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Abstract—The impact of mobile technologies on healthcare is
particularly evident in the case of self-management of chronic
diseases, where they can decrease spending and improve the
patient quality of life. In this position paper we propose the
adoption of agent-based modelling and simulation techniques as
built-in tools to dynamically monitor patient health state and
provide recommendations for self-management. To demonstrate
the feasibility of our proposal we focus on Type 1 Diabetes
Mellitus as our case study, and provide some preliminary
simulation results.

I. INTRODUCTION

The introduction of information and communication tech-
nologies into healthcare systems is revolutionising medicine.
In particular, the emergence of mobile things connected to the
Internet even while moving around – the Internet of Mobile
Things (IoMT) [1] – is opening new frontiers in healthcare.
This field is often called mobile Health [2], [3]—m-Health, in
short: humans are typically equipped with wearable devices
(such as smart watches, wrist bands, smartphones, etc.) that
measure, store, transmit, and possibly also elaborate vital
parameters of the person, providing specific information about
individual’s health state. M-Health is expected to have a big
impact in healthcare, since it facilitates clinical data collection,
access, sharing, and elaboration.

A specific issue in m-Health is the self-management of
chronic diseases. Chronic diseases, such as diabetes, respi-
ratory illnesses, and cardiovascular diseases, constitute the
most common and costly health problems of our society:
in 2013, the Pan American Health Organization (PAHO) in
collaboration with the World Health Organization (WHO),
estimated chronic diseases to consume a huge percentage of
total health-care spending [4]. Also, they are an important
source of disability, as they strongly impact the quality of
life of patients with ad-hoc dieting, sport activity, regular
treatments, social and work life adjustments, and significant
emotional consequences.

To reduce the cost of health care systems and improve
the quality of the patient daily life, an increasing number of
interventions have been developed in the last years to transfer
aspects of chronic illness control from the caregiver to the
patients themselves. These are characterised by substantial
responsibility taken by patients, and are commonly referred to

as self-management interventions [5], [6]. M-health has a big
potential in this context, mainly because mobile devices are
commonly equipped with hardware and software technologies
for real-time data acquisition, storage, sharing, and elabora-
tion, thus enabling [7]:

• healthcare professionals to be continuously updated on
the patients health by receiving data such as vital signs
measures decreasing the occasions for patients to travel
to health facilities;

• patients to be supported in daily decisions by instructions
delivered by Personal Digital Assistant (PDA) applica-
tions that are based on the elaboration of these data.

In this paper we focus on candidate algorithms and computa-
tional technologies for the analysis and elaboration of patient
data. While literature typically refers to technologies like big
data, machine learning, and decision support systems [8], we
here advocate the adoption of modelling and simulation tech-
niques, and agent-based modelling and simulation (ABMS) in
particular. We claim that the possibility of modelling how a
complex system – such as the human body – evolves over time,
is crucial for providing predictions of the health conditions
of the patient in the near and far future. Such predictions
are useful input for identifying a set of corrective actions the
patient should take for a better health and to prevent disease
exacerbation. Adopting ABMS as a tool associated to mobile
devices could allow patients to monitor their own health state,
and provide feedbacks driving them in their daily life.

The main objective of this work is to demonstrate the
feasibility of our proposal. To this end, we present an agent-
based model for self-management of Type 1 Diabetes Mellitus.
Diabetes is a chronic disease that affects the physiological
mechanisms controlling glucose concentration in the blood
plasma. It occurs when the normal insulin-glucose-glucagon
regulatory mechanism is affected, because either the pancreas
does not release insulin (Type 1) or body cells do not properly
use insulin to uptake glucose in the blood plasma (type 2) [9].

In the following we first motivate our work, analysing the
role of IoMT for disease self-management, then present and
evaluate our proposal with preliminary experiments showing
the data-driven modelling of the dynamics of glucose, insulin,
and glucagon in a healthy person and Type 1 DM patient.
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II. IOMT AND M-HEALTH

IoMT holds promise to pave the way for a new era in
medicine, changing the way health-services will be provided
[3], [2], [10]: the adoption of mobile devices, equipped with
sensors and internet connectivity, plays a key role enabling
healthcare services to anyone, anywhere, and anytime, as from
the definition of [11]: “Pervasive healthcare is the conceptual
system of providing healthcare to anyone, at anytime, and
anywhere by removing restraints of time and location while
increasing both the coverage and the quality of healthcare”.

