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Abstract. We study the parametrisation of QBF resolution calculi by
dependency schemes. One of the main problems in this area is to un-
derstand for which dependency schemes the resulting calculi are sound.
Towards this end we propose a semantic framework for variable inde-
pendence based on ‘exhibition’ by QBF models, and use it to express a
property of dependency schemes called full exhibition that is known to be
sufficient for soundness in Q-resolution. Introducing a generalised form of
the long-distance resolution rule, we propose a complete parametrisation
of classical long-distance Q-resolution, and show that full exhibition re-
mains sufficient for soundness. We demonstrate that our approach applies
to the current research frontiers by proving that the reflexive resolution
path dependency scheme is fully exhibited.

1 Introduction

The excellent success of SAT solvers in the realm of propositional Boolean formu-
lae has motivated much interest in the corresponding search problem for quanti-
fied Boolean formulae (QBF). The greater expressiveness of QBF, afforded by its
PSPACE-completeness [23], presents novel challenges in solving, and the array
of emerging techniques is motivating a wealth of research in the closely-related
field of proof complexity [3, 5–9,11–14].

There is a natural correspondence between QBF practice and proof theory;
when a solver concludes the falsity of an instance, the trace can be interpreted as
a formal refutation. Understanding the refutational proof system that underpins
a particular solving method, and thereby accounts for its correctness, motivates
the proof-theoretic study of specific calculi. Recent work has led to a complete
understanding of the relative strength of resolution-based QBF systems [3, 7],
including Q-resolution (Q-Res) [15], universal Q-resolution (QU-Res) [13], and
long-distance Q-resolution (LD-Q-Res) [1].

Implemented in the state-of-the-art solver DepQBF [16,17], one of the recent
and exciting developments in QBF solving has seen the introduction of depen-
dency schemes: algorithms that gather information on variable independence
by prior appeal to the syntactic form of an instance. The quantifier prefix of a
QBF (in prenex normal form) imposes a total order on the variables; due to the
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nesting of quantifier scopes, the value of a Boolean variable z can be dependent
upon the variables to its left in the prefix. Naturally, this entails some restric-
tions on solving methods, and on the rules of the related formal systems. In
general, however, z does not necessarily depend on all of the variables to its left.
A dependency scheme attempts to replace the linear order of the prefix with
a partial order that more accurately reflects the dependency structure of the
formula, by identifiying variable independence. This approach allows some sets
of instances to be solved more effeciently, despite the compuational overhead of
computing the dependency scheme [16].

Independence itself is presented as a semantic concept [16, 18]. The truth of
a QBF Φ is witnessed by a Skolem-function model, a set of Boolean functions
{fx} that produce a propositional tautology when substituted for the existential
variables. The arguments to fx are the universal variables Ux left of x in the
quantifier prefix, but it may occur that some circuit computes fx without using
u ∈ Ux as an input. In this case we say that x is independent of u – and a dual
notion for false QBFs provides for independence of universals on existentials –
even though the Skolem-function model is in general not unique.

This lack of uniqueness has consequences for soundness in QBF calculi. The
impact of a dependency scheme in the proof system is to allow some logical steps
which previously were prohibited; specifically, the ∀-reduction rule of Q-Res re-
ceives greater reign. This motivated the proposal of Q(D)-Res by Slivovsky and
Szeider [22], a parametrization of the classical calculus by dependency schemes.
Some schemes which were previously put forward in the literature, such as the
triangle [19] and resolution path [24] dependency schemes, have proved too ag-
gressive for soundness in Q(D)-Res, admitting refutations of true QBFs. The re-
flexive resolution path dependency scheme [22] is currently the strongest known
scheme for which Q(D)-Res is sound, a result which was proved by means of a
difficult transformation of a Q(D)-Res refutation into a Q-Res refutation [22].

What is currently absent in the literature is a deeper understanding of sound-
ness based on classification of dependency schemes; moreover, the lack of gen-
eral methods may frustrate future developments. It is natural to propose the
parametrization by dependency schemes of stronger QBF calculi, of the other
CDCL-based QBF resolution systems and QBF Frege [5], whereupon methods
for proving soundness based on properties of dependency schemes will carry over.
In this paper we demonstrate that semantic notions of independence are indeed
equipped for this; our contributions are summarized below.

