +f (1-τ) *f (UBf -f LBf)
 x2f =f LBf +f (τ) *f (UBf -f LBf)

Example #1: Simple Polynomial
The Fuzzy Golden Ratio Section Search will first be tested
using the problem: find the minimum of the polynomial:
x2 - y +2 = 0 (see figure 1). The lower bound (LB) and
upper bound (UB) will be set to -3 and 3 respectively.
This polynomial will be used to provide the reader with a
full example for comparison purposes of the non-fuzzy
traditional algorithm and the fuzzified version.

Figure 1: x2 - y +2 = 0.

Non-Fuzzy Walkthrough
Using the bounds -3 and 3, begin by calculating the two
points x1 and x2 to subdivide the line:
 x1 = LB + (1 - τ)(UB-LB) = -3 + (1-.618)(3-(-3)) = -.708
 x2 = LB + τ(UB-LB) = -3 + .618(3-(-3)) = .708

 There are now three line segments (-3 to -.708), (-.708 to
.708), and (.708 to 3). Evaluate the f(UB), f(x1), f(x2), and
f(LB):
 f(UB) = 11
 f(x1) = 2.501
 f(x2) = 2.501
 f(LB) = 11

 Since both f(x1) and f(x2) are less than both f(LB) and
f(UB), the minimum must be between x1 and x2 and, thus,
they will become the new LB and UB respectively. The
algorithm continues by repeating the previous process to
find the next x1 and x2 but using the new more restricted

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

36

lower and upper bounds. Using the same formulas, calcu-
late the next x1 and x2:
 x1 = -.708 + (1 - .618)(.708-(-.708)) = -0.167
 x2 = -.708 + .618(.708-(-.708)) = .167

Next we evaluate the f(UB), f(x1), f(x2), and f(LB):
 f(UB) = 2.501
 f(x1) = 2.02
 f(x2) = 2.02
 f(LB) = 2.501

Using these values, the new lower and upper bounds are
determined to be:
 LB = -.167
 UP = .167

 The algorithm proceeds by calculating the next new val-
ues of x1 and x2 and the corresponding evaluations:
 x1 = -.167 + (1-.618)(.167-(-.167)) = -.039
 x2 =-.167 +.618(.167-(-.167)) = .039
 f(x1) = 2.001
 f(x2) = 2.001

Given the above x1 and x2, the new lower and upper
bounds become:
 LB = -.039
 UP = .039

 The algorithm will make another pass to further tighten
the lower and upper bounds to find the minimum of the
polynomial. The algorithm will calculate the next values
of x1 and x2 and the corresponding evaluations:
 x1 = -.039 + (1-.618)(.039-(-.039)) = -.009
 x2 =-.039 +.618(.039-(-.039)) = .009
 f(x1) = 2.000
 f(x2) = 2.000

 Given the above x1 and x2, the new lower and upper
bounds become:
 LB = -.009
 UP = .009

 One can continue the algorithm further to find a more
precise results. Otherwise, the algorithm can be stopped at
this point. As can been seen from figure 1, the minimum
value of the polynomial is 2 at the point x = 0. The value
we calculated is approximately 2.000. For many purposes
(as mentioned earlier), this value is accurate enough and
we can consider the algorithm complete.

Fuzzy Walkthrough
The author will now proceed with the Fuzzy Golden Ratio
Section Search to find the minimum of the polynomial: x2 -

y +2 = 0 with the initial LB (lower bound) and UB (upper
bound) of -3 and 3, respectively. All fuzzy data and opera-
tors will be denoted with a subscript f. It is important to
remember that the fuzzy values represent a set, but for
simplification purposes will be represented in the write-up
as a single integer value with a subscript f.
 During the setup of the algorithm, a few decisions need
to be made: (1) size of the fuzzy sets and (2) allowing
overlap between fuzzy sets. Both of these values control
the level of precision for the algorithm. (For example:
crisp, traditional numbers could be represented with a
fuzzy set size of only one value with no overlaps). Addi-
tionally, the size of the fuzzy sets does not need to remain
constant throughout the algorithm execution. Keeping in
the spirit of the Golden Ratio Section Search algorithm,
this example will hold the size of the fuzzy sets constant at
+/- τ and, thus, create an overlap of approximately .236
between fuzzy sets. For example, -1f is defined as -1.618
to -.382, 0f is defined as -.618 to .618, and 1f is defined as
.382 to 1.618.
 The algorithm begins the same as the traditional algo-
rithm, with the calculation of the internal two points based
on the fuzzified lower and upper bounds of -3f and 3f. (As
previously mentioned: the value of τ will remain crisp as
well as the calculation of 1- τ. The value of τ is essential to
the original algorithm and not fuzzified. Additionally, this
value is essential to the definition of the fuzzy set size).
The values are calculated as follows:

x1f =f LBf +f (1 - τ) *f (UBf -f LBf)
 =f -3f +f (1- .618) *f (3f -f -3f)
 =f -1f
x2f =f LBf +f (τ) *f (UBf -f LBf)
 =f -3f +f (.618) *f (3f -f -3f)
 =f 1f

