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Abstract. In this paper we report about the 2016 competitive evalua-
tion of quantified Boolean formulas (QBFs) solvers (QBFEVAL’16), the
last in a series of events established with the aim of assessing the ad-
vancements in reasoning about QBFs. Aim of this preliminary report is
to show at a glance design and results of QBFEVAL’16.

1 Introduction

Competitive events in the field of Boolean reasoning have influenced related
research agendas and shaped the course of tool developments. Nowadays, orga-
nized evaluations are popular for several subfields of Boolean reasoning, including
propositional satisfiability (SAT) [1, 2], quantified Boolean formula (QBF), and
satisfiability modulo theory (SMT) solving [3].

The 2016 competitive evaluation of solvers for QBFs (QBFEVAL’16) is the
last in a series of events established with the aim of assessing the advancements
in the field of QBF reasoning and related research. With respect to the previous
event (the QBF Gallery 2014 [4]) we witnessed a noticeable increase in the num-
ber of submitted systems (44), observing a growth in the variety of techniques
that are used by the solvers. This fact confirms the vitality of the research on
QBF reasoning tools.

The paper is structured as follows. In Section 2 we briefly describe the de-
sign of QBFEVAL’16, the systems that participated in the evaluation, and the
instances that we used to construct the testset. Section 3 announces the compe-
tition winners and presents the results of QBFEVAL’16 arranged solver-wise.

2 The setup: tracks, solvers, and formulas

QBFEVAL’16 is composed of 8 different tracks described in the following

1. Prenex CNF (PCNF): it is comprised of prenex CNF formulas obtained by
encoding various automated reasoning tasks into QBF. Submitted solvers
must read instances must using the QDIMACS 1.11 input format.

1http://www.qbflib.org/qdimacs.html



2. Prenex non-CNF (PNCNF) is a track devoted to evaluate solvers supporting
the QCIR input format [5] for prenex non-CNF instances.

3. 2QBF is a track in which instances in QDIMACS 1.1 format with a single
alternation ∀∃ are evaluated.

4. Incremental Solvers: a track aimed at the evaluation of incremental QBF
solvers. This track has been canceled because only one solver has been sub-
mitted.

5. Evaluate & Certify (EC): aim of this non-competitive track is to assess the
current state of the art about the certification of QBFs in QDIMACS 1.1.

6. Solver Portfolio (SP): in this track it has been evaluated performance of
systems portfolios taking as input QBFs in QDIMACS 1.1 format.

7. Parallel QBF Solvers (PS): aim of this non-competitive track is to assess
the current state of the art about parallel QBF solvers. In this track, solvers
partecipated accepting formulas in QDIMACS and/or in QCIR. The number
of cores available for each solver is 4.

8. Random QBFs (RQBF) is a track devoted to the evaluation of randomly
generated QBFs instances in QDIMACS 1.1.

Table 2 summarizes the solvers submitted to QBFEVAL’16. The salient fea-
tures of the participants are briefly described in the following.

AIGSolve [6] uses And-Inverter Graphs (AIGs) as the main data structure,
and AIG-based operations to reason about the input formula. The solver
includes preliminary phases devoted to simplification, structure extraction
and early quantification of the input formula.

Aqua is a search-based QBF solver for prenex conjunctive normal form (PCNF)
formulas. Literal propagation is performed through unit, pure, and don’t care
literal detection using lazy data structures [7]. For backtracking, a conflict
and solution driven constraint learning approach [8, 9] is used. A restart
strategy [10] and phase saving [11] are also implemented. Aqua comes in
three versions, namely

– Aqua-F3V, with common first UIP (F-UIP) [12] learning, 3 literals
watching, and VSIDS decision heuristic [13];

– Aqua-S2V, with first semantic UIP (S-UIP) learning, 2 literals watch-
ing, and VSIDS decision heuristic;

– Aqua-S3O, with S-UIP learning, 3 literals watching, and OCCS decision
heuristic [13].

Finally, the solver is coupled with the QBF preprocessor sQueezeBF [14],
which is given a timeout of 100 seconds.

aqme [15] is a multi-engine solver, i.e., a tool using machine learning techniques
to select among its reasoning engines the one which is more likely to yield
optimal results. The reasoning engines of aqme are a subset of those submit-
ted to QBFEVAL’06, while engine selection is performed according to the
adaptive strategy described in [15]. It has been also submitted a prototype
version coupled with sQueezeBF (SqueezeBF+aqme).

areqs, an implementation of the 2QBF algorithm described in [16].



