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Abstract. In this short paper, we describe QBF solvers from the latest QBFEval
that were based on the SAT-to-SAT solver. We present the main ideas behind the
solvers and discuss their strengths and weaknesses.

1 Introduction

SAT-TO-SAT is a recently introduced solver that integrates several SAT solvers to solve
problems arbitrarily high in the polynomial hierarchy [7, 3]. In order to evaluate its
performance, we submitted three versions of this solver to the latest QBF evaluation:

– QSTS: This version represents our solver without any out-of-the-box preprocessors.
– XB-QSTS: This version represents our solver with both QXBF [12] and BLOQQER

[2] preprocessors.
– XB-BID-QSTS: This version integrates our solver with BREAKID, an award-winning

symmetry breaker [4], in addition to QXBF and BLOQQER.

Moreover, the above solvers also differ in internal options that were used. Unfortunately,
due to being relatively young, some bugs were still present in the versions submitted
to the competition. In particular, there were problems with (a) parsing QCIR theories
[14], (b) some simplification procedures when translating QDIMACS to SAT-TO-SAT
and, (c) integrating SAT-TO-SAT with BREAKID. Hence, our submission of XB-QSTS
to Prenex CNF tracks turned out to be our only correct solver in the official competition.

Nevertheless, the competition results show that SAT-TO-SAT is a state-of-the-art
QBF solver which finished second in the standard Prenex CNF track, only behind
RAREQS [8]. In other Prenex CNF tracks (2QBF and Random QBFs), SAT-TO-SAT
finished in the fourth and sixth places, respectively.

Since submitting SAT-TO-SAT to the QBF competition, we have fixed the problems
identified above and the results reported in this short paper reflect our experiments with
the corrected versions of our solver. In what follows, we provide a brief description
of how SAT-TO-SAT works internally as well as our updated experimental results,
comparing QSTS and XB-QSTS to RAREQS, DEPQBF [11] and GHOSTQ [10].

2 Background

Vocabularies and Interpretations. A vocabulary is a set of symbols, also called
atoms; we use σ, τ, ν to denote vocabularies. If σ is a vocabulary, a (two-valued) σ-
interpretation is a mapping σ → {t, f} where t denotes true and f false. A partial



σ-interpretation is a mapping σ → {t, f ,u}, where u denotes unknown. We often
identify a partial σ-interpretation J with a set of tuples pv with p ∈ σ, v ∈ {t, f}
(with each atom occurring at most once), meaning that J assigns all atoms occurring
in this set to their corresponding values, and all others to unknown. This allows us to
define the “union” of two interpretations. E.g., if σ and τ are disjoint, I is a (partial)
σ-interpretation and J a (partial) τ -interpretation, we use I ∪ J to interpret symbols
in σ in the same way as I and symbols in τ in the same way as J . If I and J are two
σ-interpretations, we will use the expression I ∪J only if I ∪J indeed defines a partial
interpretation (i.e., does not contain both pt and pf ).
Formulas. Propositional formulas are recursively built from atoms p, q, r, . . . using
connectives ∧, ∨ and ¬. A propositional theory is a collection of propositional formulas
that implicitly represents their conjunction. A singleton theory {φ} is sometimes shown
as φ. A propositional formula is a σ-formula if its atoms are in σ. A literal is an atom
or its negation. A clause is a disjunction of literals. A formula is in Conjunctive Normal
Form (CNF) if it is a conjunction of clauses. A sub-formula occurs positively (resp.
negatively) if it is within the scope of an even (resp. odd) number of negations.