1. New QBF calculi parametrized by dependency schemes. We extend
the parametrisation by dependency schemes to all the CDCL-based resolution
calculi for QBF: with the new long-distance calculus LD-Q(D)-Res, with uni-
versal resolution QU(D)-Res, and with their combination LQU(D)-Res. Our new
long-distance calculus presents the greatest challenge. Of the two inference rules
employed classically, parametrization of ∀-reduction can be lifted straight from
Q(D)-Res; here we investigate the additional effects of parametrizing the long-
distance resolution rule as well, by relaxing the conditions under which so-called



‘merged literals’ can be introduced. Progressing from Q-resolution, we demon-
strate that variable independence and merging have a more subtle interaction;
in LD-Q(D)-Res, we must supplant merged literals with annotated literals, which
record existential pivots to prevent unsound ∀-reduction steps.

2. A semantic framework for independence and soundness. We unify
some existing approaches in the literature towards a more fruitful understanding
of the interplay between Q-resolution and dependency schemes. Building on the
work of Samer [18] and Lonsing [16] we propose a semantic framework for variable
independence. Central to the framework is a property of dependency schemes
called full exhibition, which was shown to be sufficient for soundness in Q(D)-Res
by Slivovsky [21]. We further the potential of this approach to show that full
exhibition is sufficient for soundness in all the dependency calculi we introduce.
To that end, we handle the semantic obstacles of long-distance resolution by
incorporating techniques from strategy extraction due to Balabanov et al. [2].

3. Demonstrating full exhibition. We conclude by proving Slivovsky’s con-
jecture [21, p. 37] that the reflexive resolution path dependency scheme Drrs

is fully exhibited. Currently, Drrs is arguably the most important dependency
scheme, capable of revealing more cases of independence than any other tractable
scheme known to be sound for Q(D)-Res. As such, we show that everything cur-
rently known about soundness in this setting can be explained by full exhibition.
On the technical level, the result is obtained by an algorithmic transformation of
an arbitrary model for a true QBF Φ into a model that exhibits all the required
independencies. We therefore reveal the possibility for QBF solving to implement
long-distance techniques fully parametrized by Drrs, or any other fully exhibited
scheme.

2 Preliminaries

Quantified Boolean Formulas. A Quantified Boolean Formula (QBF) Φ over
a set V = {z1, . . . , zn} of n variables is a formula in quantified Boolean logic with
variables ranging over {0, 1}. We consider only formulas in prenex conjunctive
normal form (PCNF), denoted Φ = Q .φ, in which all variables are quantified
either existentially or universally in the quantifier prefix Q = Q1z1 · · · Qnzn,
Qi ∈ {∃,∀} for i ∈ [n], and φ is a propositional conjunctive normal form (CNF)
formula called the matrix. A CNF matrix is a conjunction of clauses, each clause
is a disjunction of literals, and a literal is a variable or its negation. Whenever
convenient, we refer to a clause as a set of literals and to a matrix as a set of
clauses. We typically write x for existential variables, u and v for universals,
and z for either. We denote the sets of existentially and universally quantified
variables of Φ by V∃ = {zi ∈ V | Qi = ∃} and V∀ = {zi ∈ V | Qi = ∀}
respectively. The prefix Q imposes a linear ordering <Φ on the variables of Φ,
such that zi <Φ zj holds whenever i < j, in which case we say that zj is right of



zi, or that zi is left of zj . The sets of variables right and left of z are denoted
RΦ(z) = {z′ ∈ V | z <Φ z′} and LΦ(z) = {z′ ∈ V | z′ <Φ z}.