Solver Track Author(s)

AIGSolve PCNF C. Scholl, F. Pigorsch
Aqua-F3V, Aqua-S2V, PCNF, RQBF P. Marin
Aqua-S3O
aqme*, SqueezeBF+aqme* SP L. Pulina, A. Tacchella
areqs 2QBF M. Janota
aspq* 2QBF G. Amendola, C. Dodaro, F. Ricca
qesto PCNF, RQBF M. Janota
qestos, rareqs PCNF, 2QBF, RQBF M. Janota
cadet 2QBF M. N. Rabe
caqe-minisat, caqe-picosat PCNF, RQBF L. Tentrup, M. N. Rabe
caqe-minisat-cert, EC L. Tentrup, M. N. Rabe
caqe-picosat-cert
caqe-minisat-par, PS L. Tentrup, M. N. Rabe
caqe-picosat-par
caqe-portfolio SP L. Tentrup, M. N. Rabe
CheQ* EC M. Narizzano, C. Peschiera,

L. Pulina, A. Tacchella
depqbf-v1, depqbf-v2, PCNF, 2QBF, RQBF F. Lonsing
depqbf-v3
depqbf-cert-v1, depqbf-cert-v2 EC F. Lonsing
dynQBF 2QBF G. Charwat, S. Woltran
ghostQ-cegar, ghostQ-plain PCNF, PNCNF, 2QBF W. Klieber
hiqqer1, hiqqer3, PCNF, 2QBF, RQBF A. Van Gelder, S. Wood
hiqqer1LDSQ*
hiqqerFork PS A. Van Gelder
HordeQBF PS T. Balyo, F. Lonsing
iProver-QBF, PCNF, 2QBF, RQBF K. Korovin
iProver-QBF-bloqqer
MPIDepQBF PS C. Jordan, L. Kaiser,

F. Lonsing, M. Seidl
par-pd-depqbf PS U. Egly, F. Lonsing and J. Oetsch
quabs-minisat, quabs-picosat PNCNF L. Tentrup
qsts, xb-qsts PCNF, PNCNF, 2QBF, RQBF B. Bogaerts, T. Janhunen,

S. Tasharrofi
rareqs-nn PNCNF M. Janota
StruQS*, SqueezeBF+StruQS* PCNF, 2QBF, RQBF L. Pulina, A. Tacchella
xb-bid-qsts PCNF, PNCNF, 2QBF, RQBF B. Bogaerts, J. Devriendt,

T. Janhunen, S. Tasharrofi

Table 1. The QBFEVAL’16 systems. The table is structured as follows. The first col-
umn (“Solver”) reports the name of the solver, the second column (“Track”) indicates
the track in which the given solver is involved, while the last column (“Author(s)”)
reports solvers’ authors. Systems denoted with a “*” are hors-concours.

aspq is a proof of concept of a 2QBF solver based on ASP solvers. The in-
put formula is preprocessed with bloqqer [17], and then transformed in a
ground ASP program according to the classical Eiter-Gottlob encoding of
2QBF in ASP [18], so that it can be evaluated by using an ASP solver.

cadet [19] is a solver for 2QBF formulas based on the incremental construction
of the Skolem functions aimed to prove the satisfiability of the formula.

caqe [20] is a CEGAR-based algorithm for QBF. The algorithm builds on
a decomposition of QBFs into a sequence of propositional formulas called
clausal abstraction. Each of the propositional formulas contains the vari-
ables of just one quantifier level and additional variables describing the in-
teraction with adjacent quantifier levels. Two versions of caqe have been



submitted, namely caqe-minisat and caqe-picosat, using minisat [21]
and picosat [22] as SAT solver, respectively. Both versions use bloqqer
as preprocessor. These system are also involved in the EC track – with their
version for certification, namely caqe-minisat-cert and caqe-picosat-
cert –, SP track (caqe-portfolio), and PS track (caqe-minisat-par,
caqe-picosat-par).

