LIXR: Quick, succinct conversion of XML to
RDF

John P. McCrae' and Philipp Cimiano?

nsight Centre for Data Analytics, National University of Ireland, Galway
john@mccr. ae
2Cognitive Interaction Technology, Cluster of Excellence, Bielefeld University
cimiano@cit-ec.uni-bielefeld.de

Abstract. This paper presents LIXR, a system for converting between
RDF and XML. LIXR is based on domain-specific language embedded
into the Scala programming language. It supports the definition of trans-
formations of datasets from RDF to XML in a declarative fashion, while
still maintaining the flexibility of a full programming language environ-
ment. We directly compare this system to other systems programmed
in Java and XSLT and show that the LIXR implementations are signifi-
cantly shorter in terms of lines of code, in addition to being conceptually
simple to understand.

Keywords: RDF, XML, Scala, format conversion

1 Introduction

An important aspect towards realizing a web of data is the conversion of legacy
resources into the Resource Description Framework [2, RDF]. There are tools and
W3C recommendations! supporting the transformation of relational databases
into RDF (e.g. D2RQ [1]), and even declaratively languages such as R2RML2.
Besides the relational model, legacy data represented in XML is quite frequent.
While there exist generic mechanisms for transforming XML data into some
other form, such as Extensible Stylesheet Language Transformations (XSLT),
these mechanisms are not ideal for the conversion into RDF for the following
reasons:

1. The generated RDF typically contains more triples than necessary due to
the fact that generic converters create both a property and a node for each
individual element in the XML.

2. It is uncommon for XML documents to reuse URLs from other resources.
For example it is typical for a resource to reuse the data categories of Dublin
Core [7], but to recast them under a new namespace, that is not compatible
with RDF.

! nttp://www.w3.org/TR/rdb-direct-mapping/
2 http://www.w3.org/TR/r2rml/

3. XML provides no generic mechanisms for the representation of external links
by URIs, using a proprietary linking schema instead such as XLink [3].

Further, transformation from XML to some other format are typically spec-
ified by means of XSLT, an extension of XSLT such as Krextor [5], a specific
mapping language such as RML [4] or by writing a short script in some pro-
gramming language. Thus, these transformations are generally very verbose, as
they must repeat many standard RDF modelling structures, and unidirectional,
as they are not well-formulated to cope with the polymorphic nature of RDF.

In order to meet these shortcomings, we developed a new system for specify-
ing the translation of XML documents into RDF and vica versa, which we call
the Lightweight Invertible XML and RDF language (LIXR, pronounced ‘elixir’).
LIXR is significantly more compact than existing systems and allows for trans-
formation in both the direction of RDF to XML and from XML to RDF.

2 The LIXR Language

The LIXR language was created as a domain-specific language based on the
Scala Language. This choice was made as Scala has an exceptional amount of
freedom in expression, allowing us to compactly and clearly state transforma-
tions, although there would be some learning curve for those not familiar with
the Scala language.

The basic structure of LIXR is inspired by XSLT and is based around han-
dlers, which describe the action that should be taken when a specific XML
element is encountered. These handlers are stated by linking an XML element
name to a list of generators with the —-> operator. For example the following
LIXR expression can be used:

xml.language --> (
dc.language > content

)

This associates the XML element <xml:language> to generating the triple s
dc:language "c", where s is the current subject node, and c is the text content
of the node® More typically the converter works by means of two features: firstly,
nodes instruct the RDF generation to create a new node in the RDF graph and
use it as subject for all triples from this point in the generation. Secondly, the
handle tells the XML parser to look for all children matching a given element
and call the appropriate handler for each matching case. For example:

xml.metadata --> (
node("http://.../metadata") (

3 Note that for technical reasons the . is used to conjoin the namespace to the local
name instead of the customary :. This, in fact, is a dynamic call, a relatively recent
feature of the Scala language.

handle (xml.language),
handle (xml.source)

)

This code asks the RDF generator to create a new root node with the given
URI. The parser then looks for matching children and calls the appropriate
handlers (such as in the first example). More detail of the language can be found
on Github?.