Assignment Trees and Models. Assignment trees for PCNF were first intro-
duced in [20]. We represent an assignment tree formally as a set of paths. Let Φ
be a PCNF over variables V = {z1, . . . , zn} and let V∀ = {u1, . . . , uk}. A path
is a set of literals P = {l1, . . . , ln} with var(li) = zi for all i ∈ [n], and we write
P [zi] = li. A set of paths T is well-formed for Φ iff (1) for all u ∈ V∀ and for
all P,Q ∈ T , if P [v] = Q[v] for all v ∈ LΦ(u) ∩ V∀, then P [x] = Q[x] for each
x ∈ LΦ(u) ∩ V∃, and (2) there is a unique path P ∈ T with U ⊆ P for each set
of literals U = {l1, . . . , lk} such that var(li) = ui for i ∈ [k]. A set of paths that
is well-formed for Φ is an assignment tree for Φ. We also use P to denote the
total assignment P : V → {>,⊥} given by P (zi) = ⊥ if li = ¬zi and P (zi) = >
if li = zi, and extend this notation to literals with P (¬zi) = ¬P (zi), where
> = ¬⊥ and vice versa. An assignment tree for Φ is a model for Φ, typically
denoted M , iff P (C) = > for all paths P ∈ T and all clauses C ∈ φ, where
P (C) = > iff P (l) = > for some l ∈ C. A PCNF which has a model is true,
otherwise it is false. An assignment tree is depicted as a tree with root r.

Dependency Schemes. The trivial dependency scheme Dtrv is a mapping
which associates each PCNF Φ = Q1z1 · · · Qnzn .φ over variables V to the trivial
dependency relation Dtrv

Φ = {(zi, zj) | i < j and Qi 6= Qj}. A proto-dependency
scheme1 D is a function that maps each PCNF Φ to a binary relation DΦ ⊆ Dtrv

Φ

called the dependency relation. If (zi, zj) ∈ DΦ, then (zi, zj) is a D-dependency
and zj is a D-dependent of zi, otherwise zj is D-independent of zi. A proto-
dependency scheme D′ is said to be at least as general as another D if D′Φ ⊆ DΦ
for all PCNFs Φ, and is strictly more general if the inclusion is strict for some
formula. For a PCNF Φ over variables V and u ∈ V∀, we write D̄Φ(u) = {(u, x) |
x ∈ V∃ and (u, x) /∈ DΦ}.

QBF Resolution Calculi. We give a brief overview of four resolution-based
CDCL QBF calculi – see [7] for a more detailed survey. A refutational QBF
calculus is sound iff the empty clause cannot be derived from any true formula.

Q-resolution (Q-Res) introduced in [15] is the standard refutational calculus
for PCNF. In addition to resolution over existential pivots with non-tautologous
resolvents, the calculus has a universal reduction rule which allows a clause C to
be derived from C ∪{u}, where u is a universal literal and all existential literals
in C are left of u. QU-resolution (QU-Res) [13] is a natural extension of Q-Res
that allows universal resolution pivots.

Long-distance resolution, which was introduced in [25] and formalised as the
calculus LD-Q-Res [1], allows tautologous resolvents under certain conditions,

1 The term ‘dependency scheme’ was first introduced to denote a subset of proto-
dependency schemes with a more technical definition [19]; for consistency with the
literature we will use ‘proto-dependency scheme’ in technical portions of this paper.



using the special merged literal u∗ to represent the tautology {u,¬u}. The re-
sulting system is exponentially stronger than Q-Res [12]. Finally, the calculus
LQU-Res [3] combines naturally the features of QU-Res and LD-Q-Res, allowing
merged literals and resolution over universal pivots.

3 Our Contributions

In this section, we give a brief survey of the contributions contained in the full-
length version of the paper [4], to which we refer the reader for proofs and further
detailed commentry.

3.1 A Semantic Framework and New QBF Calculi

We reformulate the definition of independence in terms of assignment trees from
[16, 18]; we feel our notation is better suited to the aims of the current work.
We introduce the new idea of complementary paths in an assignment tree, and
define a property of dependency schemes called full exhibition.

Definition 1 (Complementary path). Let Φ be a QBF over variables V ,
let U be a non-tautologous set of literals such that var(U) = V∀, let T be an
assignment tree for Φ and let P ∈ T be the unique path such that U ⊆ P .
Then, for any u ∈ V∀, Pu ∈ T is the unique path such that U ′ ⊆ Pu, where
U ′ = (U \ {l}) ∪ {¬l}, l ∈ U and var(l) = u.

Definition 2 (Independence of existentials from universals [16,18]). Let
Φ be a true QBF over variables V and let u ∈ V∀, x ∈ V∃. We say that x is
independent of u in Φ if there exists a model M for Φ in which P (x) = Pu(x)
for all paths P ∈M . For such a model M we write M ≺ (u, x), and we say that
M exhibits the independence of x from u in Φ.