CheQ [23] is a suite for QBF certification. It is comprised of QuBE-cert –
an extension of QuBE3.1 able to output certificates – and checker, a tool
aimed at check QuBE-cert output.

depqbf [24] is a search-based solver with conflict-driven clause and solution-
driven cube learning (QCDCL) [8, 25, 26]. The submitted variants of depqbf
are based on version 5.0 [27], with an advanced technique for cube learn-
ing by tightly integrating blocked clause elimination [17, 28] into QCDCL.
The submitted variants of depqbf, namely depqbf-v1, depqbf-v2, and
depqbf-v3, extend version 5.0 by additionally integrating the SAT solver
picosat and the QBF preprocessor bloqqer. PicoSAT and bloqqer are
applied dynamically during the run of QCDCL to derive clauses and cubes.
Two versions of depqbf have been also submitted for the EC track, namely
depqbf-cert-v1, depqbf-cert-v2. The former intended to certify only
unsatisfiable QBFs, while the latter can certificate both satisfiable and un-
satisfiable QBFs. Both versions leverage on the QBFcert [29] framework.

dynQBF [30] is a structure-aware QBF solver. It splits the QBF instance into
sub-problems by constructing a tree decomposition. The QBF is then solved
by dynamic programming over the tree decomposition.

ghostQ [31] is a non-prenex DPLL-based solver which makes use of auxil-
iary variables to force necessary assignments, i.e., to force a value to an
existential (resp. universal) variable if the opposite value directly makes the
formula evaluate to false (resp. true). Additionally, it features a counterex-
ample guided abstraction refinement (CEGAR) based learning to further
prune the search space when the last decision literal is existential (resp. uni-
versal) and a conflict (resp. solution) is detected. Two versions of ghostQ
have been submitted, namely ghostQ-cegar and ghostQ-plain.

hiqqer As reported in [4], the QBF solver hiqqer consists of a csh script that
invokes two preprocessors, plodder and eqxbf, then passes the resulting
file to the complete solver stepqbf. Three versions have been submitted to
the evaluation, namely hiqqer1, hiqqer3, and hiqqer1LDSQ. It has been
also submitted a parallel version (hiqqerFork), running in the PS track.

HordeQBF [32] is an MPI-based parallel portfolio solver with clause and
cube sharing. It is based on the framework of HordeSAT [33], a modular
and massively parallel SAT solver. The authors integrated depqbf 5.0 in
HordeSAT to obtain HordeQBF.

iProver [34] is a general purpose theorem prover for first-order logic based an
instantiation calculus Inst-Gen. It incorporates a QBF solving mode which
is based on a translation of QBF into the effectively propositional fragment
of first-order logic (EPR). The basic translation follows [35], and it is also
implemented a dedicated Skolemization procedure with several optimization.



Two versions of iProver have been submitted, namely iProver-QBF and
iProver-QBF-bloqqer (it uses bloqqer for preprocessing).

MPIDepQBF [36] dynamically creates budgeted subproblems by setting out-
ermost variables. The subproblems are solved using depqbf and its support
for assumptions. The changes to the version described in [36] entail updating
the version of DepQBF used to version 5.0.

par-pd-depqbf. In this solver, the approach to solve quantified circuits in
prenex-normal form relies on running two instances of a QBF solver on a
primal and a dual version of the problem encoding in parallel – as described
in [37]. par-pd-depqbf makes use of preprocessing by means of bloqqer,
and it uses depqbf as back-end PCNF QBF solver.

qesto is an implementation of the QCNF algorithm presented in [38]. The
submitted version includes bloqqer as preprocessor.

qestos is a prototype based on the ideas described in [39]. The submitted
version includes bloqqer as preprocessor.

quabs [40] is a certifying QBF solver based on a CEGAR-based abstraction
algorithm for Prenex non-CNF formulas in QCIR format. Two different ver-
sions have been submitted, namely quabs-minisat and quabs-picosat,
using the SAT solvers minisat and picosat, respectively.

qsts is based on nested SAT solving and theory transformations. The main
tools utilized for translation are:

– sat-to-sat [41], a (non-)prenex (non-)CNF QBF solver that is based on
nested SAT solving, and it is able to do early propagation of information
between nested solvers.

– qbf2sts [42], a translator from QDIMACS/QCIR input format to sat-
to-sat input format with the ability to reverse engineer circuits and
apply several theory transformations to simplify the representation of
QBF formulas.

Three versions of qsts have been submitted to QBFEVAL’16, namely the
plain version (qsts), one version using both qxbf [43] and bloqqer prepro-
cessors (xb-qsts), and xb-bid-qsts, that extends xb-qsts with breakid [44],
a SAT symmetry breaker that has been modified to detect a (limited) class
of symmetries in QBF instances.

rareqs [45] is an abstraction based solver, which performs a kind of resolution
and expansion procedure but in a depth-first way, i.e., by expanding first only
one value of a variable, and learns abstractions of the local partial solutions
to refine the global solution. The submitted version includes bloqqer as
preprocessor. It has been also submitted a version for the PNCNF track
(rareqs-nn [46]).

