Auto-generation of Model Visitor Frameworks

Adolfo Sanchez-Barbudo Herrera

Department of Computer Science, University of York, UK.
asbh500@york.ac.uk

Abstract. The visitor pattern, a well known Gang of Four design pat-
tern, provides a suitable way to add operational behaviour to models.
However, as soon as the number of metamodels and visitor implemen-
tations start to grow, some of the pattern shortcomings make its usage
less convenient. This paper presents how the synergy between the Visi-
tor pattern and MDE has been addressed by two open source projects:
Eclipse OCL and QVTd. As a result, a visitors framework generator is
proposed to alleviate some of the visitor pattern shortcomings.

1 Challenge

The visitor pattern is one of the behavioural patterns described in the Gang of
Four software design patterns [1]. The flexibility that this pattern provides, by
the means of allowing the decoupled addition of behaviour to a collection of ob-
jects without any need to change their corresponding classes, makes this pattern
attractive in object oriented software design and related research [2]. In Model-
Driven Engineering (MDE), research on visitors has received less attention, with
a few known works [3, 4].

Whereas applying the visitor pattern to models might be considered straight-
forward in the Eclipse Modeling Framework (EMF) [5], it turns to be a task that
is, at least, as tedious as performing it in a traditional programming language.
For example, every X EClass requires an accept EOperation; a visitor EClass
requires a wvisitX EOperation for every X EClass. If the number of involved
metamodels (and subsequently metaclasses) grows large, the shortcomings asso-
ciated to the visitor pattern hinder its adoption.

Provided the potential benefits that the visitor pattern can bring to models,
this paper focuses on the challenge presented by the limitations of using the
visitor pattern in MDE, which we propose to overcome by reducing the amount
of manual intervention required to realize the visitor pattern. Specifically, this
challenge has been tackled in the context of the Eclipse OCL! and Eclipse QVTd?
projects by the means of a visitors framework generator.

! https://projects.eclipse.org/projects/modeling.mdt.ocl
2 nttps://projects.eclipse.org/projects/modeling.mmt.qvtd

2 Why a Visitors Framework Generator in MDE?

Eclipse OCL and Eclipse QVTd are two projects conceived to support MDE
by providing model management languages and tools, in which a substantial
number of EMF based metamodels are involved. The reasons of introducing
model visitors come from the original visitor pattern: the operational behaviour
of a model is centralised in a visitor class; and the metamodel doesn’t need to
be changed every time a new behaviour is needed, which is convenient to third
party consumers who can not alter the metamodel at all.

However, given the substantial number of metamodels and comprised meta-
classes, introducing the pattern is rather a tedious task. Additionally, evolving
the visitors along with any change to the underlying metamodel is troublesome,
as identified in the original design pattern [1]. To alleviate this situation, MDE
techniques can be adopted. In particular, automated code generation can be
used to produce visitor frameworks from metamodel definitions. On top of the
framework, actual visitor implementations can provide particular operational
behaviours (e.g. evaluators, pretty printers, etc.).

With the proposed generator we not only leverage the barrier of model vis-
itors creation, but also we can alleviate some of the shortcomings of the visitor
pattern in some metamodel evolution scenarios [4]: for example, by having an
automatically generated framework of visitors for a specific metamodel, we could
keep existing visitor implementations working when a new metaclass is added,
by just regenerating the model specific visitors framework.

3 Visitors Framework Generator in Eclipse OCL/QVTd

In Eclipse OCL there is a MDE-based tool which facilitates the generation of
metamodel-specific visitors framework. The main features to highlight:

High degree of automation: For a given metamodel, the visitor pattern
is weaved into the generated metamodel implementation, so that for every non-
abstract X class an accept method is generated, and whose implementation will
delegate to the corresponding wvisitX method of a Visitor interface, as depicted
by Figure 1.

@0verride
public <R> R accept (EHonMull Visitor<R> wvisitor) {
retorn visitor.visitExpressionIn(CL (this);

Fig. 1. Generated accept method for an FEzpressionInOCL class

Additionally, a framework of abstract visitors with various purposes? is also

generated. Figure 2 gives a brief overview of the framework for a particular OCL
metamodel.

a f} org.eclipse.oclatext.completeocles.util
> DS AbstractCompleteQCLCSContainmentVisitor,java
> DS AbstractCompleteQCLCSLeft2RightVisitor,java
> DS AbstractCompleteQCLCSPostOrderVisitor.java
> ES AbstractCompleteQCLCSPreCrderVisitor.java
> DE, AbstractCompleteQCLCSVisitor,java
> DS AbstractDelegatingCompleteOCLCSVisitor.java
> [}S AbstractBxtendingCompleteOCLCSVisitor java
H DS AbstractMullCompleteOCLCSVisitor java
> EE, CompleteQCLCSAdapterFactory.java
>[4 CompleteQCLCSSwitch,java
> [B CompleteOCLCSVisitor java
> [fa DecorableCompleteOCLCSVisitor.java

Fig. 2. Generated visitors framework for a particular OCL meta-model

Support for derived metamodels: QVT languages reuse OCL as their
expression languages. Therefore, the tooling provides generation of visitors which
can extend the visitors generated for a different metamodel they might extend
and/or use. Figure 3 shows a snippet of a particular QVTd visitor of the gener-
ated visitors framework.