A number of improvements are expected in healthcare by
the introduction of IoMT:

• increasing accessibility of health-services, by guarantee-
ing a wider coverage; most in fact own a mobile device
with which they can access diverse services devoted to
improving their health, from the simplest cases of SMS
reminders with dates of appointments, SMS or emails
for communications from the health professionals, SMS
or emails with medical reports, to the more complex
cases of data acquisition (via sensors), transmission, and
elaboration;

• decreasing the cost of healthcare, since people can avoid
to frequently move towards healthcare facilities and, care-
givers can be automatically updated in case of unexpected
changes;

• supporting chronic disease self-care, by enabling data col-
lection, sharing and disease tracking, to support diagnosis
and personalised treatment —well turn to in more detail
on that in the following;

• providing suitable tools for timely managing healthcare
in emergencies.

III. SELF-MANAGEMENT OF CHRONIC DISEASES

Self-management of chronic diseases is defined as the
active involvement of patients in their treatment with day-to-
day decisions about different actions to be taken: control of
symptoms, take medicines, make lifestyle changes, undertake
preventive actions. It is thus characterised by an extensive
responsibility that the patients need to take on [6], [12]. Since
the expected outcome of the patients self-management is to
maintain a satisfactory quality of life, various initiatives are
devoted to identifying how to support patients in their daily
decisions, without leaving them alone, i.e., guaranteeing health
professionals intervention by automatically issuing emergency
alarms.

IoMT technologies can significantly improve disease self-
management [13], [14]. However, notwithstanding the explo-
sive improvement of technology, which is crucial in data
acquisition by built-in ad hoc sensors, data sharing, and patient
interactions, there is a considerable lack of well-established
models, theories, and algorithms capable of effectively sup-
porting disease self-management in m-Health. Most of the
available literature proposes algorithms and theories from
computer science for elaborating data, such as complex event
processing, data mining tools, big data technologies, machine
learning, and decision support systems [8].

In this paper we propose the adoption of modelling and
simulation tools that are gaining acceptance in medicine as
a valuable support for decision making, since they provide
both, short-term and long-term clinical predictions of patient
health [15]. Such predictions provide information for making
the most informed choices between available treatments and
interventions. In particular, among the different simulation
approaches, we here propose the adoption of the agent-based
model (ABM).

A. Agent-Based Model

In the literature, agent-based systems, and MAS in par-
ticular, are considered an effective paradigm for modelling,
understanding, and engineering complex systems [16], and
biological systems in particular [17], since they provide a basic
set of high-level abstractions that make it possible to directly
capture and represent main aspects of complex systems, such
as interaction, multiplicity and decentralisation of control,
openness, and dynamism [18], [19], [20], [21].

In the pioneering work of Bonabeau [22], an ABM describes
the system from the perspective of its constituent units. More-
over he states that:

The benefits of ABM over other modeling tech-
niques can be captured in three statements: (i) ABM
captures emergent phenomena; (ii) ABM provides
a natural description of a system; and (iii) ABM
is flexible. Emergent phenomena result from the
interactions of individual entities. By definition, they
cannot be reduced to the systems parts: the whole is
more than the sum of its parts because of the inter-
actions between the parts. An emergent phenomenon
can have properties that are decoupled from the
properties of the part. [...] ABM is, by its very
nature, the canonical approach to modeling emergent
phenomena: in ABM, one models and simulates the
behavior of the systems constituent units (the agents)
and their interactions, capturing emergence from the
bottom up when the simulation is run. [22]

This is why we consider ABM as a suitable approach for
modelling the complex dynamics of disease physiopathology.

B. Self-Management System Model

We model the whole healthcare system as an agent-based
system composed of two levels, as shown in Figure 1:

1) a high-level model that represents patients and their
interactions with a tool supporting diabetes self-
management, such as a PDA;

2) a disease model that represents the disease physiopathol-
ogy and predicts the state of the patient in the near and
far future.

The high-level model reproduces the behaviour of patients,
and how they respond to feedback received through their per-
sonal devices. We assume that PDAs acquire (1) information
from the individual about the composition of their meals, (2)
information about individual physical activity from embedded
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Figure 1. Two levels model of the self-management system

sensors, such as accelerometers, and finally (3) information
about glycemia values, gathered wirelessly from a wearable
device. These data are used as input for the chronic disease
model. In the following we demonstrate the feasibility of our
proposal by adopting Type 1 Diabetes Mellitus as our case
study.