A quantified Boolean formula (QBF) is built using the same recursive rules, but also
using quantifiers ∀ and ∃ over propositional atoms. Similar to propositional theories,
we define a QBF theory to be a collection of quantified Boolean formulas. A σ-QBF
is a QBF with free symbols belonging to σ. A σ-QBF with σ = {} is called a QBF
sentence. We use ∃τ : ϕ to abbreviate ∃p1 . . . ∃pn : ϕ if τ = {p1, . . . , pn}. For QBF ϕ,
we use ϕ(σ) to denote that ϕ’s free symbols are all in σ, i.e., ϕ is a σ-QBF. A prenex
QBF is a QBF in which all quantifiers are in the front, i.e., a sequence of quantifiers
followed by a propositional formula. The QDIMACS format is a numerical format to
describe prenex QBFs in which the propositional formula is in CNF. QDIMACS is
the de-facto standard for representing QBF instances.
Satisfiability Relation for QBFs. The satisfiability relation between σ-interpretations
I and a σ-QBFs ϕ, denoted by I |= ϕ, is defined recursively in the standard way:
(i) I |= p if I(p) = t; (ii) I |= ¬ϕ if I 6|= ϕ; (iii) I |= ϕ ∧ ϕ′ (resp. I |= ϕ ∨ ϕ′) if
I |= ϕ and (resp. or) I |= ϕ′; (iv) I |= ∀x : ϕ (resp. I |= ∃x : ϕ) if (I ∪ {xt}) |= ϕ
and (resp. or) (I ∪ {xf}) |= ϕ. For a (partial) σ-interpretation I and σ-QBF ϕ, we call
ϕ I-satisfiable if ϕ has a model that extends I and I-unsatisfiable otherwise.

3 SAT-TO-SAT

This section discusses the high-level ideas behind SAT-TO-SAT solver. The first sub-
section describes the inner workings of the core solver. The second subsection describes
preprocessing techniques used to optimize the input for our solver.

3.1 SAT-TO-SAT

Nested SAT Solvers. SAT-TO-SAT starts from a simple idea that has been around for
years in the QBF community, i.e., nesting of SAT solvers [16, 9, 15]. The idea is easiest
to explain in the case of a 2QBF. For a theory of the form ψ = ∀σ : ϕ1 ⇒ ∃τ : ϕ2

with ϕ1 and ϕ2 in CNF, we can rewrite ψ as ¬∃σ : [ϕ1 ∧ ¬∃τ : ϕ2]. The idea is that



the first SAT solver tries to find an assignment I for σ to satisfy ϕ1 (i.e., essentially,
searching for a witness to the falsify ψ) and, as soon as such an assignment I is found,
the second solver searches for an assignment I ′ to τ such that I ∪ I ′ is a model for ϕ2.
In case no assignment I ′ is found, I indeed witnesses falsity of ψ. But, if I ′ is found,
we analyze ϕ2 to learn a new clause C over σ that falsifies I and is a consequence
of ¬∃τ : ϕ2. We then add C to the theory of the first solver and continue searching
for a new assignment I . This idea is very effective as (1) it allows reuse of existing
SAT techniques such as conflict-driven clause learning [13]; (2) it treats SAT solvers as
black boxes and, hence, all state-of-the-art SAT solvers can be plugged in; and (3) it fits
the lazy clause generation paradigm [5]. This idea easily generalizes beyond 2QBF by
allowing deeper nestings of SAT solvers.
Quantifier-Independent Decision Ordering. To the best of our knowledge, a limi-
tation that all contemporary QBF solvers share is that, when solving QBF theories,
the decision ordering on quantified variables is bound by the quantification order. That
is, inner level variables are decided on only after all outer level variables are assigned a
value. For example, in the formula ∃x∃y ∀p∀q φ(x, y, p, q), the variables p and q cannot
be decided upon unless the truth values of both x and y have been assigned. This re-
striction is present in nested SAT solvers (the second SAT solver can only be called if a
complete assignment for σ is found), non-CNF solvers such as GHOSTQ [10], counter-
example guided abstraction refinement (CEGAR) solvers such as RAREQS [8], and
QDPLL-based solvers such as DEPQBF [11].

Such a dependence between variable decision ordering and quantification level is
problematic because it means that relevant conflicts and/or solutions in QBF theo-
ries cannot be found unless all (possibly irrelevant) outer-level variables have a value.
Solvers such as DEPQBF partly mitigate this problem by extracting (static) variable de-
pendency information out of QBF theories. While a valuable approach, such solutions
neither address the root cause of the problem nor are they general enough to apply to
all QBF theories. The SAT-TO-SAT approach is based on a new method to make vari-
able decision ordering independent of the quantification structure of those variables.
The intuition is that when the outermost solver arrives in a situation with a partial as-
signment for σ (following the notation introduced in the paragraph on nested solvers
above), it can already call the nested solver. The nested solver should then search for
an assignment to τ that models ϕ2 for every interpretation of the unassigned variables
in σ. If such an assignment is found, a conflict clause can be added to the theory of
the outermost solver. The search for such an assignment would in general require major
modifications to the solver. Instead, we implemented this in a different way. We show
that certain theory transformation, that include duplication of the atoms in σ, achieve
the same effect. This method has been detailed for the case of 2QBF by Janhunen et
al. [7] and extended to the general case by Bogaerts et al. [3].