 There are now three line segments (-3f to -1f), (-1f to 1f),
and (1f to 3f). We now evaluate the f(UB), f(x1), f(x2), and
f(LB):
 ff(UBf) =f 11f
 ff(x1f) =f 3f
 ff(x2f) =f 3f
 ff(LBf) =f 11f

 Both ff(x1f) and ff(x2f) are less than both ff(LBf) and
ff(UBf). The minimum must be between x1f and x2f and
they will become the new LBf and UBf. The process re-
peats and the next x1f and x2f are calculated:

x1f =f LBf +f (1-τ) *f (UBf -f LBf)
 =f -1f +f (1-τ) *f (1f -f -1f)
 =f 0f
x2f =f LBf +f (τ) *f (UBf -f LBf)
 =f -1f +f (τ) *f (1f -f -1f)
 =f 0f

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

37

 There are now three line segments (-1f to 0f), (0f to 0f),
and (0f to 1f). Next, evaluate the f(UB), f(x1), f(x2), and
f(LB):
 ff(UBf) =f 11f
 ff(x1f) =f 2f
 ff(x2f) =f 2f
 ff(LBf) =f 11f

 The algorithm will be stopped at this point. As can been
seen from figure 1, the minimum value of the polynomial
is 2. The value we found is approximately 2 (i.e., the fuzzy
set 2). (In general, the algorithm would continue, like the
non-fuzzy version, until reaching the desired level of accu-
racy).

Example #2: More Complex Polynomial
In this example, the Fuzzy Golden Ratio Section Search
will be tested with a more complex polynomial. The ex-
ample was run using two simple Java programs: (1) the
traditional Golden Ratio Section Search and (2) the Fuzzy
Golden Ratio Section Search. The results of the fuzzy ver-
sion will be compared to the traditional version.
 This second example is to find the maximum of the pol-
ynomial: f(x) = 12x – 3x4 – 2x6 (Hillier and Lieberman
1990). The lower and upper bounds are defined as 0 and 2
(which are the two points where the function begins to be
negative). The traditional algorithm ran the function as
defined. The fuzzy version of the algorithm used a scaled
version of the problem which allows the algorithm to take
advantage of integer calculations. The algorithm can be
scaled to any number of “decimal points” (denoted as d) of
precision by dividing each x by 10d and then multiplying
the entire equation by 10d.
 The maximum value of the f(x) = 12x – 3x4 – 2x6 occurs
in the range of 0.828 and 0.843 and is approximately 0.836
(Hillier and Lieberman 1990). The traditional version of
the Golden Ratio Section Search required 5 iterations and
computes the maximum to fall in the range of 0.833 and
0.839. The fuzzy version of the Golden Ratio Section
Search uses only 3 iterations and computes that the maxi-
mum falls in the range of 8 and 9 (on the scaled problem)
which is .8 and .9 on the non-scaled version.
 The computation complexity of the algorithm is not in-
creased by adding fuzzification to the algorithm. The Java
code for the fuzzy algorithm contains only one additional
method - a customized Java code to determine the fuzzy
equivalence between fuzzy sets. This extra method is
called only twice during each iteration and contains 8 lines
of code most of which are a series of branching statements.
This adds minimal execution time to the overall algorithm.

Testing Environment
The programming code for both the Fuzzy and Traditional
version of the Golden Ratio Section Search was written in
Java. The testing environment is as follows: Eclipse Mars,
SDK 4.5.1 using Java version 1.8 on a HP Spectre running
Windows 10 with 2.5 GHz Intel Core i7.