An AbstractExtendingQVTcoreBaseCSVisitor provides a default imp
* visitXxx method that delegates to the visitYyy method of the fi
* super class, (or transitively its first super class’ first supe
* until a non-interface super-class is found). In the absence of
* suitable first super class, the method delegates to visiting().
iy

public abstract class AbstractExtendingQVTcoreBaseCSVisitor<R, C>
extends AbstractExtendingEssentialOCLCSVisitorkR, 3
implements QWTcoreBaselSVisitor<R>

e

* Initizlizes me with an initial walue for my result.

* f[iparam context my initial result wvalue

protected AbstractExtendingQVTcoreBaseCSVisiter(@MonNull C cor
super(context);
}

Fig. 3. Excerpt of a derived visitor

3 Getting into details of the framework is beyond the scope of this paper

4 Visitors Framework Generator Implementation

As the reader might understand, we can’t get into details in this short paper
about the generated visitors framework or provide implementation details about
the own generator. However, in this section we give a brief overview of the
developed tooling as well as mentioning some of the involved third party tools.

Figure 4 depicts the overall approach. The input @ to the generator is an
EMF [5] GenModel filer referring to an Ecore file that corresponds to the target
meta-model. The GenModel contains additional annotation to provide infor-
mation relevant to the generator (e.g. fully qualified name for the Visitor and
Visitable interfaces). The generator @ is based on the Model Workflow Engine
(MWE) [6] technology, and the developed MWE components are responsible for:

— Generating a "visitable’ model java implementation ©. This involves invok-
ing the EMF generator, which will generate the enhanced implementation
by inserting the corresponding accept methods for every model class. We
developed EMF JET templates to achieve this insertion.

— Generating the model-specific visitors framework @. This includes generat-
ing the Visitor and Visitable interfaces and a set of default abstract visitors
implementation. Giving implementation details about these default visitors
goes beyond the goal of this paper.

With all of this, creating specific behaviours for the model can be achieved
by implementing manual visitors @ that extend the appropriate default visitor
of the generated framework.

Alternatively, by the means of additional MDE-based tools ®, we could also
generate more specific visitors @ that comprise a particular modelled behaviour.

(2) i Visitable (3) : More (6
|:>i Model : MDE-based
i Implementation i generators
) S S @
.ecore and p e é"l A~ :
.genmodel E> VFG ! Model-Specific Visitors i i Generated)
! Framework !] Visitors 3
| [:]
i " YA
E> 'l Visitor/ Abstract | (5)
[Manual ' Visitable Visitors Vel
i isitors
— .| Interfaces Impl.
i1 Generated I

Fig. 4. Overall overview of the visitors framework generator

5 Visitors usage in Eclipse OCL/QVTd

To conclude, we provide an overview about how the visitors framework generator
is extensively used within Eclipse OCL and QVTd projects. Table 1 provides
detailed measurements about the generated visitors usage. The table variables
are defined as follows:

— V,: Denotes the number of involved metamodels on which the visitor pattern
has been applied.

— V,: Denotes the number of visitors classes which are automatically generated
as part of the visitors framework?.

— Vin: Denotes the number of visitors classes which are manually implemented,
and which rely on the automatically generated visitors framework.

Project‘Vn‘Va‘Vm
OCL 7 48|67

QVTd [10(89| 76
Table 1. Measurements of visitors usage in Eclipse OCL & QVTd

Given the high amount of visitor implementations, and the substantial auto-
generated infrastructure that the model specific visitors frameworks provide, it
can be concluded that both the visitor pattern and the framework generator
have turned to be fundamental within the Eclipse OCL and QVTd projects.

Acknowledgement. I gratefully acknowledge the support of the Engineer-
ing and Physical Sciences Research Council (UK) via the LSCITS initiative.

References

1. Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson. Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1994.

2. Tanumoy Pati and James H Hill. A survey report of enhancements to the visitor
software design pattern. Software: Practice and Ezxperience, 44(6):699-733, 2014.

3. Holger Krahn, Bernhard Rumpe, and Steven Volkel. Monticore: a framework for
compositional development of domain specific languages. International journal on
software tools for technology transfer, 12(5):353-372, 2010.

4. Adolfo Sanchez-Barbudo Herrera, Edward D. Willink, Richard F. Paige, Louis M.
Rose, and Dimitrios S. Kolovos. Automatic application of visitors to evolving
domain-specific languages. In Sam Simpson, editor, Sizth York Doctoral Sympo-
stum, pages 46-54. University of York, October 2013.

5. Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF': Eclipse
Modeling Framework. Addison-Wesley, 2008.

6. Modeling Workflow Engine 2 Documentation. On-Line: https://eclipse.org/
Xtext/documentation/306_mwe2.html.

4 Interfaces such as Visitor/Visitable are excluded