3.2 Optimizations

Definition Extraction. We detect definitions and pull them to the outermost level pos-
sible. This technique is similar to reverse Tseitin engineering in GhostQ [6] and is based



on the observation that the following two formulas are always equivalent:

ϕ(x) = ∃ȳ : [ψ1 ∧ ¬∃z̄ : ∃z′ : (z′ ⇔ ψ2(x, y)) ∧ ψ3)].

ϕ(x) = ∃ȳ : ∃z′ : [ψ1 ∧ (z′ ⇔ ψ2(x, y)) ∧ ¬∃z̄ : ψ3].

Transforming the first formula to the second reduces the level of variable z′ by
moving it to outer levels of a QBF theory. Repeated applications of this transfor-
mation guarantee that all definitions are moved to the outermost level possible. Our
current implementation only extracts definitions of the form z′ ⇔

∧
{l1, . . . lk} or

z′ ⇔
∨
{l1, . . . lk}. Identifying other Boolean definitions is a topic for future research.

Extracting definitions leads to QBF theories with a richer vocabulary for the outer-
level solvers. Since conflict clauses are the only means of passing information between
SAT solvers in SAT-TO-SAT, having a rich vocabulary in the outer solver means that
information can be passed along more succinctly. For instance, when z =

∧
{l1, . . . , ln}

and z′ =
∧
{l′1, . . . , l′m}, the conflict clause z ∨ z′ summarizes n×m different conflict

clauses li ∨ l′j (for 1 ≤ i ≤ n and 1 ≤ j ≤ m). Hence, enriching the vocabulary of
outer-level solver with variables z and z′ allows us to reduce the number of conflict
clauses passed from the inner-level solver to the outer-level solver.
Unit and Equality Propagation. When extracting definitions z ⇔

∨
{l1, . . . , lk} or

z ⇔
∧
{l1, . . . , lk}, we look for special cases when k = 0 or k = 1. When k = 0, we

propagate the forced value of z to obtain a simpler QBF (unit propagation) and, when
k = 1, we replace all occurrences of z with l1 (equality propagation). Propagating unit
and/or equal literals sometimes leads to vast simplifications in a QBF instance.
Extended Learning Vocabulary. Sometimes when the internal solver in SAT-TO-SAT
finds a model, there are several alternatives to constructing a conflict clause. This hap-
pens when some clauses at level k depend on more than one literal from levels below
k (i.e., outer levels). In such cases, for each clause C with more than one variable from
outer levels, we can introduce a new auxiliary variable vC which is equivalent to the
disjunction of all literals in C that belong to the outer level. Similar to definition ex-
traction, the richer learning vocabulary for outer level solver is expected to summarize
many conflict clauses into one. This, in turn, is a limited type of extended resolution [17]
that leads to stronger learned clauses. In SAT-TO-SAT, introduction of such auxiliary
variables happens statically, in a preprocessing phase.

This idea is not new and has been recently studied in two independent papers [9,
15]. Janota et al. [9] calls this idea clause selection.
Weakened Definitions. Our previous QBF pre-processing techniques introduced sev-
eral definitions. Depending on how the defined variables are used, some definitions
can be weakened, essentially only adding one of the two implications. By analyzing the
dependency graph of the definition structure, we can determine which formulas depend
positively or negatively on given variables and, in a sound way, drop one direction of
the introduced definitions.
Symmetry Breaking. After the preprocessing techniques described above, we detect
and break symmetries of the QBF theory similar to Audemard et al. [1]. That is, for each
quantifier alternation (which also corresponds to each SAT solver that we create), we
fix all variables from other levels and, using symmetry breaking tool BREAKID [4], we
check if there exist some automorphisms over the set of variables at the current level.