Discussion and Concluding Remarks
The Golden Ratio Section Search algorithm was success-
fully converted into a fuzzified version of the algorithm
using the Framework for Fuzzification of Algorithms
(Coffman-Wolph and Kountanis 2013b). For both exam-
ple polynomials, the fuzzy version of the Golden Ratio
Section Search performed better since it required fewer
iterations to find a suitable range for the minimum or max-
imum solution. As stated before, these ranges are suffi-
cient for many of the applications that use Golden Ratio
Section Search and other similar one-dimensional search
methods. For example, in each iteration of a non-linear
optimization algorithm, one is required to use these types
of techniques to estimate the best step size in the improv-
ing direction. The fuzzy version of the Golden Ratio Sec-
tion Search takes advantage of the computer’s natural high
speed of integer calculations. (The traditional version uses
the Java double data type for the calculations).

There are two disadvantages to using the fuzzy algo-
rithm over the traditional. The fuzzy algorithm often re-
quires scaling (but this scaling can be controlled by the
user to their desired level of precision). The second dis-
advantages is that in cases where precise answers are need-
ed, the fuzzy algorithm would only be able to provide a
starting lower and upper bound and is unable to provide
extremely high levels of accuracy.

Future Work
The work done in this paper focuses on only two specific
polynomials and provides only the beginning of explora-
tion into the use of the fuzzy framework for this kind of
search algorithm. Since these preliminary results show
great potential, the next step would be to expand to larger
and more varied polynomials as well as non-polynomial
functions. Further work could be conducted on other simi-
lar algorithms including: Dichotomous Search (bisection
method), Uniform Search Method, Equal Interval Method,
Fibonacci Search Method, and Quadratic (or polynomial)
Interpolation. Additionally, the author would like to ex-
pand to other even more general search algorithms (e.g.,
Tabu search) and sorting algorithms.

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

38

References
Coffman-Wolph, S. 2015. The Hunch Factor: Exploration into
Using Fuzzy Logic to Model Intuition in Particle Swarm Optimi-
zation. In the Proceedings of the 26th Modern AI and Cognitive
Science Conference (MAICS 2015).
Coffman-Wolph, S and Coffman, Jr, P. 2014. Fuzzification of the
Special Simplex Method for the Transportation Problem. Confer-
ence Presentation. In the Proceedings of the INFORMS Annual
Meeting, San Francisco, California.
Coffman-Wolph, S. 2013. Fuzzy Search Strategy Generation for
Adversarial Systems using Fuzzy Process Particle Swarm Opti-
mization, Fuzzy Patterns, and a Hunch Factor. Ph.D. diss., De-
partment of Computer Science, Western Michigan University,
Kalamazoo, MI.
Coffman-Wolph, S. and Kountanis, D. 2013a. Fuzzy Process
Particle Swarm Optimization. In the Proceedings of the 43rd
Southeastern Conference on Combinatorics, Graph Theory, &
Computing. Winnipeg: Utilitas Mathematica Pub. Inc.
Coffman-Wolph, S. and Kountanis, D. 2013b. A General
Framework for the Fuzzification of Algorithms. In the Proceed-
ings of the 4th biennial Michigan Celebration of Women in Com-
puting (MICWIC 2013).
Coffman-Wolph, S. and Kountanis, D. 2013c. Finding Strategies
in Adversarial Situations. In the Proceedings of the 24th Modern
AI and Cognitive Science Conference (MAICS 2013).
Hillier, F. S., and Lieberman, G. J. 1990. Introduction to Opera-
tions Research. McGraw-Hill.
Kennedy, J., and Eberhart, R. C. 2001. Swarm Intelligence. San
Francisco, CA: Morgan Kaufmann Publishers, Inc.
Koteshwariah, C. B., Kisore, N. R., Ravi, V., 2015. A Fuzzy Ver-
sion of Generalized DBSCAN Clustering Algorithm. In the Pro-
ceedings of the Second ACM IKDD Conference on Data Scienc-
es (CoDS 15). New York: ACM.
Lasden, L. (1970) Optimization Theory for Large Systems. New
York, NY: Macmillan Publishing Co, Inc.
Luenberger, D. 1973. Introduction to Linear and Nonlinear Pro-
gramming. Reading, MA: Addison-Wesley Publishing Company.
Sabzi, H. Z., Humberson, D., Abudu, S., King, J. P., 2016. Opti-
mization of Adaptive Fuzzy Logic Controller Using Novel Com-
bined Evolutionary Algorithms, and Its Application in Diez La-
gos Food Controlling System, Southern New Mexico. Expert
Systems With Applications. 43: 154-164.
Wismer, D. and Chattergy, R. 1978. Introduction to Nonlinear
Optimization. New York, NY: Elsevier North-Holland, Inc.
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control. 8: 338-
353.

Stephany Coffman-Wolph MAICS 2016 pp. 33–39

39