StruQS [47], a QBF solver that implements a dynamic combination of search –
with solution- and conflict-backjumping – and variable-elimination. The key
point in this approach is to implicitly leverage graph abstractions of QBFs to
yield structural features which support an effective decision between search
and variable elimination. It has been also submitted a version coupled with
sQueezeBF (SqueezeBF+StruQS).



Further details about the systems can be found in the descriptions submitted by
their authors and made available in QBFLIB1.

Concerning formulas and generators, there were three submissions:

– Generalized Tic-Tac-Toe [48]: 180 formulas in QDIMACS 1.1, submitted
by Diptarama, C. Jordan, and A. Shinohara.

– Random QBFs: 60 formulas in QDIMACS 1.1 and QCIR format, submitted
by F. Ricca, G. Amendola and M. Truszczynski. Details are available at
http://www.qbflib.org

– QBF generator for formulas related to the rewriting algorithm described
in [49], implemented and submitted by T. Peitl.

About the testset of QBFEVAL’162, it has been composed considering the
specificities of the tracks previously described. Of course, the selection must sat-
isfy two competing requirements: (i) obtaining meaningful data and (ii) com-
pleting the evaluation in reasonable time. In order to do that, we prepare four
different datasets, namely:

– Dataset 1 (D1), for Prenex CNF, Evaluate & Certify, Solver Portfolio, and
Parallel QBF Solvers Tracks.

– Dataset 2 (D2), for the Prenex non-CNF Track.
– Dataset 3 (D3), for the 2QBF Track.
– Dataset 4 (D4), for Random QBFs Track.

D1 is composed of prenex CNF fixed structure formulas in QDIMACS 1.1 for-
mat. It is composed of (up to) 10 formulas selected from each family on QBFLIB,
and is has been extended adding 10 formulas from Generalized Tic-Tac-Toe,
other 10 generated by Peitl’s generator, for a total amount of 825 QBFs.

D2 is composed of prenex non-CNF fixed structure formulas in QCIR (QBF-
Gallery 14) format. It is composed of the non-prenex non-CNF dataset of QBF-
EVAL’10 [50] (478 formulas converted to QCIR and prenexed), extended with
the QCIR conversion of 50% of D1 (412 formulas), for a total amount of 890 for-
mulas. Regarding D3, it is composed of prenex CNF ∀∃ fixed structure formulas
in QDIMACS 1.1 format. (Up to) 50 formulas have been randomly selected from
each family of QBFLIB containing QBFs with ∀∃ prefix, for a total amount of
305 formulas.

Finally, D4 is composed of prenex CNF probabilistic structure formulas in
QDIMACS 1.1 format. D4 includes 580 formulas, 320 of which have been selected
from QBFLIB, 200 have been generated by the tool BlocksQBF [51] – based
on the model described in [52] –, and all submitted Random QBFs (60).

Table 2 summarizes the total amount of solvers and formulas involved in
QBFEVAL’16.

Finally, concerning the infrastructure, with the exception of solvers submitted
to the PS track, systems ran as a single process (or a batch of processes). The

1http://www.qbflib.org
2All datasets used in QBFEVAL’16 can be downloaded from http://www.qbflib.

org/eval16.html.



Track # Systems # Formulas

Prenex CNF 24 825
Prenex non-CNF 8 890
2QBF 21 305
Evaluate & Certify 5 825
Solver Portfolio 3 825
Parallel QBF Solvers 6 825
Random QBFs 21 580

Table 2. QBFEVAL’16 at a glance.

CPU time limit was set to 600 seconds, while the memory limit was 4GB. All
tracks excepting PS ran on the StarExec [53] cluster, while PS ran on a cluster
of Dell Workstations with double Intel Xeon E3-1245 PCs at 3.30 GHz quad
core processor, equipped with 64 bit Ubuntu 12.04.

3 Results at a glance

In Tables 3–9 section we report for each track a solver-centric view of the results
of QBFEVAL’16. Details are available at the QBFEVAL Web portal1 [54].