If such automorphisms are found, we add the symmetry breaking clauses generated by
BREAKID to the solver for that level. Contrary to the work by Audemard et al. [1], our
symmetry breaking techniques do not require any modifications to the actual solver:
they are based merely on preprocessing.

4 Experiments

4.1 Configurations

Not all optimizations were applied in all versions of our solvers submitted to QBF-
Eval 2016. We experimentally tested which combinations of optimizations work well
together, as well with other existing QBF preprocessors and submitted the following
three configurations to the QBF Evaluation:

– QSTS: Our QSTS submission is comprised of our bare-bone solver (i.e., the nested
SAT solver architecture of SAT-TO-SAT plus its quantifier-independent decision
ordering feature) as well as following optimizing transformations: definition ex-
traction, unit and equality propagation, and weakened definitions.

– XB-QSTS: Our XB-QSTS submission is similar to QSTS except that it disables the
quantifier-independent decision ordering but uses QXBF and BLOQQER preproces-
sors in order to simplify a given QBF instance.

– XB-BID-QSTS: Our XB-BID-QSTS submission is similar to XB-QSTS except that it
also uses symmetry breaking.

4.2 Results

For experimental results, we ran QBFEval 2016 instances (which consists of 825 for-
mulas in Prenex CNF format) on a machine with a 32-core Intel® Xeon® CPU E5-4650
clocked at 2.70GHz, with 256GB of memory, and running Ubuntu Linux with kernel
version 3.13.0-91. We limited the resources available for each process to one CPU core,
at most 4GB of memory, and at most 600 seconds of time.

Under the above conditions, we ran the three different configurations of our solver
(i.e., QSTS, XB-QSTS and XB-BID-QSTS) and compared them with RAREQS+BLOQQER
(i.e., RAREQS QBF solver plus BLOQQER preprocessor), DEPQBF (under its best
configuration, i.e., DEPQBF-V2, as it participated in the QBFEval) and GHOSTQ-
CEGAR. We used all 825 instances that were made available in the Prenex CNF track.
Table 1 summarizes our results.

As Table 1 shows, RAREQS+BLOQQER shows the best performance among all
these solvers. This result is consistent with competition results of QBFEval 2016 in
which RAREQS+BLOQQER was ranked first. Also, the total number of solved QBF
instances for RAREQS+BLOQQER in our experiments is almost indistinguishable from
competition results (hence, further confirmation for the results we report here). That is,
RAREQS+BLOQQER solved 640 QBF instances in QBFEval 2016 and 639 instances
in our experiments. Our experiments also show consistency with QBFEval 2016 in the
case of XB-QSTS (our only bug-free submission to QBFEval 2016), DEPQBF-V2 and



Solver #SAT #UNSAT #Solved
RAREQS+BLOQQER 308 331 639

XB-BID-QSTS 300 327 627
XB-QSTS 297 318 615

DEPQBF-V3 292 303 595
GHOSTQ-CEGAR 297 287 584

QSTS 210 342 552

Table 1. Experimental results comparing different configurations of SAT-TO-SAT with other
state-of-the-art QBF solvers on instances from QBFEval 2016.

GHOSTQ-CEGAR solvers. That is, the difference between the total number of solved
instances in our experiments and those reported by QBFEval 2016 is at most eight.

As indicated by Table 1, our corrected version of XB-BID-QSTS performs better
than our XB-QSTS solver, and they both perform better than all other solvers except
RAREQS+BLOQQER. Hence, we conclude that we could have received both the 2nd
and the 3rd ranks in QBFEval 2016 if we had managed to submit a correctly working
version of XB-BID-QSTS.

5 Conclusion

We briefly discussed our contribution, SAT-TO-SAT, to the latest QBF evaluation. The
main difference between SAT-TO-SAT and other QBF solvers is its ability to make
variable decision ordering independent from the quantifier prefix. We conclude that,
while still in an early development stage, SAT-TO-SAT is a promising solver capable
og competing with the best QBF solvers on Prenex CNFs. Additionally, our experiments
with bug-fixed versions of our solver showed the effectiveness of symmetry breaking.
That is, a bug-free submission of XB-BID-QSTS would have been ranked 2nd in the
Prenex-CNF track of QBFEval 2016 after RAREQS+BLOQQER and before XB-QSTS.
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