IV. BACKGROUND ON TYPE 1 DIABETES MELLITUS
PHYSIOPATHOLOGY

Diabetes mellitus, diabetes in short, is a chronic metabolic
disorder characterised by an excessive amount of sugar cir-
culating in the blood plasma, i.e., hyperglycaemia, for a
prolonged period. Diabetes is strictly related to insulin defects.
Insulin is a hormone produced by the β-cells of the pancreas;
it has a crucial role in the absorption of glucose in two-
third of body cells, but mainly in fat, liver, and muscle
cells, where glucose is a necessary source of energy for the
cells to perform their activities. Diabetes is due to either an
autoimmune process, where pancreatic β-cells do not produce
enough insulin (Type 1 diabetes mellitus, Type 1 DM in short),
or else the cells of the body develop a sort of “resistance”
to insulin action, thus not responding properly to the insulin
produced (Type 2 DM). In the following, we first describe the
metabolic system, then how the physiological functions are
affected by the lack of insulin, as in Type 1 DM.

A. Metabolic System

Every cell in our body needs fuel in order to fulfil its specific
function. Glucose is the main source of such energy. It is
obtained firstly from the food we eat (and drink, possibly)
via the intestinal absorption, which ensures food to be broken
down into the monosaccharide form of glucose that is then

released into the blood. The blood flow ensures that glucose
is delivered to all cells of our body. Finally, glucose diffuses
from the blood into cells where it is used as an energy source
via the aerobic respiration, or where it is stored as glycogen,
a polysaccharide of glucose composed of varying numbers
of glucose units, depending on the cell type (for instance,
glycogen of muscle cells is composed of around 6.000 units
of glucose, while liver cells require 30.000 units of glucose to
create a glycogen molecule).

Plasma glucose levels are normally maintained within a nar-
row range (70−100mg/dl) through the combined antagonistic
action of the two pancreatic hormones, insulin and glucagon,
which enable the uptake and release of glucose from the blood
into cells and vice-versa:

Insulin — It is a hypoglycaemic hormone, i.e., it is re-
sponsible for enabling the uptake of glucose, mainly
into fat and muscle cells, thus reducing the level of
glucose in the blood. It is produced by pancreatic
β-cells as a function of glucose concentration in the
blood (formally called glycaemia): a basal secretion
of insulin from β-cells is always observed, ensuring
the availability of glucose at all times; instead, sinks
of postprandial secretions are observed, i.e., when
the blood glucose levels are high. Secretions finally
stop in case of hypoglycaemia.

Glucagon — It is a hyperglycaemic hormone that promotes
the release of glucose from the liver cells into the
blood. It is produced by pancreatic α-cells when
glycaemia is low, normally in fast periods, such as
during the night. Therefore, α-cells behave in the
opposite way than β-cells: they have high secretion
rates when the blood glucose concentrations are low,
and low secretion rates when the glucose levels are
high [9].

Figure 2. Metabolic system c© 2001 Benjamin Cummings
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The metabolic processes and the normal regulation of blood
glucose levels are depicted in Figure 2.

B. Disease Physiopathology

Type 1 DM is characterised by the loss of β-cells. It is
mainly caused by an autoimmune process, where T-cells of
the immune systems attack and destroy β-cells, thus leading
to insulin deficiency. The insulin-dependent uptake of glucose
in cells is no more possible, and the main consequences are a
high level of blood glucose and low level of fuel for body cells.
Typical diabetes complications include cardiovascular disease,
stroke, chronic kidney failure, foot ulcers, and damage to the
eyes. However, prevention and treatment are possible: Type 1
DM must be firstly managed with insulin injections; however,
medical evidence shows that patients affected by Type 1 DM
benefit from a healthy diet, sport activity, maintaining a normal
body weight, strict controlling glycaemia, and avoiding use of
tobacco. For this reason, Type 1 DM is subjected to several
initiatives for supporting the self-management of the disease.

V. TYPE 1 DM SELF-MANAGEMENT

Diabetes is nowadays one of the most common and known
chronic disease. Data from the World Health Organization
(WHO) [23] refers that 1.5 million of deaths are attributed
to diabetes each year, and that 9% of the adults population is
affected by diabetes. For this reason, the self-management of
diabetes is nowadays supported by a wide range of systems
exploiting mobile health technologies, mainly aimed at guiding
patients towards healthy lifestyle changes [10], [24], [25]. The
main goal is to find solutions for identifying personalised
therapies and lifestyle suggestions for patients to improve their
outcome.