Definition 3 (Fully exhibited dependency scheme). Let D be a proto-
dependency scheme. We say that D is fully exhibited iff for each true PCNF Φ
there is a model M for Φ such that M ≺ (u, x) for each pair (u, x) /∈ DΦ, with
u ∈ V∀ and x ∈ V∃.

In [21], it was proved that Q(D)-Res is sound for fully exhibited2 D, and this was
combined with the fact that the standard dependency scheme Dstd is fully exhib-
ited (attributed to [10]). We show that this approach scales up to the dependency
versions of stronger QBF calculi. To do this, we introduce the new long-distance
calculi LD-Q(D)-Res and LQU(D)-Res (Fig. 1), the respective dependency ver-
sions of LD-Q-Res and LQU-Res. Parametrising long-distance resolution calls for
the introduction of annotations that prevent unsound ∀-reduction steps.

2 Full exhibition is treated equivalently, as a property of models.



(Axiom)
C C is a clause in the matrix of Φ.

D ∪ {uX}
(∀-Red)

D

Variable u is universal. If l ∈ D and
var(l) = z, then (u, z) /∈ DΦ, and if

l = zX
′

then (u, x) /∈ DΦ for all x ∈
X ′. If X = ∅ then literal uX is either
u or ¬u.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2), then l1 = l2 is not annotated.
var(U1) = var(U2) ⊆ V∀, and (x, u) /∈ DΦ for each u ∈ var(U1). If for
u1 ∈ U1, u2 ∈ U2, var(u1) = var(u2) = u, then u1 = ¬u2, or at least one
of u1, u2 is annotated. U is defined as {uX | u ∈ var(U1)}, where X is
the union of {x} with any annotations on u in U1 ∪ U2. In LD-Q(D)-Res
var(x) is existential. In LQU(D)-Res, var(x) is existential or universal.

Fig. 1. The rules of LD-Q(D)-Res and LQU(D)-Res

3.2 Results

We first prove that full exhibition is a sufficient condition for soundness in the
new long-distance QBF calculi.

Theorem 4. Let D be a fully exhibited proto-dependency scheme. Then LD-
Q(D)-Res is sound.

Since the (omitted) proof of Theorem 4 makes no use of the fact that the pivot is
existential, it also shows the soundness of LQU(D)-Res, the ‘dependency version’
of LQU-Res, for any fully exhibited D.

Theorem 5. Let D be a fully exhibited proto-dependency scheme. Then LQU(D)-
Res is sound.

Also, since LQU(D)-Res clearly simulates QU(D)-Res simply by disallowing long-
distance resolution steps, we obtain the same result for QU(D)-Res.

Theorem 6. Let D be a fully exhibited proto-dependency scheme. Then QU(D)-
Res is sound.

Theorems 4, 5 and 6 together constitute the generalisation to all the CDCL
QBF calculi of Slivovsky’s result [21] that Q(D)-Res is sound for fully exhibited
D. Whereas full exhibition is a sufficient condition for each calculus, it is not a
necessary condition for any of them.

Proposition 7. There exists a proto-dependency scheme D that is not fully-
exhibited for which LQU(D)-Res is sound.



For proof of concept, we demonstrate that the reflexive resolution path de-
pendency scheme Drrs [22] is fully exhibited, thereby proving the conjecture of
Slivovsky [21, p.37]. This result provides a better understanding of soundness
in Q-resolution with dependency schemes; since Drrs is the most general scheme
known to be sound in Q(D)-Res, what is already known about soundness for
that calculus can subsequently be explained entirely by full exhibition.

Theorem 8. Drrs is fully exhibited.

Our concluding result now follows immediately from Theorems 4, 5 and 6.

Corollary 9. QU(Drrs)-Res, LD-Q(Drrs)-Res and LQU(Drrs)-Res are sound proof
systems.

4 Conclusions

As we have shown, the parametrization by dependency schemes can be extended
to all four CDCL QBF calculi, and the property of full exhibition – which is
possessed by the reflexive resolution path dependency scheme – is sufficient for
soundness in each case. Showing by counterexample that full-exhibition is not a
necessary condition, our work leads naturally to the open problem of finding a
characterization for soundness in this setting.
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