Considering the PCNF Track, looking at Table 3 we can see that rareqs
is the winner of the track, followed by xb-qsts and depqbf-v2, which rank
second and third, respectively. In QBFEVAL’16 there are also provided awards
for distinguished contribution to the state-of-the-art (SOTA) solver, i.e., the
ideal solver that always fares the best time among all the participants. In the
case of PCNF Track, best SOTA contributors are AIGSolve and qesto. Fi-
nally, we discarded from Table 3 the performance of hiqqer1, hiqqer3, qsts,
SqueezeBF+StruQS, and xb-bid-qsts because some discrepancies have been
reported for these solvers. We refer the reader to the QBFEVAL Web portal for
details.

Looking at the results of the PNCNF Track (Table 4), we report that the
two version of ghostQ are the best performing systems. ghostQ-cegar and
ghostQ-plain rank first and second, respectively, while quabs-picosat ranks
third; quabs-minisat was the best SOTA contributor. Also in this case, we do
not show in the table the system reporting discrepancies (all three versions of
qsts).

Table 5 shows the results of the 2QBF Track. The winner of the track is
areqs, closely followed by rareqs, while depqbf-v2 ranks third. In this track
we report discrepancies for qsts and xb-bid-qsts.

In Tables 6 and 7 we report the results related to EC and SP tracks, respec-
tively. The best performing in EC was depqbf-cert-v2, while in the SP track
caqe-portfolio ranks first. We have not assigned awards in both tracks be-

1http://www.qbfeval.org



Solver Total True False
# Time # Time # Time

rareqs 640 14166.80 309 4598.66 331 9568.11

xb-qsts 613 15296.70 299 5212.69 314 10084.00

depqbf-v2 603 14076.90 297 6256.31 306 7820.60

caqe-picosat 590 17178.80 294 6272.92 296 10905.90

AIGSolve 589 15981.30 293 7833.21 296 8148.14

ghostQ-cegar 585 14538.80 298 7739.39 287 6799.38

qesto 582 15552.80 285 4394.35 297 11158.50

caqe-minisat 576 15219.10 292 4878.17 284 10340.90

hiqqer1LDSQ* 574 10951.50 288 6319.74 286 4631.80

ghostQ-plain 568 13727.80 282 7000.20 286 6727.60

qestos 527 4356.04 252 1848.00 275 2508.04

depqbf-v3 527 16186.70 261 8995.82 266 7190.88

Aqua-S2V 484 7869.78 229 3290.43 255 4579.35

Aqua-F3V 482 7947.80 229 3753.27 253 4194.53

Aqua-S3O 479 6774.68 225 3036.41 254 3738.27

depqbf-v1 456 9999.76 201 4319.97 255 5679.79

StruQS* 358 12825.20 175 4595.09 183 8230.08

iProver-QBF 348 12922.00 158 5385.42 190 7536.62

iProver-QBF-bloqqer 324 9369.12 243 3955.44 81 5413.68

Table 3. Results of PCNF Track. For each solver, the table shows the number of in-
stances solved (“#”) and the total CPU time (in seconds) spent to solve them (“Time”).
Total number of formulas solved (“Total”) is also split into true and false formulas
(“True” and “False”, respectively). A dash means that a solver did not solve any in-
stance in the related group. Solvers are sorted according to the number of instances
solved, and, in case of a tie, according to CPU time. Finally, systems denoted with a
“*” participate hors-concours

Solver Total True False
# Time # Time # Time

ghostQ-cegar 524 9009.13 231 5391.70 293 3617.43

ghostQ-plain 521 7739.63 229 2802.33 292 4937.30

quabs-picosat 509 4784.62 223 2047.07 286 2737.55

quabs-minisat 503 4287.17 217 2608.65 286 1678.52

rareqs-nn 403 7427.47 174 3161.98 229 4265.49

Table 4. Results of PNCNF Track. The table is organized as Table 3.

cause the former was non-competitive, while in the latter 2 out of 3 participating
systems where hors-concours.