In the following we present an ABM of Type 1 DM self-
management. The whole model architecture is depicted in
Figure 3: from an initial state that reproduces the health
condition of a patient, a low level simulation of the metabolic

Figure 3. Simulation Architecture

system (described in the following) is performed. From the
simulation results, feedbacks are provided to the patient, who
could then modify his/her behaviour accordingly, if needed.

A. Type 1 DM Model

We model the metabolic system as a set of interacting
agents, where each agent is a set of cells conducting the
same activities. In particular we include the main organs (or
set of cells) involved in metabolic processes—as shown in
Figure 1. Agents then interact via an interaction medium,
the environment, that models the bloodstream where agents
release and retrieve molecules.

We consider the following agents:
• intestine-cells agent — it absorbs and breaks down food

substances, releasing the glucose derived by digestion in
the bloodstream

• β-cells agent — if glucose level in the blood exceeds
the threshold of 75 mg/dl it secretes insulin in the
bloodstream; this process ends as soon as glycaemia get
back into physiologic values

• α-cells agent — if glucose level in the blood falls below
the threshold of 70 mg/dl it secretes glucagon in the
bloodstream; this process ends as soon as glycaemia get
back into physiologic values

• liver-cells agent — if glucagon is available in the blood,
it begins the process of glycogenolysis, breaking down
glycogen molecules and realising glucose in the blood;
plus, if glucose level in the blood exceeds the threshold of
75 mg/dl, it uptakes glucose from the blood and begins
the process of glycogen synthesis

• muscle-cells agent — if insulin is available free in the
bloodstream, it absorbs glucose and begins the process
of glycogen synthesis; plus, during physical exercises, it
consumes – according to the type of activity – a balanced
quantity of glycogen

• brain-cells agent — it continuously absorbs glucose from
the blood

The model of Type 1 DM is hence obtained by simply stopping
the β-cells agent.

B. Early Simulation Results

The model is implemented on top of the MASON infrastruc-
ture [26]. We here presents the results obtained with the low-
level model, showing that it correctly reproduces the dynamic
of the metabolic system in both the cases of healthy and Type 1
DM patient. We leave to future work the implementation and
verification of the whole self-management system.

Figure 4 shows the dynamic over 3 days of glucose, insulin,
and glucagon concentration in blood in a healthy patient.
There, the glycaemia value varies during the day following
meals (breakfast, morning snack, lunch, afternoon snack, and
dinner). Insulin and glucagon follow these dynamics: (1)
insulin increases as a response of glucose increase, while (2)
glucagon is secreted mainly during the night when patient does
not eat.
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Figure 4. Simulation results for a healthy patient

Figure 5 shows the dynamic over 3 days of glucose, insulin,
and glucagon concentration in blood in a Type 1 DM affected
patient. There, the glycaemia value is no longer under control,
and the patient enters soon into a hyperglycaemia state. Insulin
is no longer produced, and glucagon also is no longer secreted,
since glucose concentration is over the threshold.

We plan to interpret these dynamics as predictions on
the state of the patient in the close future, and to use this
information as input for algorithms – such as artificial neural
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Figure 5. Simulation results for a patient with Type 1 DM

network and rule-based systems – that autonomously identifies
suggestions on the best behaviour that the patient should
follow in order to contain the Type 1 DM effects.

VI. CONCLUSION

In this position paper we explored some future directions
in the field of self-management of chronic diseases. Given
the widespread diffusion of chronic diseases, a set of specific
interventions are suggested by the health organisations, such
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as PAHO and WHO. Among the others, self-management is
identified as a promising approach to decrease health spending
in chronic diseases and to improve the patients quality of
life. IoMT seems to be crucial for implementing the idea
constituting the self-management approach in the real world.

In particular here we propose the adoption of ABMS as a
built-in tool – within a IoMT infrastructure – that can auto-
matically characterise health state of patients, providing them
with feedbacks for their daily life. As our case study, we focus
on a specific disease, the Type 1 Diabetes Mellitus, building
our first model of chronic disease self-management, thus also
showing the general feasibility of our approach. Finally we
provide some preliminary simulation results illustrating the
behaviour of our model of the metabolic system both in a
healthy individual and in a Type 1 DM patient.
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