Name Tags Implementation LoC LoC/Tag
TBX 48 Java 2,752 57.33
CMDI 79 XSLT 404 5.11
CMDI 79 XSLT (No closing tags) 255 3.22
CMDI 79 XSLT (Using Krextor [5]) 454 5.75
CMDI 79 RML [4] 339 4.29
CMDI 79 LIXR 176 2.23
TBX 48 LIXR 197 4.10
MetaShare 730 LIXR 2,487 3.41

Table 1. Comparison of XML to RDF mapping implementations, by number of ele-
ments in XML schema, and non-trivial lines of code (LoC)

3 Evaluation

To evaluate the effectiveness of our approach we compared directly with four
other XML to RDF transformations in terms of an objective measure, that is
lines of code. The other transformation programs were written by the lead author
of the project®, and reimplemented using the LIXR language. In particular, lines
of code is easily measured and it has been claimed [6] that the average number of
errors made per lines of code is approximately constant for a given programmer,
regardless of what language he or she is programming in. As such, lines of code
can be a good proxy not only for ease of development but also for software
quality. As such, we measure the code in terms of mon-trivial lines of code,
where a line of code is considered trivial if it only contains closing brackets or
braces or is empty.

We consider three existing XML schemas as targets to be converted into RDF:
the TermBase eXchange format (TBX, ISO 30042:2008), the META-SHARE
schema® for representing very rich metadata about language resource, and the
Component Metadata Initiative (CMDI) used by CLARIN”.

4 https://github.com/liderproject/lixr

5 The lead author has over 5 years experience in all languages

5 http://metashare.ilsp.gr/META-XMLSchema/v3.0/

" http://catalog.clarin.eu/ds/ComponentRegistry/rest/registry/profiles/
clarin.eu:crl:p_1288172614026/xsd

The results of the comparison in terms of lines of code for the datasets and the
different transformations is given in Table 1. The results show that LIXR leads
to significantly shorter code in terms of lines-of-code than the other methods we
attempted. In fact, we observe a 10-fold reduction of effort over directly writing
a converter in a general purpose programming language (Java) and we see a
halving of effort in comparison to using a specialist language (XSLT, Krextor
or RML). In addition, we note that the reduction is such that only a few lines
of code are needed for each element class. We note that all of the systems ran
quickly over the data we tested and thus we do not believe that processing time
or memory are radically different between these implementations.

4 Conclusion

We have presented a declarative yet flexible approach supporting the conver-
sation of XML to RDF. The approach is based on a domain-specific language
embedded in the Scala programming language. We have shown that this con-
verter supports the implementation of concise and shorter conversion programs
than with other transformation languages.

In addition to the reduction in effort using this approach, we also note several
other advantages of the LIXR approach that could easily be added, due to its
declarative nature, including stream processing of XML, reverse mapping from
RDF to XML and extraction of an ontology from the mapping.

Acknowledgments

References

1. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs.
In: Proceedings of the 3rd international semantic web conference (ISWC2004). vol.
2004 (2004)

2. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax.
W3C recommendation, World Wide Web Consortium (2014)

3. DeRose, S., Maler, E., Orchard, D.: XML linking language (XLink) version 1.0.
W3C recommendation, World Wide Web Consortium (2001)

4. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: A generic language for integrated RDF mappings of heterogeneous
data. In: Linked Data on the Web (2014)

5. Lange, C.: Krextor—an extensible XML — RDF extraction framework. Scripting
and Development for the Semantic Web (449), 38 (2009)

6. McConnell, S.: Code Complete: A Practical Handbook of Software Construction,
Second Edition. Microsoft Press (2014)

7. Weibel, S., Kunze, J., Lagoze, C., Wolf, M.: Dublin core metadata for resource
discovery. Request for Comments 2413 (198)