Considering the non-competitive PS Track, the best performing system was
par-pd-depqbf, followed by hiqqerFork and caqe-picosat-par. Finally,
Aqua is the winner of the RQBF Track, where Aqua-S2V, Aqua-F3V, and



Solver Total True False
# Time # Time # Time

areqs 235 2963.33 179 2136.52 56 826.81

rareqs 232 5287.58 156 2084.94 76 3202.64

depqbf-v2 223 5135.23 142 1553.21 81 3582.02

xb-qsts 206 5581.42 154 3354.41 52 2227.01

aspq* 188 741.09 141 275.41 47 465.68

hiqqer3 185 3236.84 150 2235.98 35 1000.86

qestos 184 3487.24 135 1194.36 49 2292.88

hiqqer1LDSQ* 183 2663.74 147 2195.58 36 468.16

hiqqer1 183 2703.59 147 2232.26 36 471.33

cadet 169 790.78 120 512.95 49 277.83

ghostQ-cegar 155 8135.25 108 6031.48 47 2103.77

depqbf-v3 138 4901.65 97 1799.51 41 3102.14

depqbf-v1 133 5466.70 68 1262.27 65 4204.43

iProver-QBF-bloqqer 124 188.14 122 78.66 2 109.48

StruQS* 100 933.77 73 483.18 27 450.59

SqueezeBF+StruQS* 100 1169.84 73 720.19 27 449.65

ghostQ-plain 87 7545.74 40 4115.46 47 3430.28

dynQBF 72 489.44 70 489.29 2 0.15

iProver 32 1249.98 30 1142.63 2 107.35

Table 5. Results of 2QBF Track. The table is organized as Table 3.

Solver Total True False
# Time # Time # Time

depqbf-cert-v2 309 4732.51 115 1981.28 194 2751.23

caqe-picosat-cert 268 7598.09 107 2382.27 161 5215.82

caqe-minisat-cert 236 6831.53 90 3099.06 146 3732.47

depqbf-cert-v1 217 2760.83 – – 217 2760.83

CheQ* 217 6188.85 118 3523.34 99 2665.51

Table 6. Results of EC Track. The table is organized as Table 3.

Solver Total True False
# Time # Time # Time

caqe-portfolio 580 8824.50 295 3305.74 285 5518.76

aqme* 530 9657.69 239 5351.65 291 4306.04

SqueezeBF+aqme* 473 9599.09 220 4863.89 253 4735.20

Table 7. Results of SP Track. The table is organized as Table 3.

Aqua-S3O rank first, second, and third, respectively. Additionally, rareqs has
been awarded as the best SOTA contributor.



Solver Total True False
# Time # Time # Time

par-pd-depqbf 606 12269.10 305 2946.11 301 9323.03

hiqqerFork 598 14624.00 300 7766.69 298 6857.33

caqe-picosat-par 585 13337.40 289 3560.56 296 9776.87

caqe-minisat-par 570 12304.00 293 4941.32 277 7362.72

HordeQBF 443 8434.86 191 3338.99 252 5095.87

Table 8. Results of PS Track. The table is organized as Table 3.

Solver Total True False
# Time # Time # Time

Aqua-S2V 306 10976.20 127 4952.36 179 6023.87

Aqua-F3V 306 11419.70 127 5031.04 179 6388.62

Aqua-S3O 300 10360.10 127 5085.79 173 5274.28

caqe-picosat 298 7324.49 128 2579.82 170 4744.67

rareqs 295 4305.78 127 1699.99 168 2605.79

xb-qsts 294 7963.03 132 2295.17 162 5667.86

qesto 291 9398.91 131 3720.64 160 5678.27

depqbf-v2 287 8977.03 113 1613.30 174 7363.73

hiqqer1 267 6712.26 111 1709.68 156 5002.58

hiqqer1LDSQ* 267 7013.05 111 1681.42 156 5331.63

hiqqer3 261 4763.45 111 1560.89 150 3202.56

depqbf-v1 257 7572.00 104 2130.39 153 5441.61

depqbf-v3 257 7772.75 108 2726.88 149 5045.87

qestos 246 6904.90 107 2340.14 139 4564.76

qsts 239 5231.98 106 2339.49 133 2892.49

caqe-minisat 212 7360.30 107 3758.12 105 3602.18

iProver-QBF-bloqqer 59 264.61 58 75.49 1 189.12

SqueezeBF+StruQS* 41 5851.10 27 3814.07 14 2037.03

StruQS* 35 3623.79 21 1602.65 14 2021.14

iProver-QBF 25 4341.95 25 4341.95 – –

Table 9. Results of RQBF Track. The table is organized as Table 3.

In conclusion, the final balance of QBFEVAL’16 can be summarized as fol-
lows:

– 44 systems (7 hors-concours) submitted by 20 different teams participated.
– 300 new formulas and 1 benchmark generator have been submitted.
– State-of-the-art solvers for each track have been identified.

All the information contained in this paper can be retrieved at the QBF-
EVAL’16 web portal, to which we refer the reader for details.
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